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Abstra
t. We 
onsider the problem of 
onstru
ting a 
onstant-round

zero-knowledge proof system for all languages in NP. This problem has

been previously addressed by Goldrei
h and Kahan (Jour. of Cryptology,

1996). Following re
ent works on 
on
urrent zero-knowledge, we propose

an alternative solution that admits a 
onsiderably simpler analysis.

Zero-knowledge (ZK) proto
ols require no introdu
tion. Sin
e their 
on
ep-

tualization [10℄, they have be
ome a widely used tool in the design and realiza-

tion of many 
ryptographi
 tasks. The notion of zero-knowledge owes mu
h of

its wide appli
ability to its generality, and spe
i�
ally, to the fa
t that every

language in NP 
an be proved in ZK [11℄.

In this paper we 
onsider the basi
 task of 
onstru
ting a 
onstant-round

zero-knowledge intera
tive proof system for all languages in NP (with negligible

error). Re
all that an intera
tive proof system is required to prote
t the honest

veri�er from an all powerful prover that is trying to 
onvin
e him of the validity

of a false assertion. This should be 
ontrasted with the 
ase of an intera
tive

argument system (
f. [3℄), in whi
h the soundness property is required to hold

only w.r.t. 
omputationally bounded provers.

Our goal is to design a \natural" proto
ol whose zero-knowledge property is

demonstrated in as a simple as possible manner. This would be in 
ontrast to

previous solutions, whi
h invloved a fairly 
ompli
ated analysis (
f. Goldrei
h,

Kahan [7℄). Our solution is inspired by a new ZK proto
ol by Prabhakaran,

Rosen and Sahai [18℄, originally introdu
ed in the 
ontext of 
on
urrent Zero-

Knowledge. Constant-round, negligible-error, ZK proofs for NP are a funda-

mental and widely used 
ryptographi
 tool. Needless to say that a simple 
on-

stru
tion/analysis of su
h proofs would be most desirable.

1 Constru
ting a Constant-Round ZK Proof for NP

We assume familiarity with the 
on
epts of Intera
tive Proofs, Zero-Knowledge

and Bit Commitment (see Appendix for the a
tual de�nitions) [10, 11, 15, 6℄. The

\typi
al" 
onstru
tion for a 
onstant round intera
tive proof for any language
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in NP would use a proto
ol of the following sort as a building-blo
k (here we

use a proto
ol for the NP-
omplete language of Hamiltoni
ity [2℄).

3

Common Input: A dire
ted graph G = (V; E) with n

def

= jV j.

Auxiliary Input to Prover: A dire
ted Hamiltonian Cy
le, C � E, in G.

(

b

p1): Pi
k a random permutation � of the verti
es V and 
ommit (using a

perfe
tly binding 
ommitment) to the adja
en
y matrix of the resulting per-

muted graph. That is, send an n-by-n matrix of 
ommitments so that the

(�(i); �(j))

th

entry is a 
ommitment to 1 if (i; j) 2 E, and is a 
ommitment

to 0 otherwise.

(

b

v1): Send a randomly 
hosen bit � 2 f0; 1g.

(

b

p2): If � = 0, send � to the veri�er along with the revealing (i.e., preim-

ages) of all 
ommitments. Otherwise, reveal only the 
ommitments to entries

(�(i); �(j)) with (i; j) 2 C. In both 
ases also supply the 
orresponding de-


ommitments.

(

b

v2): If � = 0, 
he
k that the revealed graph is indeed isomorphi
, via �, to G.

Otherwise, just 
he
k that all revealed values are 1 and that the 
orresponding

entries form a simple n-
y
le. In both 
ases 
he
k that the de
ommitments

are proper (i.e., that they �t the 
orresponding 
ommitments). A

ept if and

only if the 
orresponding 
ondition holds.

Fig. 1. A 3-round intera
tive proof system for Hamiltoni
ity.

It 
an be seen that the above proto
ol is both 
omplete and sound (with

soundness error 1/2). An additional \useful" property of the proto
ol (whi
h is

also satis�ed by many other known proto
ols) is that if the prover knows the


ontents of veri�er's \
hallenge" message � (sent in Step (




v1)) prior to sending its

own �rst message (sent in Step (




p1)), then it is able to 
onvin
e the veri�er that

G 
ontains an Hamiltonian 
y
le even without knowing su
h a 
y
le (a
tually,

it will 
onvin
e the veri�er even if G does not 
ontain an Hamiltonian 
y
le).

Spe
i�
ally, knowing in advan
e that � = 0, the prover will 
ommit to the

entries of the adja
en
y matrix of the permuted graph (in Step (




p1)), thus being

able to reveal a permutation � and the preimages of all 
ommitments in Step

(




p2). On the other hand, knowing in advan
e that � = 1, the prover will 
ommit

to the full graphK

n

, thus being able to open an arbitrary 
y
le in the supposedly

permuted graph.

The above \useful" property is suÆ
ient in order to prove that the above

proto
ol is bla
k-box zero-knowledge. All that the simulator has to do is to try

and "guess" the value of � prior to determining the value of the prover's �rst

message (and keep trying until it su

eeds). Using the 
omputational-hiding

property of the prover's 
ommitment in Step (




p1) we would then have that no

matter what an adversary veri�er V

�

does, the simulator is expe
ted to guess

�'s value in a 
onstant number of attempts.

3

The 
hoi
e of the Hamiltoni
ity proto
ol (due to Blum) as a building blo
k is arbi-

trary (and is made just for 
larity of presentation). In fa
t, any proto
ol with similar

properties (su
h as the 3-
oloring proto
ol of Goldrei
h, Mi
ali and Wigderson [11℄)


ould have been used.



To obtain a useful proto
ol, however, one must make sure that whenever

the statement proved is false, V a

epts only with small probability (rather

than 1/2). To a
hieve this, the proto
ol des
ribed above is repeated many (say, n)

times independently. V a

epts if and only if it has a

epted in all n repetitions.

The probability of having V a

ept a false statement is now redu
ed to 1=2

n

(by the independen
e of the repetitions). To save on the number of rounds, the

repetitions are 
ondu
ted in parallel (rather than sequentially).

Unfortunately, repeating the proto
ol many times in parallel brings up the

following diÆ
ulty. Whereas in the 
ase of a single exe
ution, the probability that

the ZK simulator \guesses" the value of � 
orre
tly is at least 1/2, the probability

that he does so simultaneously for all n repetitions is 1=2

n

. For large n, this

probability will be very small and might 
ause the simulator to run for too long.

Thus, it is not 
lear that the ZK property of the proto
ol is preserved. Indeed,

the above proto
ol 
annot be proved to be ZK using bla
k-box simulation (unless

NP � BPP) [8℄.

4

The Goldrei
h-Kahan Analysis [7℄. To over
ome the above problem, an

additional (V0) message is added at the beginning of the proto
ol, in whi
h the

veri�er 
ommits to all n \
hallenge" bits prior to re
eiving (




p1). The veri�er

then de
ommits to all 
hallenge bits in message (




v1). The se
re
y property of

the 
ommitment used in (V0) should then guarantee that the soundness of the

proto
ol is preserved.

At this point, it seems that all that the simulator has to do after obtaining

V

�

's 
ommitments in message (V0) is to feed V

�

with a \dummy" (




p1) and then

obtain de
ommittment to all 
hallenge bits in message (




v1). Knowing the 
hal-

lenge bits, the simulator would then \rewind" the intera
tion with V

�

and resend

a modi�ed (




p1) that would 
onvin
e the veri�er of the validity of the assertion

(this is possible due to the \useful" property of the underlying proto
ol).

Unfortunately, V

�

may arbitrarily deviate from the pres
ribed strategy. In

parti
ular, it may be the 
ase that throughout its intera
tion with the prover

(simulator), V

�

o

asionally sends an ABORTmessage (that is, V

�

may potentially

refuse to de
ommit to any of the previous 
ommitments). Clearly, su
h an a
tion

on behalf of the veri�er is 
onsidered illegal, and the intera
tion stops.

Having V

�

refuse to de
ommit may seem as good news (sin
e, on
e this

happens, the simulator does not really need to do anything). The problem is that

V

�

does not always refuse to de
ommit (but may refuse with some probability

0 � p � 1, whi
h is not known in advan
e by the simulator). Thus, the simulator

may �nd himself in a situation in whi
h the �rst run is answered with ABORT

whereas the se
ond run is \properly answered". This means that the simulator

has not managed to obtain the \
hallenge" bits in the �rst run, and it thus fails

to 
omplete its task.

4

A re
ent result by Barak [1℄ suggests that bla
k-box lower bounds should not be

interpreted as impossibility results about ZK, but rather as limitations of the bla
k-

box simulation as a te
hnique for proving the ZK property of proto
ols. It should

be noted, however, that Barak's proto
ol are only known to apply to 
ertain kinds

of argument systems (rather than proof systems).



One na��ve solution would be to let the simulator always output the run

in whi
h V

�

has refused to de
ommit. The problem with this solution is that

it \skews" the distribution of trans
ripts outputted by the simulator towards

trans
ripts that 
ontain ill-formed messages.

Goldrei
h and Kahan [7℄ suggested to let the simulator always de
ide whether

to output an aborted run a

ording to the out
ome of the �rst run. Spe
i�
ally,

the simulator will rewind only if \answered properly" in the �rst run and will


ontinue doing so (i.e., rewinding) until it obtains another \proper answer". Un-

fortunately, while this simulation strategy guarantees that the simulator's output

is 
orre
tly distributed, it also introdu
es te
hni
al diÆ
ulties. Loosely speaking,

these diÆ
ulties arise from the fa
t that probability of V

�

refusing to de
ommit

might di�er between the 
ase it is fed with a \dummy" 
ommitment (in step

(




p1)) and the 
ase it is fed with a \
onvin
ing" 
ommitment. The solution to

this problem is somewhat involved and requires having the simulator obtain an

estimate on the probability of V

�

de
ommits properly when fed with a \
on-

vin
ing" 
ommitment in step (




p1). As we have said before, our goal is to obtain

a simpler analysis (even at the 
ost of analyzing a slightly di�erent proto
ol).

2 The New Proto
ol

Consider the following proto
ol for Hamiltoni
ity (HC), whi
h is a variant of

the 
ZK proto
ol by Prabhakaran, Rosen and Sahai [18℄ in whi
h the preamble

has only one iteration (rather than a super logarithmi
 number of iterations as

in the PRS proo
ol).

5

Common Input: A dire
ted graph G = (V; E) with n

def

= jV j.

Auxiliary Input to Prover: A dire
ted Hamiltonian Cy
le, C � E, in G.

Additional parameter: A super-logarithmi
 fun
tion k(n).

Stage 1: Commitment to 
hallenge � 2 f0; 1g

n

(independent of 
ommon input):

(P1): Send �rst message for perfe
tly hiding 
ommitment s
heme.

(V1): Commit to random �; f�

0

i

g

k

i=1

; f�

1

i

g

k

i=1

s.t. �

0

i

� �

1

i

= � for all i.

(P2): Send a random k-bit string r = r

1

; : : : ; r

k

.

(V2): De
ommit to �

r

1

1

; : : : ; �

r

k

k

.

Stage 2: Engage in the 3-round proto
ol for HC (n parallel repetitions) using

� = �

1

; : : : ; �

n

as 
hallenge:

(p1): Produ
e �rst prover message of HC proto
ol (as in (

b

p1)).

(v1): De
ommit to � and to f�

1�r

i

i

g

k

i=1

.

(p2): Answer � with se
ond prover message of HC proto
ol (as in (

b

p2)).

(v2): A

ept if and only if all 
orresponding 
onditions hold (as in (

b

v2)).

Fig. 2. A new 7-round, negligible error, ZK proof for Hamiltoni
ity.

As shown in [18℄, the above proto
ol is both 
omplete and sound (with negli-

gible error). In parti
ular, the 
onstru
tion above is an intera
tive proof system

for HC. The following theorem states that it is also ZK.

5

A related approa
h has been previously used in order to 
onstru
t 
onstant-round

perfe
t ZK arguments for NP (see [5℄).



Theorem 2.1 (Constant-round ZK proof for NP) Assume the existen
e of

perfe
tly-hiding 
ommitment s
hemes. Then, the proto
ol des
ribed in Figure 2

is a ZK proof system for HC.

2.1 Zero-Knowledge

In order to demonstrate the ZK property of the proto
ol, we will show that there

exists a "universal" bla
k-box simulator, S, so that for every G = (V;E) 2 HC

and adversary veri�er V

�

that runs in polynomial time (in n = jV j), S(G) runs

in expe
ted time poly(n), and satis�es that the ensemble fview

P

V

�

(G)g

G2HC

is


omputationally indistinguishable from the ensemble fS

V

�

(G)g

G2HC

.

The Simulator. On input G = (V;E) with n = jV j, the simulator S starts

by sele
ting and �xing a random tape s 2 f0; 1g

poly(n)

for V

�

. It then pro
eeds

by exploring various pre�xes of possible intera
tions between P and V

�

. This is

done while having only bla
k-box a

ess to V

�

.

Step (S1): Randomly generate (P1) and obtain (V1) = V

�

(G; (P1); s).

Step (S2): Randomly generate (P2) and obtain (V2) = V

�

(G; (P1); (P2); s).

1. If (V2) 6= ABORT, pro
eed to Step (S3).

2. If (V2) = ABORT, output h(P1); (V1); ABORTi and stop.

Step (S3): For j = 1; 2; : : :

1. Randomly generate (P2)

j

and obtain (V2)

j

= V

�

(G; (P1); (P2)

j

; s).

2. If (V2)

j

6= ABORT, pro
eed to Step (S4).

3. If (V2)

j

= ABORT 
ontinue.

end(for)

Step (S4): Let (P2) = r

1

; : : : ; r

k

be the prover message generated in Step (S2) of

the simulation and let (P2)

j

= r

0

1

: : : ; r

0

k

be the last prover message generated in

Step (S3):

1. If (P2) = (P2)

j

, output ? and stop.

2. If (P2) 6= (P2)

j

, there exists i 2 f1; : : : ; kg so that r

i

6= r

0

i

. Let � = �

r

i

i

��

r

0

i

i

.

3. Use � to produ
e an a

epting trans
ript (p1); (v1); (p2) for G 2 HC.

4. Output h(P1); (V1); (P2); (V2); (p1); (v1); (p2)i and stop.

Fig. 3. The bla
k-box simulator S.

Noti
e that simulator always pi
ks the (P2)

j

messages uniformly at random.

Sin
e the length of the (P2)'s is super-logarithmi
, the probability that any two

(P1) messages sent during the simulation are equal is negligible (see Se
tion 2.1

for further details). We note that in previous simulators (
f. [7, 19, 13, 14℄), the

values of the (Pj) messages depended on the values revealed by the veri�er in the


orresponding (V2) answers, and were not 
hosen uniformly and independently

ea
h time. This is the main reason in the 
ompli
ation of previous analysises of

the simulator's output distribution.



The simulator's running time. For any G 2 HC, for any 
hoi
e of s and

of (P1), let � = �(G; (P1); s) denote the probability that the veri�er V

�

does

not send an ABORT message in message (V2). The probability � is taken over

the random 
hoi
es of message (P2). (Or, in other words, over the 
oin-tosses

used by the simulator to generate (P2) during the simulation (both in Steps (S2)

and (S3).1).)

Using this notation, the simulator pro
eeds to Step (S3) with probability �

and is then expe
ted to rea
h Step (S4) after repeatedly rewinding in Step (S3).1

for 1=� times (sin
e the probability of su

essfully rewinding in ea
h one of the

rewinds is pre
isely �, independently of other rewinds). For i 2 f1; 2; 3; 4g, let

p

i

(�) be a polynomial bound on the work required in order to perform Step (Si)

of the simulation (where in Step (S3), the value p

3

(�) represents the work of a

single exe
ution of Step (S3).1). The expe
ted running time of the simulator is

then:

p

1

(n) + (1� �) � p

2

(n) + � �

�

p

2

(n) +

1

�

� p

3

(n) + p

4

(n)

�

� p

1

(n) + p

2

(n) + p

3

(n) + p

4

(n)

= poly(n)

Sin
e the above holds for any 
hoi
e of s and (P1), then it is also true for

randomly 
hosen s and (P1) (and o�
ourse for any G 2 HC). We thus have,

Proposition 2.2 The simulator S runs in expe
ted polynomial-time (in jV j).

The simulator's output distribution. We now turn to show that for every

G 2 HC, the simulator's output distribution is 
omputationally indistinguish-

able from V

�

's view of intera
tions with the honest prover P . Spe
i�
ally,

Proposition 2.3 Suppose that the 
ommitment used in Step (p1) is 
omputa-

tionally hiding. Then, the ensemble fS

V

�

(G)g

G2HC

is 
omputationally indistin-

guishable from the ensemble fview

P

V

�

(G)g

G2HC

.

Proof: As a hybrid experiment, 
onsider what happens to the output distri-

bution of the simulator S if we (slightly) modify its simulation strategy in the

following way: Suppose that on input G = (V;E) 2 HC, the simulator S obtains

a dire
ted Hamiltonian Cy
le C � E in G (as auxiliary input) and uses it in order

to produ
e real prover messages whenever it rea
hes the se
ond stage of the pro-

to
ol. Spe
i�
ally, when it rea
hes the se
ond stage, the hybrid simulator 
he
ks

whether the original simulator S should output ? (in whi
h 
ase it also does). If

S does not have to output ?, the hybrid simulator follows the pres
ribed prover

strategy and generates prover messages for the 
orresponding se
ond stage (by

using the 
y
le it possesses rather than its prior knowledge of �). We 
laim that

the ensemble 
onsisting of the resulting output (whi
h we denote by

b

S

V

�

(G;C))

is 
omputationally indistinguishable from fS

V

�

(G)g

G2HC

. Namely,



Claim 2.4 Suppose that the 
ommitment used in Step (p1) is 
omputationally

hiding. Then, the ensemble fS

V

�

(G)g

G2HC

is 
omputationally indistinguishable

from the ensemble f

b

S

V

�

(G;C)g

G2HC

.

Proof Sket
h: The 
laim is proved by redu
ing the proof to the indistinguisha-

bility of Blum's simulator's output (that is, if the output of Blum's simulator [2℄

is 
omputationally indistinguishable from the view of real exe
utions of the basi


Hamiltoni
ity proof system, then fS

V

�

(G)g

G2HC

and f

b

S

V

�

(G;C)g

G2HC

are in-

distinguishable as well). The latter is proved to hold based on the 
omputational-

hiding property of the 
ommitment s
heme that is used by the prover in Step (




p1)

(see [2, 6℄ for further details). Here we also use the extra property that the out-

put of Blum's simulator is indistinguishable from true intera
tions even if the

distinguisher has a-priori knowledge of a Hamiltonian 
y
le C � E.

We next 
onsider what happens to the output distribution of the hybrid simula-

tor

b

S if we assume that it does not output ?. It turns out that in su
h a 
ase, the

resulting output distribution is identi
al to the distribution of fview

P

V

�

(G)g

G2HC

.

Namely,

Claim 2.5 The ensemble f

b

S

V

�

(G;C)g

G2HC


onditioned on it not being ?, is

identi
ally distributed to the ensemble fview

P

V

�

(G)g

G2HC

.

Proof: Noti
e that the �rst stage messages that appear in the output of the

\original" simulator (that is, S) are identi
ally distributed to the �rst stage

messages that are produ
ed by an honest prover P (sin
e they are uniformly and

independently 
hosen). Sin
e the �rst stage messages that appear in the output

of the \modi�ed" simulator (that is,

b

S) are identi
al to the ones appearing in

the output of S, we infer that they are identi
ally distributed to the �rst stage

messages that are produ
ed by an honest prover P . Using the fa
t that the

se
ond stage messages that appear in the output of the \modi�ed" simulator

are (by de�nition) identi
ally distributed to the se
ond stage messages that are

produ
ed by an honest prover P , we infer that the ensemble f

b

S

V

�

(G;C)g

G2HC

is identi
ally distributed to fview

P

V

�

(G)g

G2HC

.

As we will show in Proposition 2.7 below,

b

S outputs? only with negligible proba-

bility. In parti
ular, the ensemble f

b

S

V

�

(G;C)g

G2HC

is 
omputationally indistin-

guishable from (and in fa
t statisti
ally 
lose to) the ensemble f

b

S

V

�

(G;C)g

G2HC

,


onditioned on it not being ?. Namely,

Claim 2.6 The ensemble f

b

S

V

�

(G;C)g

G2HC

is 
omputationally indistinguish-

able from the ensemble f

b

S

V

�

(G;C)g

G2HC


onditioned on it not being ?.

As mentioned above, Claim 2.6 follows by establishing the following 
laim.

Claim 2.7 For any G = (V;E) 2 HC, the probability that

b

S

V

�

(G;C) = ? is

negligible (in jV j).



Proof: Let G 2 HC with n = jV j. We will show that for any 
hoi
e of s 2

f0; 1g

poly(n)

and (P1) the probability of

b

S outputting ? (over random 
hoi
es

of (P2) = r 2 f0; 1g

k

) is pre
isely 1=2

k

. Sin
e k is super-logarithmi
 it will

immediately follow that the probability that

b

S

V

�

(G;C) = ? is negligible. Let

e

V

�

=

e

V

�

((P1); s) denote the \residual" strategy of V

�

when h(P1); si are �xed

(i.e.,

e

V

�

(G; r)

def

= V

�

(G; (P1); r; s)), and let � be as in Se
tion 2.1. We then have:

Pr

r

h

b

S

e

V

�

(G;C) = ?

i

= Pr

r

h

b

S

e

V

�

(G;C) = ? j

b

S rea
hes (S3)

i

� Pr

r

h

b

S rea
hes (S3)

i

(1)

= Pr

r

h

b

S

e

V

�

(G;C) = ? j

b

S rea
hes (S3)

i

� �

= Pr

r

h

(P2) = (P2)

j

i

� � (2)

Now, sin
e (P2) and (P2)

j

are uniformly and independently 
hosen in f0; 1g

k

,

and sin
e the number of r 2 f0; 1g

k

for whi
h

e

V

�

(G; r) is not equal to ABORT is

pre
isely 2

k

� �, then it holds that Pr[(P2) = (P2)

j

℄ = 1=(2

k

� �). Using Eq. 2 we

infer that:

Pr

r

h

b

S

e

V

�

(G) = ?

i

=

1

2

k

� �

� � =

1

2

k

as required.

It 
an be seen that Claims 2.4, 2.5 and 2.6 imply Proposition 2.3.
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A De�nitions

A.1 Basi
 notation

We let N denote the set of all integers. For any integer k 2 N , denote by [k℄

the set f1; 2; : : : ; kg. For any x 2 f0; 1g

�

, we let jxj denote the size of x (i.e., the

number of bits used in order to write it). For two ma
hines M;A, we let M

A

(x)

denote the output of ma
hine M on input x and given ora
le a

ess to A. The

term negligible is used for denoting fun
tions that are (asymptoti
ally) smaller

than one over any polynomial. More pre
isely, a fun
tion �(�) from non-negative

integers to reals is 
alled negligible if for every 
onstant 
 > 0 and all suÆ
iently

large n, it holds that �(n) < n

�


.

A.2 Intera
tive Proofs

We use the standard de�nitions of intera
tive proofs (and intera
tive Turing

ma
hines) [10, 6℄ and arguments (a.k.a 
omputationally-sound proofs) [3℄. Given

a pair of intera
tive Turing ma
hines, P and V , we denote by hP; V i(x) the



random variable representing the (lo
al) output of V when intera
ting with

ma
hine P on 
ommon input x, when the random input to ea
h ma
hine is

uniformly and independently 
hosen.

De�nition A.1 (Intera
tive Proof System) A pair of intera
tive ma
hines

hP; V i is 
alled an intera
tive proof system for a language L if ma
hine V is

polynomial-time and the following two 
onditions hold with respe
t to some neg-

ligible fun
tion �(�):

{ Completeness: For every x 2 L,

Pr [hP; V i(x) = 1℄ � 1� �(jxj)

{ Soundness: For every x 62 L, and every intera
tive ma
hine B,

Pr [hB; V i(x) = 1℄ � �(jxj)

In 
ase that the soundness 
ondition is required to hold only with respe
t to a


omputationally bounded prover, hP; V i is 
alled an intera
tive argument system.

A.3 Zero-Knowledge

Loosely speaking, an intera
tive proof is said to be zero-knowledge (ZK) if it

yields nothing beyond the validity of the assertion being proved. This is formal-

ized by requiring that the view of every probabilisti
 polynomial-time adversary

V

�

intera
ting with the honest prover P 
an be simulated by a probabilisti


polynomial-time ma
hine S

V

�

(a.k.a. the simulator). The idea behind this de�-

nition is that whatever V

�

might have learned from intera
ting with P , he 
ould

have a
tually learned by himself (by running the simulator S). The trans
ript

of an intera
tion 
onsists of the 
ommon input x, followed by the sequen
e of

prover and veri�er messages ex
hanged during the intera
tion. We denote by

view

P

V

�

(x) a random variable des
ribing the 
ontent of the random tape of V

�

and the trans
ript of the intera
tion between P and V

�

(that is, all messages

that V

�

sends and re
eives during the intera
tion with P , on 
ommon input x).

De�nition A.2 (Zero-Knowledge) Let hP; V i be an intera
tive proof system

for a language L. We say that hP; V i is zero-knowledge, if for every probabilisti


polynomial-time intera
tive ma
hine V

�

there exists a probabilisti
 polynomial-

time algorithm S

V

�

su
h that the ensembles fview

P

V

�

(x)g

x2L

and fS

V

�

(x)g

x2L

are 
omputationally indistinguishable.

To make De�nition A.2 useful in the 
ontext of proto
ol 
omposition, Goldre-

i
h and Oren [9℄ suggested to augment the de�nition so that the 
orresponding


onditions hold also with respe
t to all z 2 f0; 1g

�

, where both V

�

and S

V

�

are

allowed to obtain z as auxiliary input. Jumping ahead, we 
omment that in the


ontext of bla
k-box simulation,, the original de�nition implies the augmented

one (i.e., any bla
k-box ZK proto
ol is also ZK w.r.t. auxuliary inputs). Sin
e in

this work we only 
onsider the notion of bla
k-box ZK, we may ignore the issue

of auxiliary inputs while being guaranteed that all results hold with repse
t to

the augmented de�nition as well.



A.4 Bla
k-Box zero-Knowledge

Loosely speaking, the de�nition of bla
k-box zero-knowledge requires that there

exists a \universal" simulator, S, so that for every x 2 L and every proba-

bilisti
 polynomial-time adversary V

�

, the simulator S produ
es a distribution

that is indistinguishable from view

P

V

�

(x) while using V

�

as an ora
le (i.e., in

a \bla
k-box" manner). Essentially, the de�nition of bla
k-box simulation says

that the bla
k-box simulator mimi
s the intera
tion of the prover P with any

polynomial-time veri�er V

�

relative to any random input r it might 
hoose. The

simulator does so merely by using ora
le 
alls to V

�

(x; r) (whi
h spe
i�es the

next message that V

�

sends on input x and random input r). The simulation is

indistinguishable from the true intera
tion even if the distinguisher (i.e., D) is

given a

ess to the ora
le V

�

(x; r). For more details see Se
tion 4.5.4.2 of [6℄.

De�nition A.3 (Bla
k-Box Zero-Knowledge) Let hP; V i be an intera
tive

proof system for a language L. We say that hP; V i is bla
k-box zero-knowledge, if

there exists a probabilisti
 polynomial-time algorithm S, so that for every proba-

bilisti
 polynomial-time intera
tive ma
hine V

�

, the ensembles fview

P

V

�

(x)g

x2L

and fS

V

�

(x)g

x2L

are 
omputationally indistinguishable.

A.5 Commitment S
hemes

Commitment s
hemes are used to enable a party, known as the sender, to 
ommit

itself to a value while keeping it se
ret from the re
eiver (this property is 
alled

hiding). Furthermore, the 
ommitment is binding, and thus in a later stage when

the 
ommitment is opened, it is guaranteed that the \opening" 
an yield only a

single value determined in the 
ommitting phase.

Perfe
tly-binding 
ommitments. In a perfe
tly binding 
ommitment s
heme,

the binding property holds even for an all-powerful sender, while the hiding

property is only guaranteed with respe
t to a polynomial-time bounded re
eiver.

Non-intera
tive perfe
tly-binding 
ommitment s
hemes 
an be 
onstru
ted

using any 1{1 one-way fun
tion (see Se
tion 4.4.1 of [6℄). Allowing intera
tion

(in whi
h the re
eiver �rst sends a single message), (almost) perfe
tly-binding


ommitment s
hemes 
an be obtained from any one-way fun
tion [15, 12℄.

Perfe
tly-hiding 
ommitments. In a perfe
tly hiding 
ommitment s
heme,

the binding property is guaranteed to hold only with respe
t to a probabilisti


polynomial-time sender. On the other hand, the hiding property is information-

theoreti
. That is, the distributions of 
ommitments to 0 and 
ommitments to 1

are identi
al (statisti
ally-
lose), and thus even an all-powerful re
eiver 
annot

know the value 
ommitted to by the sender. (See Se
tion 4.8.2 of [6℄.)

Perfe
tly hiding 
ommitment s
hemes 
an be 
onstru
ted from any one-

way permutation [16℄. However, 
onstant-round s
hemes are only known to ex-

ist under stronger assumptions; spe
i�
ally, assuming the existen
e of 
ollision-

resistant hash fun
tions [17, 4℄ or the existen
e of a 
olle
tion of 
erti�ed 
lawfree

fun
tions [7℄ (see also [6℄, Se
tion 4.8.2.3).

This arti
le was pro
essed using the L

A
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