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Abstract. Recently, Banerjee, Peikert and Rosen (EUROCRYPT 2012)
proposed new theoretical pseudorandom function candidates based on
“rounded products” in certain polynomial rings, which have rigorously
provable security based on worst-case lattice problems. The functions
also enjoy algebraic properties that make them highly parallelizable and
attractive for modern applications, such as evaluation under homomorphic
encryption schemes. However, the parameters required by BPR’s security
proofs are too large for practical use, and many other practical aspects
of the design were left unexplored in that work.

In this work we give two concrete and practically efficient instantiations
of the BPR design, which we call SPRING, for “subset-product with
rounding over a ring.” One instantiation uses a generator matrix of a
binary BCH error-correcting code to “determinstically extract” nearly
random bits from a (biased) rounded subset-product. The second instan-
tiation eliminates bias by working over suitable moduli and decomposing
the computation into “Chinese remainder” components.

We analyze the concrete security of these instantiations, and provide
initial software implementations whose throughputs are within small
factors (as small as 4.5) of those of AES.
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1 Introduction

Pseudorandom functions (PRFs) are fundamental objects in symmetric cryptog-
raphy, which are frequently used in the construction of higher-level objects like
block ciphers, message authentication codes, and encryption. A PRF takes as ar-
guments a “key” and an input string of a particular length, and deterministically
produces an output string of a particular (possibly different) length. Informally,
over the choice of a random (and secret) key that is used for all inputs, a PRF
cannot be efficiently distinguished from a truly random function via adaptive
oracle (i.e., “black-box”) access.

Constructions of PRFs have historically fallen into two broad classes: theoret-
ically sound designs that admit security proofs under mathematically natural
intractability assumptions (e.g., [BM82,BBS86,GGM84,NR95,NR97,NRR00]),
and designs whose conjectured security is supported by the lack of any known
effective cryptanalytic attack (e.g., DES [DES77], AES [DR00], and countless
others). Constructions of the latter type can be very fast and are dominant in
practice, but their internal complexity and lack of rigorous security reductions
may increase their risk of succumbing to new kinds of attacks, especially for
very strong and subtle security notions like PRFs. And while theoretically sound
designs tend to be mathematically elegant, they have so far been far too inefficient
or otherwise impractical for real-world use.

Mathematical simplicity is sometimes viewed as a weakness in terms of security,
because underlying “structure” can sometimes be used as a lever for non-trivial
attacks. On the other hand, a number of recently proposed applications of PRFs,
requiring properties such as efficient homomorphic evaluation [ACPR13] or “key-
homomorphism” [BLMR13], demonstrate that PRFs with algebraic structure
can deliver significant performance advantages over those that lack such structure
(in some cases offering an improvement of several orders of magnitude; see for
instance [ACPR13] vs. [GHS12,CCK+13]).

At the heart of these recent developments is a new class of candidate PRFs
constructed by Banerjee, Peikert and Rosen (BPR) [BPR12], which enjoy use-
ful algebraic structure, and may help to bridge the gap between theoretical
soundness and practical efficiency. The BPR constructions are based on the pseu-
dorandomness properties of rounded subset-products in suitable polynomial rings.
BPR give evidence for the asymptotic security of their constructions, proving
them secure under well-studied hardness assumptions like “learning with errors”
LWE [Reg05,Pei09] and its ring variant ring-LWE [LPR10], and by implication,
worst-case problems on point lattices.

1.1 The SPRING Family of Pseudorandom Functions

One of the main constructions in [BPR12] is a class of PRF candidates that we
call SPRING, which is short for “subset-product with rounding over a ring.” Let
n be a power of two, and let R denote the polynomial ring R := Z[X]/(Xn + 1),



which is known as the 2nth cyclotomic ring.4 For a positive integer p, let Rp

denote the quotient ring

Rp := R/pR = Zp[X]/(Xn + 1),

i.e., the ring of polynomials in X with coefficients in Zp, where addition and
multiplication are modulo both Xn + 1 and p. (For ring elements r(X) in R
or Rp, we usually suppress the indeterminate X.) We often identify r ∈ Rp with
the vector r ∈ Zn

p of its n coefficients in some canonical order. Let R∗p denote the
multiplicative group of units (invertible elements) in Rp.

For a positive integer k, the SPRING family is the set of functions Fa,s :

{0, 1}k → {0, 1}m indexed by a unit a ∈ R∗p and a vector s = (s1, . . . , sk) ∈ (R∗p)
k

of units. The function is defined as the “rounded subset-product”

Fa,s(x1, . . . , xk) := S

(
a ·

k∏
i=1

sxi
i

)
, (1)

where S : Rp → {0, 1}m for some m ≤ n is an appropriate “rounding” function.
For example, BPR uses the rounding function b·e2 : Rp → R2 ≡ Zn

2 that maps
each of its input’s n coefficients to Z2 = {0, 1}, depending on whether the
coefficient is closer modulo p to 0 or to p/2. (Formally, each coefficient b ∈ Zp is
mapped to b 2p · be ∈ Z2.)

It is proved in [BPR12] that when a and the si are drawn from appropriate
distributions, and p is sufficiently large, the above function family is a secure PRF
family assuming that the “ring learning with errors” (ring-LWE) problem [LPR10]
is hard in Rp. This proof is strong evidence that the family has a sound design
and is indeed a secure PRF, at least in an asymptotic sense. The intuition behind
the security argument is that the rounding hides all but the most-significant bits
of the product a ·

∏
i s

xi
i , and the rounded-off bits can be seen as a kind of “small”

error (though one that is generated deterministically from the subset-product,
rather than as an independent random variable as in the LWE problem). And
indeed, (ring-)LWE and related “noisy learning” assumptions state that noisy
products with secret ring elements are indistinguishable from truly uniform
values.

We stress that the known proof of security (under ring-LWE) requires the
modulus p to be very large, i.e., exponential in the input length k. Yet as discussed
in [BPR12], the large modulus appears to be an artifact of the proof technique,
and the family appears not to require such large parameters for concrete security.
Indeed, based on the state of the art in attacks on “noisy learning” problems
like (ring-)LWE, it is reasonable to conjecture that the SPRING functions can
be secure for rather small moduli p and appropriate rounding functions (see
Section 4 for further details).

4 It is the 2nth cyclotomic ring because the complex roots of Xn + 1 are all the 2nth
primitive roots of unity. The BPR functions can be defined over other cyclotomic
rings as well, but in this work we restrict to powers of two for simplicity and efficiency.



1.2 Our Contributions

In this work we give two new, optimized instantiations of the SPRING PRF
family for parameters that offer high levels of concrete security against known
classes of attacks, and provide very high-performance software implementations.

Because we aim to design practical functions, we instantiate the SPRING
family with relatively small moduli p, rather than the large ones required by the
theoretical security reductions from [BPR12]. This allows us to follow the same
basic construction paradigm as in [BPR12], while taking advantage of the fast
integer arithmetic operations supported by modern processors. We instantiate
the parameters as various (but not all) combinations of

n = 128, p ∈ {257, 514}, k ∈ {64, 128},

which (as explained below in Section 1.3) yields attractive performance, and allows
for a comfortable margin of security. The choice of modulus p ∈ {257, 514} is akin
to the one made in SWIFFT, for a practical instantiation of a theoretically sound
lattice-based collision-resistant hash function [LMPR08]. Also as in SWIFFT,
our implementations build on Fast Fourier Transform-like algorithms modulo
q = 257.

Working with small moduli p requires adjusting the rounding function S(·)
in the SPRING construction so that its output on a uniformly random element
of R∗p does not have any noticeable bias (which otherwise would clearly render
the function insecure as a PRF). We use rounding functions of the form S(b) =
G(bbe2), where b·e2 : Rp → R2 is the usual coefficient-wise rounding function
that provides (conjectured) indistinguishability from a potentially biased random
function, and G : R2 → {0, 1}m for some m ≤ n is an appropriate post-processing
function that reduces or removes the bias. (In [BPR12], G is effectively the
identity function, because a huge modulus p ensures no noticeable bias in the
rounded output.)

For each value of the modulus p ∈ {257, 514} we have a different concrete
instantiation, which we respectively call SPRING-BCH and SPRING-CRT. These
instantiations differ mainly in the computation of the subset-products in R∗p, and
in the definition of the bias-reducing function G.

SPRING-BCH. In this instantiation, we use an odd modulus p = q = 257, which
admits very fast subset-product computations in R∗q using Fast Fourier Transform-
type techniques (as mentioned above). However, because p is odd, the usual
rounding function b·e2 : Rp → R2 has bias 1/q on each of the output coefficients
(bits). To reduce this bias, the function G multiplies the 128-dimensional, 1/q-
biased bit vector by the 64× 128 generator matrix of a binary (extended) BCH
error-correcting code with parameters [n,m, d] = [128, 64, 22], yielding a syndrome
with respect to the dual code. This simple and very fast “deterministic extraction”
procedure (proposed in [AR13]) reduces the bias exponentially in the distance
d = 22 of the code, and yields a 64-dimensional vector that is 2−145-far from
uniform when applied to a 128-dimensional bit vector of independent 1/q-biased
bits. However, this comes at the cost of outputting m = 64 bits instead of n = 128,
as determined by the rate m/n of the code.



SPRING-CRT. In this instantiation, we use an even modulus p = 2q = 514, and
decompose the subset-product computation over R∗2q into its “Chinese remainder”
components R∗2 and R∗q . For the R∗q component we use the same evaluation
strategy as in SPRING-BCH, but for fast subset-products in the R∗2 component
we need new techniques. We prove that the multiplicative group R∗2 decomposes
into n/2 small cyclic groups, having power-of-two orders at most n. We also
give explicit “sparse” generators for these cyclic components, and devise fast
algorithms for converting between the “cyclic” representation (as a vector of
exponents with respect to the generators) and the standard polynomial one.
These tools allow us to transform a subset-product in R∗2 into a subset-sum of
vectors of (small) exponents with respect to the generators, followed by one fast
conversion from the resulting vector of exponents to the polynomial it represents.

For rounding R∗2q, we show that standard rounding of a uniformly random
element of R∗2q to R2 directly yields n− 1 independent and unbiased bits, so our
function G simply outputs these bits. The main advantage over SPRING-BCH is
the larger output size (almost twice as many bits), and hence larger throughput,
and in the simpler and tighter analysis of the bias. On the other hand, we also
show that the CRT decomposition of R∗2q can be exploited somewhat in attacks,
by effectively canceling out the R∗2 component and recognizing the bias of the
rounded R∗q component. Fortunately, for our parameters the best attacks of this
type appear to take almost 2128 bit operations, and around 2119 space.

We refer to Sections 2 and 3 for further details on these instantiations, and
to Section 4 for a concrete security analysis.

1.3 Implementations and Performance

We implement the two variants of SPRING described above, both for standalone
evaluations on single inputs, and in a counter-like (CTR) mode that is able to
amortize much of the work across consecutive evaluations. For the counter itself
we use the Gray code, which is a simple way of ordering the strings in {0, 1}k so
that successive strings differ in only one position. Then when running SPRING in
counter mode, each successive subset-product can be computed from the previous
one with just one more multiplication by either a seed element or its inverse.
More precisely, we store the currently computed subset-product b := a

∏n
i=1 s

xi
i .

(The Gray code starts with 0k, so the initial subset-product is simply a.) If the
next input x′ flips the ith bit of x, then we update the old subset-product to
b′ = b · si if xi = 0, otherwise b′ = b · s−1i .

For the SPRING-CRT instantiation, which works in R∗2q
∼= R∗2 ×R∗q , we use

two methods for computing (subset-)products in the R∗2 component. The first
uses the cyclic decomposition of R∗2 as described above, and is the fastest method
we have found for computing a standalone subset-product “from scratch.” The
other method uses the native “carryless polynomial multiplication” (PCLMUL)
instruction available in recent Intel processors, and/or precomputed tables, for
single multiplications in the Gray code counter mode.

We benchmarked our implementations on a range of CPUs with several
different microarchitectures. As a point of reference, we use the highly optimized



AES benchmarks from eBACS [eBA], and the bitsliced implementation for Käsper
and Schwabe [KS09]. We report our performances measures in Table 1, using
high-end desktop processors (Core i7), and small embedded CPUs found in tablets
and smart-phones (Atom and ARM Cortex). Even though the architectures of
those machine are quite different, our results are very consistent: in counter
mode, SPRING-BCH is between 8 and 10 times slower than AES (as measured
by output throughput), while SPRING-CRT is about 4.5 times slower than AES
(disregarding AES implementation with AES-NI when they are available). We
expect similar results on other CPUs with similar SIMD engines. Finally, we
mention that the very latest Intel CPUs (Haswell microarchitecture) include a
new 256-bit wide SIMD engine with support for integer operations (AVX2). We
expect that an AVX2 implementation of SPRING would run about twice as fast
on those processors, yielding very compelling performance.

Table 1. Implementation results for SPRING-BCH and SPRING-CRT with n = 128, in
both standalone and Gray code counter mode (CTR). Speeds are presented in processor
cycles per output byte, and are compared with the best known AES implementations.

SPRING-BCH SPRING-CRT AES-CTR

Standalone CTR Standalone CTR w/o AES-NI w/AES-NI

ARM Cortex A15 220 170 250 77 17.8 N/A
Atom 247 137 235 76 17 N/A

Core i7 Nehalem 74 60 76 29.5 6.9 N/A
Core i7 Ivy Bridge 60 46 62 23.5 5.4 1.3

1.4 Organization

The rest of the paper is organized as follows. We discuss the details of the SPRING-
BCH and SPRING-CRT instantiations in Sections 2 and 3 respectively. We follow
by analyzing the concrete security of our instantiations against known attacks
in Section 4.1, expanding on one class of combinatorial attacks on SPRING-
CRT in Section 4.2. Finally, we present certain implementation details and code
optimizations in Section 5.

2 SPRING-BCH

Here we describe our first instantiation, SPRING-BCH, which works over R∗q for
a suitable prime q, and uses a BCH code for reducing the bias of the rounded
subset-product.



2.1 Fast Subset Product in Rq

Efficient operations in the ring Rq were given in prior work by Lyubashevsky et
al. [LMPR08] (following [Mic02,PR06,LM06]). They give a Chinese Remainder
decomposition of this ring as Rq

∼= Zn
q , for prime q = 1 (mod 2n), and gave

fast FFT-like algorithms for converting between (the standard polynomial rep-
resentation of) Rq and Zn

q . In particular, the multiplicative group of units R∗q
is isomorphic to (Z∗q)n. Since Z∗q is cyclic and of order q − 1, a subset-product
in Rq reduces to a subset-sum of n-dimensional vectors of exponents modulo
q − 1 (with respect to some generator of Z∗q). Once the final vector of exponents
have been computed, the corresponding element in Zn

q can be computed by table
lookups, and finally converted to its polynomial representation via the FFT-like
algorithm from [LMPR08].

2.2 Rounding via BCH Code

Since q is odd, the usual rounding function b·e2 : Rq → R2, when applied to
a random input in Rq, outputs a ring element in R2 whose (bit) coefficients
are independent and have bias 1/q. In this subsection we define a function
G : R2 → {0, 1}m that dramatically reduces this bias using a BCH code.

Definition 1 ([NN90]). The bias of a distribution X ∈ {0, 1}m with respect to
I ⊆ [m] is defined as

biasI(X) =
∣∣∣Pr
[⊕
i∈I

xi = 0
]
− Pr

[⊕
i∈I

xi = 1
]∣∣∣.

Let max-bias(X) denote the maximal bias of X over all nonempty I ⊆ [m].

Theorem 1 ([NN90]). Let X ∈ {0, 1}m be a random variable. Then

2 ·∆(X,Um) ≤
√

2m ·max-bias(X)

where ∆(X,Um) denotes the statistical difference of X from the uniform distri-
bution on m bits.

Proposition 1 ([AR13]). Let G be a generator matrix of a binary linear code
with parameters [n,m, d], and let D ∈ {0, 1}n be a distribution of independent
bits such that bias{i}(D) ≤ ε for every i ∈ [n]. Then max-bias(G ·D) ≤ εd.

From the above we get that when applied to a random input b ∈ Rq, the statistical
distance of the distribution S(b) from uniform is at most (1/q)d

√
2m/2. Note

that in SPRING-BCH, we are actually applying G to bbe2 for a random unit
b ∈ R∗q , in which case the coefficients of bbe2 are not quite independent. Since we
are anyway only heuristically modeling the subset-products as uniformly random
and independent, we believe that it is safe to heuristically assume that G provides
low bias in our instantiation.



In terms of implementation, generator matrices of BCH codes over GF (2) are
preferable, since the rows of the matrix are cyclic shifts of a single row, which
facilitates fast implementation. We note that n is a power of 2, and any BCH
code over GF (2) is of length 2t − 1 for some integer t. To make the matrix
compatible with an n that is a power of two, we use the extended-BCH code,
which is obtained in a standard way by appending a parity bit to the codewords,
and increases the code distance d by one. We finally note that for our chosen
parameters n = 128,m = 64, the BCH code with parameters [127, 64, 21] and its
extension with parameters [128, 64, 22] have the largest known minimum distance
for these specific rates.

3 SPRING-CRT

We now describe our second instantiation, called SPRING-CRT, which uses
unbiased rounding on an even modulus of the form p = 2q, where q is an odd
prime as in the instantiation from the previous section.

By the Chinese Remainder Theorem, the natural ring homomorphism R2q →
R2 ×Rq is a ring isomorphism, and moreover, there is an explicit map which lets
us convert back and forth between the two representations. Specifically, it is easy
to verify that the pair (b2, bq) ∈ R2 ×Rq corresponds to

b = q · b̄2 + (q + 1) · b̄q (mod 2q) (2)

for arbitrary b̄2, b̄q ∈ R2q such that b̄2 = b2 (mod 2) and b̄q = bq (mod q). The
CRT isomorphism also induces a group isomorphism between R∗2q and R∗2 ×R∗q ,
and thus lets us represent the seed elements and their subset-products as pairs in
R∗2 ×R∗q . We compute products in the R∗q component as detailed in Section 2.1
above. In the following subsections, we define an unbiased rounding function from
R∗2q to R2, and give fast algorithms for computing products in the R∗2 component.

3.1 Unbiased Rounding of R∗
2q

We start by describing how the rounding function from R2q to R2 can be computed
directly from the Chinese remainder components (b2, bq) ∈ R2 × Rq of a given
b ∈ R2q. As above, let b̄q, b̄2 ∈ R2q denote arbitrary mod-2q representatives of
b2, bq. By Equation (2) and the definition of the rounding function b·e : R2q → R2,

bbe2 =
⌊
q(b̄q + b̄2) + b̄q

⌉
2

=
⌊
(b̄q + b̄2) + b̄q/q

⌉
.

If we choose the coefficients of b̄q from [−q/2, q/2) ∩ Z, then each coefficient of
b̄q/q is in the interval [−1/2, 1/2), so

bbe2 = b̄q + b̄2 mod 2. (3)

Equivalently, the coefficient vector of bbe2 is the exclusive-or of the coefficient
vector of b̄2 and the least-significant bits of the coefficients of b̄q.



In SPRING-CRT, we need an unbiased rounding function S from the unit
group R∗2q

∼= R∗2 ×R∗q to R2. An element of R2, viewed as a polynomial, is a unit
if and only if the sum of its coefficients is odd. So for a uniformly random element
of R∗2, any fixed choice of n − 1 coefficients (e.g., all but the constant term)
are uniformly random and independent, and the remaining one is determined.
Because of Equation (3) above, any fixed choice of n − 1 coefficients of b̄2 are
uniformly random and independent, over the random choice of b2 ∈ R∗2 alone.
Therefore, we define our generalized rounding function on b ∈ R∗2q to output a
fixed n− 1 bits of bbe2 ∈ R2, which is perfectly unbiased.

Note that the above argument depends only on the random choice of the
R∗2 component, and doesn’t use any of the randomness in the R∗q component.
Using such an argument, n− 1 independent and unbiased bits is the most we can
possibly obtain. Since the number of units in R∗2q is exactly (q− 1)n · 2n−1, which
is divisible by 2n, it seems plausible that there could exist a rounding function
that outputs n (nearly) unbiased bits given a random unit in R∗2q, but so far we
have not been able to find such a function. The main difficulty seems to be that
the coefficients of the representative b̄q are noticeably biased modulo 2.

3.2 Fast Arithmetic in R∗
2

We now give an algebraic decomposition of the group R∗2, and present fast
algorithms for performing subset-products and associated arithmetic operations.

The following theorem says that the unit group R∗2 decomposes into the
product of several small cyclic components, having power-of-2 orders at most n.
Due to space constraints, a proof is deferred to the full version.

Theorem 2. Define g0,0 = 1+(1+x) and gi,k = 1+(1+x)2
i+k for 1 ≤ i < lg(n)

and odd k ∈ {1, . . . , 2i}. Then

R∗2
∼= C

n/4
2 × Cn/8

4 × . . .× C1
n/2 × C

1
n =

lg(n)−1∏
i=1

C2j−i−1

2i × Cn, (4)

with each gi,k being a generator of one of the Cn/2i cyclic components.

There are several ways of representing elements in R∗2, which each allow
for certain arithmetic operations to be performed more or less efficiently. We
use the following three representations, the first of which is very good for fast
multiplication, and the last of which is used for rounding. (As we shall see, the
middle one is a convenient intermediate representation.)

1. Using the cyclic decomposition given in Theorem 2, we can represent an
element by its tuple of integer exponents with respect to the generators gi,k.
We call this the exponent representation.

2. We can represent elements in R2 by their vectors of Z2-coefficients with
respect to what we call the radix basis {(1 + x)i}0≤i<n. (An element is in R∗2
if and only if its coefficient for the basis element (1 + x)0 = 1 is 1.) The name
of this basis arises from the fact that (1 + x)n = 1 + xn = 0 (mod 2), and
therefore the coefficients can be thought of as digits in the “radix” 1 + x.



3. Finally, elements in R2 can be represented by their vectors of Z2-coefficients
with respect to the power basis {xi}0≤i<n, i.e., in the usual way as polynomials
in x.

We now give algorithms for efficiently converting from the exponent rep-
resentation to the power representation, using the radix representation as an
intermediary.

From exponents to radix basis. We first make a few useful observations about
the radix basis, and how powers of the generators gi,k look in this basis.

1. In the radix basis, multiplication by an element of the form (1+x)j corresponds
to shifting the input’s coefficient vector j places (and discarding the “top” j
coefficients), since (1+x)n = 0 in R2. Therefore, multiplication by 1+(1+x)j

corresponds to taking the exclusive-or of the input’s coefficient vector with
that vector shifted by j positions.

2. For any j and `, we have that (1 + (1 + x)j)2
`

= 1 + (1 + x)j·2
` ∈ R∗2, since

the intermediate binomial coefficients
(
2`

i

)
for 0 < i < 2` are all even.

3. Raising any generator gi,k to half its order yields g
n/2i+1

i,k = 1 + (1 + x)j ,

where j = n/2 + (n/2i+1)k. Moreover, the product of any two elements of
this type, for n/2 ≤ j1, j2 < n, is

(1 + (1 + x)j1)(1 + (1 + x)j2) = 1 + (1 + x)j1 + (1 + x)j2 .

Thus, a subset-product of elements of this type can be computed as
∏

j∈I(1 +

(1 + x)j) = 1 +
∑

j∈I(1 + x)j , for any I ⊆ {n/2, . . . , n− 1}.

Now let the exponent representation of some b ∈ R∗2 be {ei,k}, where each

ei,k denotes the exponent of the generator gi,k. Write ei,k =
∑lg(n)−i−1

`=0 ei,k,` · 2`,
i.e., each ei,k,` is the `th bit of ei,k, and observe that

g
ei,k
i,k =

lg(n)−i−1∏
`=0

(
g2

`

i,k

)ei,k,`

, (5)

where we know by Item 2 above that g2
`

i,k = 1 + (1 + x)(2
i+k)·2` .

We can now describe the algorithm that converts from exponent to radix
representation. We effectively decompose the given powers ei,k of gi,k according
to Equation (5), which we can then compute by Items 1 and 2 above. We note
that Item 3 lets us handle all the most significant bits of all the exponents very
quickly in one shot. (This yields a practical but not asymptotic improvement over
handling these bits more naively.) The precise details are given in Algorithm 3.1
below.

If the length of the coefficient vector is considered to be the word-size, then
apart from the most significant bits of the exponents (which are handled in
one word operation in total), the other bits are handled in one shift-and-XOR



Algorithm 3.1 Algorithm to convert from exponent to radix representation

1: Input: Exponents ei,k ∈ [0, n/2i) for positive odd k < 2i when 0 < i < lg(n), and
k = 0 when i = 0. . Let ei,k,` denote the `th bit of ei,k.

2: Output: A bit vector b ∈ Zn
2 representing the coefficients of b in the radix basis.

3: b← (1, 0, . . . , 0) . Initialize the vector b to represent 1 ∈ R∗2
4: for every valid (i, k) pair do
5: if ei,k,lg(n)−i−1 = 1 then
6: b[n/2 + k · n/2i+1]← 1

7: for every valid (i, k) pair do
8: for ` = (lg(n)− 2)− i down to 0 do
9: if ei,k,` = 1 then

10: b← b⊕ (b� ((2i + k) · 2`)) . The shift-and-XOR operation.

operation each, which is a constant number of word operations each. Since the
exponents take n− 1 bits in total, the algorithm performs a total of O(n) word
operations. (Since each word is n bits long, the bit complexity of Algorithm 3.1
is O(n2).)

From radix basis to power basis. For the second step, we have a bit vector b ∈ Zn
2

representing some b ∈ R2 with respect to the radix basis, and wish to convert to
the power basis. We express b as follows:

b =

n−1∑
i=0

bi(1 + x)i =

n/2−1∑
i=0

bi(1 + x)i + (1 + x)n/2
n/2−1∑
i=0

bi+n/2(1 + x)i

=

n/2−1∑
i=0

bi(1 + x)i + (1 + xn/2)

n/2−1∑
i=0

bi+n/2(1 + x)i (6)

=

(
n/2−1∑
i=0

(bi + bi+n/2)(1 + x)i

)
+ xn/2

n/2−1∑
i=0

bi+n/2(1 + x)i (mod 2), (7)

where (6) follows from the fact that (1 + x)2
j

= 1 + x2
j

(mod 2) (since
(
2j

i

)
is

even for every 0 < i < 2j), and n is a power of 2. Converting the n-bit vector b
therefore reduces to two conversions of n/2-bit vectors, namely, the top half of
b and the exclusive-or of the top and bottom halves of b. This directly yields
a simple divide-and-conquer algorithm to transform the coefficient vector b in
place, which is detailed in Algorithm 3.2 below. The number of bit operations
follows the simple recursive equation T (n) = 2T (n/2) + n/2, which solves to
T (n) = O(n log n).

4 Security Analysis

In this section we analyze the security of our construction against known classes
of attacks, and introduce new attacks specific to the structure of R2q.



Algorithm 3.2 Algorithm to transform from radix basis to power basis of R2

1: procedure Radix-to-Power(b, f, `)
Input: array b, index f and length ` . The initial call is made with f = 0 and ` = n
Output: subvector b[f, f + `− 1] converted to power basis
2: if ` > 1 then
3: for i = 0 to `/2− 1 do
4: b[f + i]← b[f + i]⊕ b[f + `/2 + i]

5: Radix-to-Power(b, f, `/2)
6: Radix-to-Power(b, f + `/2, `/2)

4.1 Overview of Known Attacks

The concrete security of the SPRING PRF for practical parameters is not well
understood, but to date there are no known attacks that nontrivially exploit the
internal subset-product structure. As discussed earlier, the SPRING construction
follows the paradigm from [BPR12], which results in a PRF that is secure against
all efficient adversaries, assuming the hardness of the (ring-)LWE problem (ap-
propriately parameterized). Informally, the ring-LWE problem asks the adversary
to distinguish many pairs (ai, bi) ∈ Rp ×Rp, where each ai is chosen uniformly
and bi ≈ ai · s is its noisy product with a secret ring element s, from uniformly
random pairs. The BPR security reductions make two assumptions that do not
hold in our instantiations: (1) the parameter p is exponential in the input length
k of the PRF, and (2) the seed elements si are all “small” ring elements in R;
more precisely, they are drawn from the error distribution from the underlying
ring-LWE assumption. However, as we shall see in what follows, relaxing these
requirements do not appear to introduce any concrete attacks against the function
family.

For the sake of modeling certain attacks against SPRING, we can think of it
as a LWE-type learning problem. The difference here is that all ring elements
output by SPRING have rounding errors in them, whereas ring-LWE releases
the multiplicand a without any error. In this respect, attacking SPRING seems
potentially harder than attacking ring-LWE.

The main classes of attacks against noisy learning problems akin to LWE
are: (1) brute-force attacks on the secret, (2) combinatorial-type attacks fol-
lowing [BKW03,Wag02,MR09], (3) lattice reduction attacks, and (4) algebraic
attacks following [AG11]. We consider each of these in turn. We note that the
lattice and algebraic attack strategies described below apply to (ring-)LWE with
our parameters. It is not clear whether these attacks will adapt to SPRING,
where multiplicands are not known exactly, but to be conservative we assume
that they might. While most of these attacks take a prohibitively large amount of
time and/or space (more than 2200), one kind of birthday-type attack technique
performs reasonably well against SPRING-CRT. Even in this case, its running
time is nearly 2128 bit operations and its space requirements are about 2119, when
n = 128.



Brute-force and combinatorial attacks. A brute-force attack involves searching
for a secret si ∈ R∗p, or for the round-off terms in enough samples to uniquely
determine an si. The secret and round-off terms come from sets of size at least
(p/2)n, which is prohibitively large for all our parameters. Combinatorial (or
“generalized birthday”) attacks on noisy learning problems [BKW03,Wag02] work
by drawing an huge number of samples and finding (via birthday collisions) small
combinations that sum to lie in a small enough subgroup, then testing whether
the noise can be detected. This works for small error rates because the small
combinations still retain small error terms. In the case of SPRING-CRT, this
style of attack looks the most promising, and a concrete attack in this vein is
developed further in Section 4.2.

Lattice attacks. Lattice attacks on (ring-)LWE typically work by casting it as a
bounded-distance decoding (BDD) problem on a certain class of random lattices
(see for instance [MR09,LP11,LN13,vdPS13]). At a high level, the attack draws
a sufficiently large number L of samples (ai, bi) ∈ Rp ×Rp, so that the secret (in
the LWE case) is uniquely determined with good probability. With error rate 1/2,
we need L ≥ lg(p/2) by a simple information-theoretic argument. The attack
collects the samples into vectors a, b ∈ RL

p , and considers the “p-ary” lattice L
of dimension N = nL (over Z) corresponding to the set of vectors s · a ∈ RL

p for
all s ∈ Rp. It then attempts to determine whether b is sufficiently close to L,
which corresponds to whether (ai, bi) are LWE samples or uniform. In our setting,
because the error rate 1/2 is so large, the distance from b to L (in the LWE case)
is nearly the minimum distance of the lattice, up to a constant factor no larger
than four (this is a conservative bound). Therefore, for the attack to succeed it
needs to solve BDD (or the shortest vector problem SVP) on L to within an very
small constant approximation factor. For the parameters in our instantiations,
the lattice dimension is at least N ≥ n lg(p/2) ≥ 896 (and likely more). For this
setting, the state of the art in BDD and SVP algorithms [CN11,LN13,MV10],
take time at least 20.48N ≥ 2430, and likely more. Moreover, the SVP algorithm
of [MV10], which appears to provide the best heuristic runtime in this setting,
as a most conservative estimate requires space at least 20.18N ≥ 2160.

Algebraic attacks. Finally, the algebraic “linearization” attack of Arora and
Ge [AG11] yields a lower bound on p for security. The attack is applicable when
every coefficient of every error term is guaranteed to belong to a known set of
size d; in our setting, d = p/2. The attack requires at least N/n ring-LWE samples
to set up and solve a dense linear system of dimension N , where

N =

(
n+ d

n

)
≈ 2(n+d)·H(n/(n+d))

and H(δ) = −δ lg(δ)−(1−δ) lg(1−δ) is the binary entropy function for δ ∈ (0, 1).
Therefore, the attack requires time and space at least N2, which is at least 2384

for even the most aggressive of all our parameters.



4.2 Birthday-type Attack on SPRING-CRT

We now describe a specific birthday-type attack on SPRING-CRT, which exploits
the structure of the ring R2q. The main idea is to cancel out the R2 component
and to detect the bias in the remaining Rq component.

To do this, we first split the input x into two parts, as x = y‖z for y, z
of certain lengths. Then the SPRING-CRT function (for simplicity, without
dropping a bit after rounding) can be written as

F (y‖z) = ba · Sy · Sze2,

where Sy and Sz respectively represent the subset product of the keys si indicated
by the bits of y and z.

The basic goal in the attack is to try to find values y and y′ such that
Sy = Sy′ mod 2. If we have two such values, then a · Sy · Sz = a · Sy′ · Sz mod 2
for any z, so the R2 component of the output will be the same for the inputs y‖z
and y′‖z. By Equation (3) in Section 3.1, this implies that in F (y‖z)⊕ F (y′‖z),
the respective R2 components cancel each other out. Since rounding of a uniform
element in Rq has a bias of 1/q in each coefficient, the bits of F (y‖z)⊕ F (y′‖z)
will be the sum of two biased bits, i.e., the bias is 1/q2. This can be detected
using q4/4 pairs of output bits (with varying z).

If we repeat the test for 2n different choices of (y, y′), with high probability,
one choice satisfies Sy + Sy′ = 0 mod 2, and we would be able to detect the bias
by the method detailed above. (By contrast, the test would not detect such bias
in a truly random function, with high probability.) We can collect the data for
the attack with 2n/2 distinct choices of y and y′, each of them using q4/(4n)
values of z. This requires 2n/2 · q4/(4n) queries and space, and a time complexity
of 2n · q4/2.

Generalizing the attack. We can generalize this analysis using y and y′ such
that (Sy + Sy′)

2 = 0 mod 2. This implies that the Sy,2 + Sy′,2 is a multiple of
xn/2 + 1, where Sy,2 = Sy mod 2 and similarly for Sy′,2. Thus, ci and ci+n/2,

the coefficients of xi and xn+i/2 respectively in Sy,2 + Sy′,2, are the same. This
implies that if we XOR the lower and upper halves of F (y‖z)⊕ F (y′‖z), we can
effectively remove the R2 component as above, and then can recognize the bias
in the Rq component. Since we sum four bits to remove the R2 component, we
reduce the bias, but a random pair y, y′ satisfies the condition with probability
2−n/2 instead of 2−n. This gives an attack with query and space complexity
2n/4 · q8/(4n) and time complexity 2n/2 · q8/4. This can be generalized further: if
we use y and y′ such that (Sy + Sy′)

t = 0 mod 2 (for t a power of 2), we reach a
time complexity of 2n/t · q4t/(2t).

With q = 257 and n = 128, our best attack on SPRING-CRT (using t = 2)
has time complexity roughly 264+64−2 = 2126, and query and space complexity
roughly 2n/2 · q8/(4n) ≈ 2119.



5 Implementation Details

The SPRING design is targeted for efficient implementation using SIMD instruc-
tions, and a well-optimized implemention allows us to reach throughputs that
are not too far from those of classical symmetric-key constructions.

SIMD instructions perform a given operation on multiple data in parallel.
Processors with a SIMD engine usually come with a set of dedicated registers,
which can contain a vector of integers or floating point data, and the SIMD
instruction set computes arithmetic operations in parallel on the vectors elements,
e.g., addition, multiplication, bitwise operations, rotations, etc. as well as some
permutations of the vector elements. SIMD instructions were introduced in
personal computers to improve the efficiency of multimedia computations, and
are now very widely available. SIMD engines with 128-bit wide vectors are
available on all desktop processors (SSE2 on x86/x86 64, Altivec on PowerPC,
NEON on ARM), and even on embedded platforms such as smart-phones and
tablets, with ARM Cortex-A or Intel Atom. Very recently, Intel has introduced
AVX2, with integer operations on 256-bit SIMD vectors.

We implemented the two instantiations of SPRING defined in Sections 2
and 3. SPRING-BCH involves a subset-product in R∗q , followed by rounding
and bias reduction (using the BCH code), while SPRING-CRT involves a subset
product in R∗2q followed by rounding. As described in Section 3.1, this can be
implemented as separate subset-products in R∗2 and R∗q , followed by an extraction
of the least significant bits in the R∗q component and an exclusive-or with the
R∗2 component. For each version, we have an implementation of the PRF with
standalone subset-products, and an amortized implementation in Gray code
counter mode where we just perform one ring multiplication before each rounding
operation. In the following subsections we explain how to efficiently implement
the main operations.

5.1 Computations in R∗
2

Subset-sum and conversion from exponent to power basis. We use the cyclic
decomposition of R∗2 given in Theorem 2, and store the key in exponent represen-
tation, so that the subset-product is a subset-sum of the exponents. A polynomial
in R2 (of degree less than 128) is represented by 32 one-bit indices, 16 two-bit
indices, 8 three-bit indices, 4 four-bit indices, 2 five-bit indices, 1 six-bit index,
and 1 seven-bit index. We store all 64 indices as 8-bit integers, and use SIMD
instructions to compute the sum. Since all the cyclic groups have an order that
is a power of 2, we can use 8-bit additions, and remove the extra bits at the
end. The conversion to the power basis is done using Algorithms 3.1 and 3.2.
Algorithm 3.2 is rewritten iteratively using shift, mask and xor instructions,
taking advantage of the inherent parallelism of bitwise operations, as shown in
Algorithm 5.1.



Algorithm 5.1 Iterative version of Algorithm 3.2 using the parallelism of bitwise
operations

1: procedure Radix-to-Power(b)
Input: 128-bit vector b
2: b← b⊕ (b ∧ 0xffffffffffffffff0000000000000000)� 64
3: b← b⊕ (b ∧ 0xffffffff00000000ffffffff00000000)� 32
4: b← b⊕ (b ∧ 0xffff0000ffff0000ffff0000ffff0000)� 16
5: b← b⊕ (b ∧ 0xff00ff00ff00ff00ff00ff00ff00ff00)� 8
6: b← b⊕ (b ∧ 0xf0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0)� 4
7: b← b⊕ (b ∧ 0xcccccccccccccccccccccccccccccccc)� 2
8: b← b⊕ (b ∧ 0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)� 1

Polynomial multiplication. In counter mode, we found it more efficient to compute
a single ring multiplication directly than to use the exponent representation.

On recent Intel CPUs (starting from the Westemere architecture introduced
in 2010) and AMD CPUs (starting from the Bulldozer architecture introduced
in 2011), there is a carry-less multiplication operation, pclmulqdq, that com-
putes a 64-bit polynomial multiplication modulo two. This gives a very efficient
implementation of the R2 multiplication.

Alternatively, we take take advantage of the fact that one of the operands
is always a polynomial from the key (or its inverse). Therefore, we can see it as
a multiplication by a fixed element in R2, which is a linear operation. We can
precompute tables corresponding to this linear operation with 8-bit subsets of
the input range, and compute the full multiplication using n/8 table accesses
and xors.

More precisely, we precompute z · s for all polynomials z of degree less than
8, and we write a degree-128 polynomial z as z0 + x8 · z1 + · · ·+ x120 · z15, where
all the zi are of degree at most 7. Then we can compute z · s as (z0 · s) + x8 ·
(z1 · s) + · · ·+ x120 · (z15 · s), which requires only 16 table accesses, rotations, and
xors. This trick takes about 1MB of extra memory to store the tables, but this is
negligible on the platforms we target.

5.2 Computations in R∗
257

Following [LMPR08], we use the Chinese Remainder Theorem isomorphism of
the ring Rq

∼= Zn
q when q = 1 (mod 2n) is prime. A product in Rq therefore

corresponds to a component-wise multiplication of vectors in Zn
q . Moreover,

there are fast FFT-like algorithms, often called “number theoretic transforms”
(NTT), for converting between the polynomial representation of Rq and the
n-fold product ring Zn

q .

Subset-sum and conversion. Since the ring elements we multiply are all part
of the key, we can generate and store them as vectors in the product ring Zn

q .
Moreover, since these elements are all unit, their entries in Zn

q are non-zero, and



we can actually store the discrete logarithms of the entries (with respect to some
generator of Z∗q), so that the subset-product becomes a subset-sum.

Exponentiation by the final summed exponents can be implemented with a
simple table lookup. However, we found a slightly more efficient version using
vector permutation (pshufb in SSSE3) instructions as a 4-bit to 8-bit parallel
table lookup. We use the fact that ga+16×b = ga · (g16)b, where a and b are both
4-bit values, and we use 4-bit to 8-bit tables for gx and (g16)x.

Product and conversion. In Gray code counter mode, we do not use the expo-
nent representation, because a point-wise multiplication is more efficient than a
point-wise addition followed by exponentiations. This is because the point-wise
multiplication can be parallelized easily while the exponentiation requires either
serial table lookups, or a more complex sequence of SIMD operations.

NTT The bottleneck of our function is the NTT computation, therefore we
have to optimize this part aggressively. In our implementation, we reuse the
code from the SIMD hash function [LBF08] which happens to use the same
parameters as the transformation needed in SPRING. The main tricks used in
this implementation are:

Representation of elements. Element in Z257 are stored as signed 16-bit words.
The choice of the modulus 257 allows an efficient implementation of the field
operations, because 257 is a prime and 256 = −1 (mod 257). Moreover, Z∗257 is
a cyclic group of 256 elements, where the subset sum of the logarithms can be
computed with a simple 8-bit addition.

Reduction. We use (x&255) - (x>>8) to do a partial reduction modulo 257,
with the output in [−127, 383]. When a full reduction to a smaller range is needed,
we subtract 257 to values greater than 128 to reduce the range to [−128, 128].
This can be performed completely with SIMD instructions and does not require
any division. We note that it is not necessary to perform a reduction after each
field operation, because we have some extra bits in a 16-bit word; we have to
study the NTT algorithm to find out where reductions are needed.

Multiplication. To compute a multiplication in Z257, we reduce both operands to
[−128, 128], and the result can be computed with a single 16-bit multiplication
without any overflow.

Using a two-dimensional NTT. Because SIMD instructions compute the same
operation on each element of the vectors, we do not use the classical radix-2 NTT
algorithm. Instead, we rewrite the one-dimensional NTT as a two-dimensional
one. In our implementation, we rewrite an NTT of size 64 as a two-dimensional
NTT of size 8× 8. The input data is seen as a 8× 8 matrix, and the computation
of the NTT64 is done in three steps:

– First we compute 8 parallel NTT8 on the columns of the matrix using a
decimation in time algorithm.



– We multiply by the twiddle factors, transpose the matrix, and permute the
row and the columns following the bit reversal order.

– Then we compute 8 parallel NTT8 on the columns of the matrix using a
decimation in frequency algorithm.

The first and the last step are easy to parallelize with SIMD instructions because
they compute the same transformation on 8 independent inputs. Moreover, the
root of unity used in the NTT8 is 4, so the multiplications needed for the NTT8 are
simply bit shifts. The transposition can be implemented using merge operations
available on most SIMD instruction sets (e.g., punpcklwd/punpckhwd in SSE).

For the 128-dimensional NTT, we reused the code of the NTT64, and we have
to perform an extra layer of butterfly operations and multiplications by twiddle
factors (we decompose the NTT128 as an NTT64 and a NTT2).

5.3 Reducing Bias with a BCH Code

After rounding the R257 computation output, we are left with a n-dimensional
vector over Z2, each element with a bias of 1/257. We apply the generator
polynomial of a BCH code in order to reduce the output’s bias. Specifically,
for the case of n = 128 we apply the extension using a parity bit on the BCH
code with parameters [127, 64, 21] in order to gain a generator for a code with
distance 22. Therefore, the whole computation is done using just a few shift and
xor instructions, and one final negate instruction. We use the BCH generator
polynomial

1 + x2 + x7 + x8 + x10 + x12 + x14 + x15 + x16 + x23 + x25 + x27 + x28 + x30 + x31

+ x32 + x33 + x37 + x38 + x39 + x40 + x41 + x42 + x44 + x45 + x48 + x58 + x61 + x63

since it matches our desired code parameters and has a minimal number of
nonzero coefficients. The output is 64 bits which makes consecutive outputs easy
to maintain in a packed array of 64-bit words. We note that if the PCLMUL
instruction is available, we can apply the generator polynomial on 127 rounded
output bits immediately by xoring outputs of such two instructions.
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