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Abstract

Rational proofs, recently introduced by Azar and Micali (STOC 2012), are a variant of interactive
proofs in which the prover is neither honest nor malicious, but rather rational. The advantage of rational
proofs over their classical counterparts is that they allow for extremely low communication and verification
time. Azar and Micali demonstrated their potential by giving a one message rational proof for #SAT, in
which the verifier runs in time O(n), where n denotes the instance size. In a follow-up work (EC 2013),
Azar and Micali proposed “super-efficient” and interactive versions of rational proofs and argued that
they capture precisely the class TC0 of constant-depth, polynomial-size circuits with threshold gates.

In this paper, we show that by considering rational arguments, in which the prover is additionally
restricted to be computationally bounded, the class NC1, of search problems computable by log-space
uniform circuits of O(logn)-depth, admits rational protocols that are simultaneously one-round and
polylog(n) time verifiable. This demonstrates the potential of rational arguments as a way to extend the
notion of “super-efficient" rational proofs beyond the class TC0.

The low interaction nature of our protocols, along with their sub-linear verification time, make them
well suited for delegation of computation. While they provide a weaker (yet arguably meaningful)
guarantee of soundness, they compare favorably with each of the known delegation schemes in at least
one aspect. They are simple, rely on standard complexity hardness assumptions, provide a correctness
guarantee for all instances, and do not require preprocessing.

Our rational arguments are constructed in two steps. We first design a multi-round rational proof and
then collapse it into a single round argument. In doing so, we identify the gap between the reward given
to a truthful prover in the proof and the one given to a dishonest one as a key parameter in the quality of
the resulting argument. We leave it as an intriguing open problem to determine whether one could “scale
up” the underlying proofs to classes beyond NC1, and potentially even beyond P (thus bypassing known
impossibility results), and point out some limitations in doing so for non-trivial languages.
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1 Introduction

With the advent of cloud computing there has been increased interest in schemes that allow devices with
limited computing power to verify the correctness of computations done on their behalf. Such procedures are
referred to as delegation schemes. In their most basic incarnation, the weak device (the verifier) delegates a
computation to the cloud (the prover) by sending it an input x ∈ {0,1}n and expecting the cloud to return
the value f (x), where f is a function computable by a predetermined circuit C. To make the computation
of f (x) verifiable, the prover is expected to send along a “certificate of correct computation”, which is then
checked by the verifier, preferably investing less resources than it would have invested had he computed f (x)
on its own (for this notion to be meaningful the circuit C should be given in some succinct way, e.g. it can be
efficiently generated by a small program).

1.1 Efficient Proofs/Arguments

The first approaches for delegating computation (which in fact pre-dated the cloud days by about two decades)
proposed to use Computationally Sound proofs/efficient arguments (cf. Kilian [Kil92], Micali [Mic00]).
These delegation schemes allow the verifier to run in time O(poly(n, logS)), where S denotes f ’s circuit size.
However, they require heavy machinery such as PCP for general circuits, and hence introduce significant
overhead to both the prover and the verifier. Moreover, efficient arguments require four messages of interaction
between the prover and the verifier, inflicting undesirable burden on the parties.

While the interaction can be removed by using Random Oracles [Mic00], the question of whether
there exist efficient non-interactive arguments under standard assumptions is still not well understood. One
indication on the difficulty of resolving this problem is that no non-trivial language has a Succinct Non-
interactive ARGument (SNARG) based on non-falsifiable assumptions (Gentry and Wichs [GW11]). Several
works have been bypassing these limitations by relying on non-standard (and in particular not known to be
falsifiable) assumptions (we survey these alternative proposals in Section 1.4), yet it is of interest to examine
to what extent such assumptions are necessary for succinct delegation.

In any case, as observed by Goldwasser, Kalai and Rothblum [GKR08], the impossibility results do not
pose any limitation in the context of real-life delegation. This is simply because in delegation we are only
interested in efficiently computable problems. This brought them to introduce a weaker notion of delegation,
in which the prover is only required to work for languages computable in polynomial time, resulting in
more efficient delegation schemes, both in the standard model (i.e., with no set-up), or in a model allowing
an off-line preprocessing stage (used to amortize the cost of verification across multiple evaluations of f ).
One-round versions of such schemes are computationally sound, and in particular based on intractability
assumptions (e.g. [CKV10, GGP10, AIK10]), whereas interactive versions can be actually proved to be
unconditionally sound [GKR08].

It should be noted that, while many of these more recent schemes do not rely on full blown PCP machinery,
they still induce significant computational overhead on the prover. Even leaving prover’s complexity aside,
in all the delegation schemes mentioned above the verifier’s running time is O(poly(n, logS)) (or at best
n+polylog(S)), suggesting that the least the verifier should do is to read the input in its entirety. On the other
hand, recent work by Rothblum, Vadhan and Wigderson [RVW13], suggests that this apparent limitation can
be actually bypassed by considering ”Interactive Proofs of Proximity”. For circuits of depth d, such proofs
allow the verifier to work in time (n/D+D)1+o(1) · Õ(d) (which is sub-linear for example when D =

√
n),

but to reject only strings that are D-far from being the correct output of the computation.
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1.2 Rational Proofs

Another recent line of work, initiated by Azar and Micali [AM12] proposes to relax the rigid soundness
requirements of classical proofs. They do so by allowing the verifier to accept proofs of false statements, but
make it irrational for the prover to provide them. While not good enough in case of a malicious prover (or
say if one wants to detect faults), this still may fit very well a scenario in which a weak client delegates a
complex computation to a more powerful server/cloud (think of delegation of some massive computation
to Amazon, which would then be paid for its services). Thus, to the extent that such Rational Proofs are
meaningful, one may consider them as an alternative to more traditional approaches to delegation.

Azar and Micali [AM12] give rational proofs for search problems in #P and more generally for the entire
counting hierarchy. The main advantage of such proofs over their classical counterparts is that they are as
simple as one could hope for. The basic idea is to let the prover simply give the verifier the result of the
computation, and let the verifier randomly compute a “reward” based on the prover’s answer. This reward
reflects the quality of the prover’s computation in that its expectation is maximized when the prover gives the
correct answer. As a result there is almost no overhead both for the prover and for the verifier.

One natural question that comes to mind is whether rational proofs can be “scaled down” to lower
complexity classes. This includes both classes such as NP, but also lower classes say within P (i.e., ones that
are relevant to delegation). Towards this end, Azar and Micali [AM13] proposed “super-efficient” rational
proofs, an extension of their notion, and showed that such super-efficient rational proofs capture precisely
the class TC0 of constant depth, polynomial size circuits with threshold gates. The super-efficiency of their
proofs, while introducing additional interaction, allows the reward to be computed by the verifier in sub-linear
time (in the input size). This can be achieved in an extremely simple and natural manner, introducing hardly
any overhead on the prover’s work (beyond the computation of f ).

Azar and Micali [AM13] also consider super-efficient one-round rational PCPs, in which the communica-
tion is poly(n) and the verifier has random access to the message from prover. Rational PCPs can capture
languages beyond TC0. However, given the differences in the communication model and constraints, they are
not directly comparable to super-efficient proofs. Moreover rational PCPs seem unsuitable for delegation,
since in this model the prover sends the whole proof to the verifier that queries only a limited number bits of
it to check the correctness of computation.

1.3 Our Results

The main objective of this paper is to attain a simple (and in particular low-overhead), one-round delegation
scheme that captures as large class of problems as possible, and in which the verifier works sub-linearly in
the input size. To this end we introduce a new concept, called Rational Arguments, which beyond postulating
a rational prover additionally assumes that he is computationally bounded. We show how to realize rational
arguments based on standard (falsifiable) cryptographic hardness assumptions, resulting in an arguably
meaningful alternative to known delegation schemes.

Our initial observation is that for the class of search problems computable by threshold circuits of depth
d = o(n), the efficiency of rational proofs can be strengthened beyond what was originally shown by Azar
and Micali [AM12], in the sense that the verification time can be performed in as little as Õ(d) time. This
comes at the cost of making the proof interactive, and specifically requires d rounds of communication. The
resulting rational proof is very simple and induces hardly any overhead. All that is required from the prover is
to perform the computation as prescribed, storing intermediate values along the way. A small subset of these
values is subsequently used to convince the verifier in the correctness of the actual computation. Moreover,
the verification procedure requires the verifier to only access a single bit of the input, and to perform a
computation with complexity proportional to d, the depth of the circuit.

Our rational proofs resemble by structure the super-efficient rational proofs of Azar and Micali [AM13],
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and traverse the circuit in a similar manner. However, the computation of reward by the verifier differs in that
it requires the prover to send a single bit per gate (the corresponding intermediate value), unlike in the case
of [AM13] where the prover needs to count and report the number of ones among the children of each gate
queried by the verifier. This yields to substantial improvement in terms of communication complexity.

Next, we go on and convert the above interactive procedure into a one with a single round. This is done
by applying a variant of a previously known transformation by Kalai and Raz [KR09]. This transformation
makes use of a single server Private Information Retrieval Scheme (PIR) and assumes that the prover is
computationally bounded. The “database” held by the prover in this transformation consists of precisely the
intermediate computation values mentioned above, and as a result the overhead is kept minimal (the Kalai
Raz transformation was previously used to convert significantly “heavier” protocols, resulting in increased
work for the prover, beyond the mere computation of f ). Jumping ahead, we note that our analysis departs
from the original Kalai Raz analysis in several aspects (we elaborate on the differences in Section 3.3).

Formalizing the above necessitates putting forward a completely new definition of rational arguments.
This definition involves dealing with several subtleties and complications, arising from the combination of
rational proofs with computational considerations and the presence of cost of computation. We view the
formalization of this new concept as one of the main contributions of this paper. Our construction of rational
arguments, along with the way it interacts with the definition, highlights the importance of the “gap” between
the reward given in case of truthful behavior of the prover and the reward given in case of untruthful behavior.
In our construction, the noticeable reward gap of our rational proofs for NC1 (in contrast to higher classes
within NC) is exactly what allows us to successfully transform them into one-round rational arguments.

In addition to the above, we also establish strong limitations on the reward gap achievable by non-
interactive public-coin rational proofs. Specifically, we show that non-trivial languages cannot have such
rational proofs with both logarithmic communication complexity and noticeable reward gap. This suggests
that the search for rational proofs with large reward gap should focus on private-coin and/or interactive
protocols. Progress in this direction would be very interesting, as it might result in succinct non-interactive
rational arguments, whose classical counterparts, as shown by Gentry and Wichs [GW11], cannot be achieved
under falsifiable assumptions (at least not in a black box way).

To summarize, we view our main contributions to be the following:

• Downscaling rational proofs to efficiently handle a rich class of languages within P (specifically, the
class of search problems computable by threshold circuits of depth d = o(n)). (Section 4.4)
• Defining a notion of rational arguments that bears meaningful semantics in the context of delegation of

computation. (Section 3.1)
• Transforming any interactive rational proof with noticeable reward gap into highly efficient one-round

rational arguments. (Section 3.2)
• Establishing limitations on the verification complexity (or more precisely on the complexity of comput-

ing the reward) in low communication rational proofs. (Section 4.5)
• Pointing out open questions related to the notions of rational proofs and arguments. (Section 5)

Our rational protocols, while providing a weaker (yet arguably meaningful) guarantee of soundness, compare
favorably with each of the known delegation schemes in at least one aspect. They are simple, rely on standard
complexity hardness assumptions, provide a correctness guarantee for all instances, and do not require
preprocessing.

1.4 Comparison with Known Delegation Schemes

In classical model, the literature contains a variety of models for delegation. For problems within P the
protocols can be roughly partitioned into proofs and arguments, where the latter has been considered both
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with and without preprocessing. For problems outside of P, the main notion considered is that of succinct
non-interactive arguments. Arguments in preprocessing model and arguments for problems outside P are less
relevant to this work. We survey some of them and note that the verification time is not sub-linear.

Before comparing with the classical setting, we present a comparison with other delegation schemes
in the rational model. That is, we show a comparison between our rational arguments/rational proofs and
rational proofs by Azar and Micali [AM13].

Rational proofs. Independently of our work, [AM13] show a rational proof for uniform constant depth
threshold circuits and prove that constant round, super-efficient rational proofs capture TC0. Our rational
arguments cover a potentially richer class of problems, while having only one round and only polylogarithmic
overhead. We view it as an evidence that rational arguments have the potential to extend super-efficient
rational proofs beyond class TC0.

The advantage of our rational proofs over rational proofs in [AM13] is minimality of communication, i.e.,
only one bit per round. For the restricted class of log-time constant depth threshold circuits, the verification
time of our protocol as well as [AM13] is O(logn). For log-space uniform circuits, a comparison of
parameters is in the following table:

Table 1: efficiency comparison of our rational proofs and arguments to [AM13]
Complexity class Rounds Communication Verification time

[AM13] TC0 constant O(logn) polylog(n)

Our rational proofs TC0 constant constant polylog(n)

Our rational proofs NC1 O(logn) O(logn) polylog(n)

Our rational arguments NC1 1 polylog(n) polylog(n)

Proofs. Goldwasser et al. [GKR08] give a simple interactive proof for any log-space uniform circuit in
NC. Their solution is to traverse the circuit from the top down, run a sum-check protocol and apply standard
arithmetizing techniques which take only sub-linear time for each level. This approach yields very good
efficiency for all levels except the last one (the input level), where the verifier performs a heavy computation
(verifying the evaluation of a polynomial on the whole input) which takes quasi-linear time in the input size.

Rothblum et al. [RVW13] study sub-linear verification in the model of interactive proofs of proximity,
and gave a protocol based on parallel repetition of the Goldwasser et al. [GKR08] protocol. The main
difference (and advantage) to Goldwasser et al. [GKR08] is that the new model allows to avoid the costly
verification procedure for the input level. Efficiency comes at the cost of correctness, which is no longer
guaranteed to hold for instances that are only close to being in the language. In addition, communication and
verification complexity are increased due to parallel repetition (used for the sake of distance amplification).

Our construction is even simpler than the protocol of Goldwasser et al. [GKR08]. Not only our verifier
runs in sub-linear time, but also our rational prover runs in linear time in size of the circuit (in previous
constructions the prover runs in polynomial time in the circuit size). As in previous constructions, the verifier
in our protocol traverses the circuit from the top down, however he merely asks the rational prover for one bit
at each level (value of a single gate).1 Finally, in our protocols the verifier only needs to access one bit of the
input (i.e., one query to the input) at the last level. See Table 2 for the full comparison. One other interesting
approach is to consider a model with multiple provers. Based on Goldwasser et al. [GKR08], Canetti, Riva
and Rothblum [CRR13] and Kol and Raz [KR13] show how to obtain more efficient proofs for NC in the

1Unlike the previous works, we consider the class TC instead of NC. This is no limitation, since in general NC = TC. Moreover,
we gain advantage in the case of constant depth, since NC0 ⊂ TC0. Note that TC0 is a powerful model of bounded computation.
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Table 2: efficiency comparison of our rational proofs to [GKR08, RVW13]
Queries Rounds Communication Verification time Remarks

[GKR08] n Õ(d) Õ(d) Õ(n) NC of depth d

[RVW13]
( n

D

)1+o(1) Õ(d) D ·
( n

D

)o(1) · Õ(d)
( n

D +D
)1+o(1) · Õ(d)

D-proximity,
NC of depth d

this work 1 d d Õ(d) TC of depth d

competing prover model. Kalai, Raz and Rothblum [KRR13] consider delegation for bounded space (which
may also contain languages outside NC) in the model of multi-prover interactive proofs. The running time of
verifiers in their constructions are at least quasi-linear.

Arguments. Under cryptographic assumptions, it is in general possible to obtain more efficient protocols
(though the soundness guarantee then only holds with respect to bounded cheating provers).

In order to minimize interaction, Kalai and Raz [KR09] give a transformation from specific type of
interactive protocols into one-round arguments. Goldwasser et al. [GKR08] noted that this transformation can
be used to achieve non-interactivity also for their delegation scheme. Subsequently, Cormode et al. [CMT12]
optimized the efficiency of the prover into quasi-linear in circuit size, and Thaler [Tha13] achieved even
better efficiency for a natural class of structured circuits. Essentially the same transformation can make
the work of Kalai et al. [KRR13] one-round. Since the transformation preserves the complexity of the
original interactive proof (with only a modest amount of overhead), the running time of the verifier in all the
arguments obtained in this way is comparable to the original running time, but it still cannot get better than
quasi-linear. In order to get a sub-linear one-round argument via this transformation, one would need to start
with a sub-linear delegation scheme as in our case. The construction of Rothblum et al. [RVW13] achieves
sub-linear verification, however it is not obvious if the same transformation can turn it into a one-round
argument. The problem of constructing arguments that are one-round with sub-linear verification time is still
open in the classical setting. We show how to simultaneously achieve both in the rational setting.

Preprocessing model and SNARGs. Gennaro, Gentry and Parno [GGP10], Chung, Kalai and Vad-
han [CKV10] and Applebaum, Ishai and Kushilevitz [AIK10] use a computationally demanding off-line
phase to achieve efficiency during the run of the delegation scheme. The work of Parno, Raykova and
Vaikuntanathan [PRV12] further limits the amount of preprocessing needed to aim for public-verifiability.
Other works consider delegation for NP languages based on non-falsifiable assumptions; the works of
Bitansky et al. [BCI+13], Damgård, Faust and Hazay [DFH12], Gennaro et al. [GGPR12], Groth [Gro10] or
Lipmaa [Lip12] give succinct delegation schemes based on such assumptions.

2 Preliminaries and Definitions

Throughout the rest of the paper we use the following notation and definitions. For n ∈ N+, let [n] denote the
set of first n natural numbers, i.e., [n] = {1, . . . ,n}. A function g : N→ R is negligible if it tends to 0 faster
than any inverse polynomial, i.e., for every constant c ∈ N there exist constants k0 ∈ N such that for every
k > k0 it holds that g(k)< 1

nc . We use negl(·) to talk about negligible function if we do not need to specify its
name.

In a rational proof, Arthur pays Merlin a randomized reward according to the transcript of the communi-
cation, and the communication constitutes a rational Merlin Arthur game if the correct evaluation y = f (x)
can be derived from transcript that maximizes the expected reward.
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For a pair of interactive Turing machines, P and V , we denote by (P,V )(x) the random variable represent-
ing the transcript between P and V when interacting on common input x. Let reward(·) denote a randomized
function computed by V that given a transcript calculates a reward for P, and by output((P,V )(x)) the output
of V after interacting with P on common input x. In this setting, the goal of a rational P is to maximize the
expected value of reward(·), while the goal of V is to learn (and output) the true evaluation of the desired
function f on x.

We extend the definition of rational Merlin Arthur [AM12] to multiple rounds. Our definition can be
seen as a functional analogue of their decisional rational MA definition. Similar to classical proofs, where the
statement is fixed ahead of time (i.e., the statement is always proving x in the language), we consider the
setting where a rational prover first declares his answer to f (x), and only then tries to prove the correctness of
the reported value.

Definition 1 (Functional Rational Merlin Arthur (r rounds)). Let C,T : N→ R be some functions. A
function f : {0,1}∗ → {0,1}∗ is in FRMA [r,C,T ] if there exists an r-round public-coin protocol (P,V ),
referred as rational proof, and a randomized reward function reward : {0,1}∗→ R≥0 such that for all inputs
x ∈ {0,1}∗ :

(a) Pr[output((P,V )(x)) = f (x)] = 1

(b) Let Pi be the view of P up to his message at the ith-round. Then for every round i and for any
prover P̃ that behaves as P up to round i and differs on round i holds: E[reward((P,V )(x))] >
E[reward((P̃,V )(x))] where the expectation is taken over the random coins of the verifier and the
prover.

(c) The communication complexity of P is C (|x|).
(d) The running time of V is T (|x|).

We associate a language L with a function f : {0,1}∗→{0,1} where f (x) = 1 if and only if x ∈ L. That is,
deciding membership in L is equivalent to computing f . The class Decisional Rational Merlin Arthur, or
DRMA in short, is defined by restricting Definition 1 to binary functions.

3 Rational Arguments

In this section we present the definition of rational arguments, and motivate the choices behind it. We then go
on to construct a one-round rational argument, assuming a standard protocol for Private Information Retrieval.
Our construction makes use of an interactive rational proof as a building block. The construction of the
interactive rational proof is given in Section 4.4. The transformation we employ is similar to a transformation
proposed by Kalai and Raz [KR09], with some significant differences in the analysis.

3.1 Definition

Rational arguments are designed to model what happens to the reward when restricting the prover to
computationally bounded strategies. One difficulty in capturing the expected prover behavior lies in the fact
that he always can attempt to solve the underlying hard problem, and in case of success can reap the highest
payoff even while lying about the result. While these attempts will fail with overwhelming probability, one
still has to account for those attempts that do succeed. Any definition of computationally bounded strategic
behavior should thus take such strategies into consideration, and in particular accommodate negligible gains
over the reward guaranteed by the prescribed behavior (but not more). This protects the verifier from giving
out too high rewards on expectation, and at the same time ensures that the prover does not lose too much
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by honestly following the protocol (even though a purely rational prover might not follow the prescribed
strategy, since it would try to solve the underlying hard problems).

However, such definition does not take into account the cost of computing f (x). For example, it does
not rule out a prover that always gives some default (possibly incorrect) output, without performing any
computation, while getting just slightly less than the expectation of the prescribed behavior. Such strategy
induces no cost to the prover and is certainly rational if the loss is smaller than the price of computing
the function. To address this shortcoming we add another condition, whose objective is to “pin down” the
profitability of deviating. Roughly speaking this condition requires that any strategy that lies about the value
of f (x) with noticeable probability does noticeably worse (in terms of expected reward) than the prescribed
strategy (which always gives out the correct value of f (x)). This condition ensures that a rational prover will
follow the prescribed strategy in order to increase his utility by a considerable amount. 2

Definition 2 (Rational Argument). A function f : {0,1}∗ → {0,1}∗ admits a rational argument with se-
curity parameter κ : N→ N if there exists a protocol (P,V ) and a randomized reward function reward :
{0,1}∗→ R≥0 such that for any input x ∈ {0,1}∗ and any prover P̃ of size ≤ 2κ(|x|) the following hold:

(a) Pr[output((P,V )(x)) = f (x)] = 1,

(b) E[reward((P,V )(x))]+negl(κ(|x|))≥ E[reward((P̃,V )(x))], and

(c) if there exists a polynomial p(·) such that Pr[output((P̃,V )(x)) 6= f (x)]≥ p(|x|)−1 then there exists a
polynomial q(·) such that E[reward((P̃,V )(x))]+q(|x|)−1 ≤ E[reward((P,V )(x))]

where expectations and the probabilities are taken over the random coins of the respective prover and verifier.
We say that the rational argument is efficient if the running time of V is o(|x|) for every x ∈ {0,1}∗.

The three conditions ensure that the definition is both meaningful and nontrivial. Property (a) corresponds
to the notion of completeness in classical protocols, and guarantees that a prover following the prescribed
protocol will indeed report the correct value of f (x) to the verifier. Property (b) guarantees that the gain
attained by deviating from the prescribed strategy in a computationally bounded way is at most negligible.
This by itself already guarantees that having both parties follow the protocol is a computational Nash
equilibrium. Property (c) guarantees that not reporting f (x) with noticeable probability results in a noticeable
utility loss.

We note that Definition 1 of rational proofs (as well as the definition of [AM12]), does not rule out
the above discussed ”lazy” behavior of the prover once the computation has cost. Having this in mind, we
propose to measure how big is the loss of a prover that always reports f (x) incorrectly. A noticeable gap in
expectation between such a prover and the prescribed behavior then assures that it is beneficial for the prover
to perform the computation to significantly increase its utility. Namely, the verifier could in principle scale the
reward by a polynomial factor to make it profitable for the prover to compute the function, while not blowing
up too much the budget necessary for paying out the reward. This gives rise to a notion of reward gap that
allows us to argue for rationality of our proofs in presence of computational cost; it is formalized as follows:

Definition 3 (Reward Gap). Let f ∈ FRMA [r,C,T ] be some function and let (P,V ) and reward(·) be the
guaranteed protocol and reward function. The reward gap of reward(·) is a function ∆reward : N→ R, such
that for every n ∈ N,

∆reward(n) = min
x∈{0,1}n

min
P∗∈S

(
E[reward((P,V )(x))]−E[reward((P∗,V )(x))]

)
,

where the expectation is taken over the random coins of the verifier and the prover, and S is the set of all
P∗ such that Pr[output((P∗,V )(x)) 6= f (x)] = 1.

2Similar to [AM13], we consider strategies that induce a noticeable utility loss to be irrational.
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By simple calculation it follows that the utility loss of an arbitrary prover P̃ is at least ∆ ·
Pr[output((P̃,V )(x)) 6= f (x)]. Provers misreporting f (x) with noticeable probability will face a notice-
able utility loss, and hence rational proofs with noticeable reward gap offer similar guarantee to property
(c) in our definition of rational arguments (Definition 2). This hints on the importance of the reward gap
measure for constructing rational arguments.

The work of Azar and Micali [AM13] presented a new definition for rational MA. However, their
definition seems to be extremely hard to satisfy due to the constant utility gap requirement. In particular, the
constructions presented in their paper seem to fail with respect to their utility gap requirement. For example,
consider a prover that is dishonest with only negligible probability. For such a prover, the expected reward is
only negligibly far from the reward of the prescribed behavior and hence has only negligible utility gap. That
is, any protocol would fail to satisfy that any deviation results in a noticeable utility-loss. Note that this is not
an issue for our definition of rational arguments, since it only requires this condition to hold with respect to
noticeable deviation. Such a prover also illustrates the choice of the reward gap definition that measures the
gap only with respect to provers that always report f (x) incorrectly.

3.2 Building Blocks and Construction

In this section we provide a general transformation that is later applied to rational proofs that we construct in
Section 4.4. The main theorem, Theorem 5, establishes that any suitable rational proof (with the required
properties described below) can be made one-round, while preserving both its efficiency and the incentive for
a rational prover to be truthful. Namely, it guarantees to the verifier that after eliminating interaction, he will
be (almost always) provided with a correct answer, although he might need to pay negligibly more than in the
interactive version.

We note that the increase in expected reward achieved by the rational prover and his truthfulness directly
relate to the user privacy of the underlying PIR scheme.This hints that trying to violate the PIR user privacy is
the best strategy to increase one’s reward (though this reasoning heavily relies on the assumption that trying
to break the PIR incurs no computational cost whatsoever). We use the following definition of PIR scheme.

Definition 4 (Poly-logarithmic PIR [KR09]). Let κ be the security parameter and N be the database
size. Let QPIR and DPIR be probabilistic circuits, and let RPIR be a deterministic circuit. We say that
(QPIR,DPIR,RPIR) is a poly-logarithmic private information retrieval scheme if the following conditions are
satisfied:

(a) (Size Restriction:) QPIR and RPIR are of size ≤ poly(κ, logN), and DPIR is of size ≤ poly(κ,N). The
output of QPIR and DPIR is of size ≤ poly(κ, logN).

(b) (Correctness:) ∀N,∀κ,∀database x = (x1, . . . ,xN) ∈ {0,1}N , and ∀i ∈ [N],

Pr[RPIR(κ,N, i,(q,s),a) = xi|(q,s)← QPIR(κ,N, i),a← DPIR(κ,x,q)]≥ 1−2−κ3
.

(c) (User Privacy:) ∀N,∀κ,∀i, j ∈ [N], and ∀ adversary A of size at most 2κ3
,

|Pr[A(κ,N,q) = 1|(q,s)← QPIR(κ,N, i)]− Pr[A(κ,N,q) = 1|(q,s)← QPIR(κ,N, j)]| ≤ 2−κ3
.

Such PIR schemes exist under different computational assumptions, cf. Cachin, Micali and Stadler [CMS99]
who construct poly-logarithmic PIR for any κ > logN under the Φ-Hiding Assumption.

Admissible Protocols. As in Kalai and Raz [KR09] we need the rational proof (P,V ) to have the following
properties: (1) history-ignorance: each message of the prover P can depend only on the message sent by the
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verifier at the same round. (2) each message of the verifier V can depend only on its random coins.3 (3) the
running time of the verifier V is sub-linear in the input size. We call such protocols admissible rational proof.

We can now present the main theorem that enables us to construct one-round rational arguments from
interactive rational proofs (full proof is in Section 3.3). For simplicity of exposition, we normalize the reward
to be in [0,1], and make the verifier output 1 with probability of the computed reward (in addition to the
reported value of f (x)). Note that the probability of a verifier outputting 1 is then exactly the expected reward.

Theorem 5. Let (PI,VI) be an r-round admissible rational proof for evaluating a polynomially bounded
function f : {0,1}n→ {0,1} with communication complexity `, and let N = 2λ , where λ is the length of
the longest message sent by VI . Let reward(·) and ∆ be the reward function and the corresponding reward
gap. Assume the existence of a poly-logarithmic PIR scheme with user-privacy 1−δ (where δ = 2−κ3

), and
let δ0 = (r−1) ·δ .4 Then for any security parameter κ = κ (n)≥max{`, logn}, there exists a one-round
protocol (PA,VA) with the following properties:

(a) Pr[output((PA,VA)(x)) = f (x)] = 1

(b) E[reward((PA,VA)(x))]≥ E[reward((PI,VI)(x))] · (1−δ0).

(c) The communication complexity is ` ·poly(κ, logN).

(d) The verifier VA runs in time ` ·poly(κ)+O(TVI ), where TVI is the running time of VI .

(e) The prover PA runs in time poly(κ, N, TPI ), where TPI is the running time of PI .

(f) For any prover P̃ of size ≤ 2κ2
that achieves E[reward((P̃,VA)(x))] = E[reward((PA,VA)(x))]+δ ∗, let

µ = Pr[output((P̃,VA)(x)) 6= f (x)]. It holds that

(i) (Utility gain) δ ∗ ≤ 2δ0, and

(ii) (Utility loss) (−δ ∗)≥ µ∆− (2+∆)δ0.

As pointed out in Section 3.1, the utility loss of an arbitrary prover is at least µ∆; hence Theorem 5
presents a construction that basically preserves (up to a negligible factor) the utility gain and loss of the
underlying rational proof. Moreover, it guarantees that if the rational proof has noticeable utility loss (in
particular, noticeable reward gap) then the constructed protocol will have noticeable utility loss as well.

Theorem 6. Let f : {0,1}n→{0,1} be a function in FRMA [r,C,T ]. Assume the existence of a PIR scheme
with communication complexity poly(κ) and receiver work poly(κ), where κ ≥ max{C(n), logn} is the
security parameter. If f has an admissible rational proof with noticeable reward gap ∆, then f admits
rational argument which has the following properties:

(a) The verifier runs in time C(n) ·poly(κ)+O(T (n)).

(b) The communication complexity is r ·poly(κ, logN) with N defined as above.

Proof. The running time of the verifier, the communication complexity, and property (a) of Definition 2 of
rational argumetns are all explicitly provided by Theorem 5. It remains to show property (b) and property (c)
of definition of rational arguments.

The utility gain is δ ∗ ≤ 2δ0 ≤ 2−κ2+1 ≤ 2− log2 n+1 = negl(n). By the definition of δ ∗ we have,

negl(n)+E[reward((PA,VA)(x))]≥ δ
∗+E[reward((PA,VA)(x))] = E[reward((P̃,VA)(x))],

3The verifier’s messages are independent of the function and the input; however, they can be correlated among themselves.
4We assume the existence of poly-logarithmic PIR for any κ and any database size.
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and hence property (b) of rational arguments follows.
To show property (c) of Definition 2, we assume that µ ≥ p−1(|x|) for some polynomial p(·). Due to the

noticeable ∆, we know that µ∆≥ q−1
1 (|x|) for some polynomial q1(·). From the utility loss bound we obtain

that
(−δ

∗)≥ µ∆− (2+∆)δ0 = µ∆−negl(n)≥ q−1
1 (|x|)−negl(n)≥ q−1

1 (|x|)/2.

By defining polynomial q(·) to be q(|x|) = 2q1(|x|) we obtain that

E[reward((PA,VA)(x))] = E[reward((P̃,VA)(x))]−δ
∗ ≥ E[reward((P̃,VA)(x))]+q−1(|x|)

as desired.

3.3 Proof of Theorem 5

First we present the transformation that allows to squash interaction to a single round, and then show that
it achieves the claimed efficiency parameters. The transformation we apply to obtain rational arguments
from rational proofs is essentially that of Kalai and Raz [KR09], and it is described for completeness below.
Note that even though it uses PIR in order to hide verifier’s queries from the prover, it does not introduce the
issue of spooky interactions discussed in the work of Dwork et al.[DLN+04]. Indeed, Kalai and Raz [KR09]
proved that the two-message argument obtained by their transformation from a suitable proof system is sound,
which does not contradict the results of Dwork et al.[DLN+04] stating that in some cases such transformation
need not to be secure when applied on an efficient PCP.

From interactive rational proofs to rational arguments. Let (PI,VI) be an interactive rational proof for
evaluating some function f , as in the statement of the Theorem 5. Recall that λ denotes length of the longest
message sent by VI in (PI,VI). For simplicity of exposition (and without loss of generality) we assume that
this protocol consists of exactly ` rounds, where in the first round PI sends f (x), and in all other rounds VI

sends a message of size exactly λ , and PI sends a single bit (i.e., `= r).
Fix any security parameter κ ≥ max{`, logn} and let (QPIR,DPIR,RPIR) be a poly-logarithmic PIR

scheme, with respect to security parameter κ and database size N = 2λ . The one-round rational argument
(PA,VA) is constructed as follows:

1. On common input x ∈ {0,1}n, the verifier VA proceeds as follows:

(a) Emulate the verifier VI and obtain messages m2, . . . ,m` ∈ {0,1}λ to be sent by VI .5

(b) Compute (qi,si)← QPIR(κ, N, mi) for 2≤ i≤ ` and send (q2, . . . ,q`) to PA.

2. Upon receiving a message (q2, . . . ,q`) from VA, the prover PA operates as follows:

(a) Emulate PI to obtain f (x).

(b) For each 2 ≤ i ≤ `, compute a database DBi (of size N), which is a collection of all emulated
replies of PI in the i’th round upon receiving any possible message m ∈ {0,1}λ .6

(c) For each 2≤ i≤ `, compute ai← DPIR(κ,DBi,qi) and send the message ( f (x),a2, . . . ,a`) to VA.

3. Upon receiving the message ( f (x),a2, . . . ,a`) from PA, the verifier VA operates as follows:

5These messages can be computed in advance since in the protocol (PI ,VI) all the messages sent by VI depend only on VI’s
random coin tosses (this follows from (PI ,VI) being an admissible protocol).

6These databases can be computed due to the history-ignorant property of (PI ,VI).
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(a) For every 2≤ i≤ `, compute b′i← RPIR(κ,N,mi,(qi,si),ai).

(b) Emulate VI on ( f (x),b′2, . . . ,b
′
`), as if each b′i is PI’s response in the i’th round.

(c) Output whatever VI outputs (i.e., f (x) and ’1’ with probability of the computed reward).

Correctness. Let x ∈ {0,1}n be a common input. Let m2, . . . ,m` ∈ {0,1}λ be the messages generated by
the underlying VI . Let b2, . . . ,b` be the responses to m2, . . . ,m` of the underlying PI . Let b′2, . . . ,b

′
` be the

responses obtained by VA after applying the algorithm RPIR. According to the correctness property of the
poly-logarithmic PIR scheme, for every 2≤ i≤ ` it holds that Pr[b′i 6= bi]< 2−κ3

and by the union bound it
follows that

Pr[no error in RPIR] = Pr[(b2, . . . ,b`) = (b′2, . . . ,b
′
`)]≥ 1− (`−1) ·2−κ3

= 1−δ0 .

Therefore,

E[reward((PA,VA)(x))]≥ E[reward((PA,VA)(x))|no error in RPIR] ·Pr[no error in RPIR]

≥ E[reward((PI,VI)(x))] · (1−δ0) .

Item (a), which defines the output distribution of the constructed prover, simply follows from the definition
of rational proofs and the transformation. More formally,

Pr[output((PA,VA)(x)) = f (x)] = Pr[output((PI,VI)(x)) = f (x)] = 1.

Complexity. The used PIR scheme is poly-logarithmic (see Definition 4), and hence the total communica-
tion complexity is

| f (x)|+
`

∑
i=2

(|ai|+ |qi|)≤ ` ·poly(κ, logN) .

The resulting verifier VA emulates the verifier of the interactive rational proof VI and additionally executes the
algorithms QPIR and RPIR (`−1)-times. Therefore, its running time can be bounded by

` ·poly(κ, logN)+O(TVI )≤ ` ·poly(κ)+O(TVI ) .

Note that generating a single database requires N ·TPI , and each execution of the database algorithm DPIR

requires poly(κ,N). Therefore, the running time of PA can be bounded by

poly(κ,N,TPI ) .

Before completing the proof of Theorem 5, we show how to convert any prover for the resulting (PA,VA)
into a prover for the original (PI,VI). Our transformation preserves (up to a negligible amount) the expected
reward and the probability of each answer.

Lemma 7. Let (PI,VI) be an r-round interactive rational proof as in the statement of Theorem 5. Let (PA,VA)
be the protocol after the transformation above, where we define κ,λ , `,N also as above and assume the
existence of poly-logarithmic PIR with user-privacy 1−δ (where δ = 2−κ3

), and let δ0 = (r−1) ·δ . Given a
prover P̃A of size at most 2κ2

for (PA,VA), there exists a prover P̃I for (PI,VI) such that

(a) |Pr[output((P̃A,VA)(x)) = f (x)]−Pr[output((P̃I,VI)(x)) = f (x)]| ≤ δ0, and

(b) E[reward((P̃A,VA)(x))]−E[reward((P̃I,VI)(x))]≤ δ0.
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H1 Hi Hr

P̃A V1 P̃A Vi P̃A Vr

q′2, . . . ,q
′
r q2, . . . ,qi,q′i+1, . . . ,q

′
r q2, . . . ,qr

y,a2, . . . ,ar y,a2, . . . ,ai,ai+1, . . . ,ar y,a2, . . . ,ar

Figure 1: The sequence of hybrids Hi.

Proof. Let P̃A of size TP̃A
≤ 2κ2

be some prover for (PA,VA), and let x ∈ {0,1}n be some input. Consider P̃I , a
prover for (PI,VI), that behaves as follows:

1. Pick m′2, . . . ,m
′
r independently at random from {0,1}λ .

2. Compute (q′j,s
′
j)← QPIR(κ,N,m′j) for 2≤ j ≤ r.

3. Internally run P̃A on (q′2, . . . ,q
′
r), and obtain the message (y,a2, . . . ,ar), where y is P̃A’s answer to f (x).

4. Send y to VI .

5. Continue in the interaction with VI . For every 2≤ j ≤ r, reply to m j by a message b′j that maximizes
the expected reward over the randomness VI conditioned on m j and the history up to this round.

Assume by a way of contradiction that the statement of lemma does not hold with respect to the P̃I above.
That is, either

|Pr[output((P̃A,VA)(x)) = f (x)]−Pr[output((P̃I,VI)(x)) = f (x)]|> δ0 , or (1)

E[reward((P̃A,VA)(x))]−E[reward((P̃I,VI)(x))]> δ0 . (2)

Consider a sequence of hybrids Hi = (P̃A,Vi) (See Figure 1), for 1≤ i≤ r. The i’th hybrid is defined by the
following Vi:

1. Emulate VI to obtain m2, . . . ,mr

2. Choose independently at random m′i+1, . . . ,m
′
r ∈ {0,1}λ .

3. Compute (q j,s j)← QPIR(κ,N,m j) for 2≤ j ≤ i and (q′j,s
′
j)← QPIR(κ,N,m′j) for i+1≤ j ≤ r.

4. Send (q2, . . . ,qi,q′i+1 . . . ,q
′
r) to P̃A.

5. Upon receiving (y,a2, . . . ,ar) compute b j← RPIR(κ,N,m j,(q j,s j),a j) for 2≤ j ≤ i.

6. Emulate VI as follows: first give y. Next, for 2≤ j ≤ i reply with b j on m j. For i+1≤ j ≤ r, on m j

reply with b′j that maximizes the expected reward over the randomness of VI conditioned on m j and the
history up to this round.

7. Output whatever VI outputs.

By construction of the hybrids it holds that

Pr[output((P̃I,VI)(x)) = f (x)] = Pr[output((P̃A,V1)(x)) = f (x)] , and

E[reward((P̃I,VI)(x))] = E[reward((P̃A,V1)(x))] .
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Moreover,

Pr[output((P̃A,VA)(x)) = f (x)] = Pr[output((P̃A,Vr)(x)) = f (x)] , and

E[reward((P̃A,VA)(x))] = E[reward((P̃A,Vr)(x))] .

If equation (1) does not hold, then by the hybrid argument, there exists 1≤ k ≤ r−1 such that

|Pr[output((P̃A,Vk)(x)) = f (x)]−Pr[output((P̃A,Vk+1)(x)) = f (x)]|> δ0

r−1
= δ .

We show that this contradicts the user privacy of the underlying PIR scheme (QPIR,DPIR,RPIR). That is, we
show that there exist an adversary Ak

x and two strings mk+1,m′k+1 ∈ {0,1}λ , such that Ak
x on input query q

distinguishes whether q was created from mk+1 or m′k+1. Let Ak
x be as follows:

1. Emulate VI to obtain messages m2, . . . ,mr. In addition, choose m′k+1, . . . ,m
′
r ∈ {0,1}λ independently

at random.

2. Compute (q j,s j)← QPIR(κ,N,m j) for 2≤ j ≤ k and (q′j,s
′
j)← QPIR(κ,N,m′j) for k+2≤ j ≤ r.

3. Upon receiving q, internally run P̃A on (q2, . . . ,qk,q,q′k+2, . . . ,q
′
r), and obtain the message (y,a2, . . . ,ar).

4. Compute f (x) and output 1 if y = f (x), otherwise output 0.

Note that

Pr[output((P̃A,Vk+1)(x)) = f (x)] = Pr[Ak
x(κ,N,q) = 1|(q,s)← QPIR(κ,N,mk+1)] , and

Pr[output((P̃A,Vk)(x)) = f (x)] = Pr[Ak
x(κ,N,q) = 1|(q,s)← QPIR(κ,N,m′k+1)] .

Hence,

|Pr[Ak
x(κ,N,q) = 1|(q,s)← QPIR(κ,N,mk+1)]−Pr[Ak

x(κ,N,q) = 1|(q,s)← QPIR(κ,N,m′k+1)]|> δ .

Moreover, the size of Ak
x is at most poly(2κ)+TP̃A

≤ 2κ3
as desired.

Similarly, if equation (2) does not hold, then by the hybrid argument, there exists 1≤ k ≤ r−1 such that

E[reward((P̃A,Vk+1)(x))]−E[reward((P̃A,Vk)(x))]> δ .

As before, we show that there exist an adversary Bk
x and two strings mk+1,m′k+1 ∈ {0,1}λ , such that Bk

x on
input query q distinguishes whether q was created from mk+1 or m′k+1. Let Bk

x be as follows:

1. Perform steps 1. - 3. as in the construction of Ak
x.

2. Emulate VI as follows: First give y. Next, for 2≤ j ≤ k reply with b j on m j. For k+1≤ j ≤ r, on m j

reply with b′j that maximizes the expected reward over the randomness of VI conditioned on m j and the

history up to this round. Note that each b′j can be computed in time poly(2λ ·`)≤ poly(2κ2
).

3. Output whatever VI outputs.

Note that

E[reward((P̃A,Vk+1)(x))]≥ Pr[Bk
x(κ,N,q) = 1|(q,s)← QPIR(κ,N,mk+1)] , and

E[reward((P̃A,Vk)(x))] = Pr[Bk
x(κ,N,q) = 1|(q,s)← QPIR(κ,N,m′k+1)] .

Hence,

Pr[Bk
x(κ,N,q) = 1|(q,s)← QPIR(κ,N,mk+1)]−Pr[Bk

x(κ,N,q) = 1|(q,s)← QPIR(κ,N,m′k+1)]> δ ,

To conclude the proof of the lemma, we note that the size of Bk
x is at most poly(2κ2

)+TP̃A
≤ 2κ3

as desired.
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Output guarantee. Let P̃ be some prover of size at most 2κ2
for (PA,VA) that achieves

E[reward((P̃,VA)(x))] = E[reward((PA,VA)(x))]+δ ∗. By Lemma 7, there exists a prover P̃I such that:

|Pr[output((P̃,VA)(x)) 6= f (x)]−Pr[output((P̃I,VI)(x)) 6= f (x)]| ≤ δ0 , and (3)

E[reward((P̃,VA)(x))]−E[reward((P̃I,VI)(x))]≤ δ0 . (4)

Let µ0 = Pr[output((P̃I,VI)(x)) 6= f (x)]. By the definition of reward gap,

E[reward((P̃I,VI)(x))]

≤ µ0 · (E[reward((PI,VI)(x))]−∆)+(1−µ0) ·E[reward((PI,VI)(x))]

= E[reward((PI,VI)(x))]−µ0∆ .

By combining (4) and the above, we obtain

E[reward((P̃,VA)(x))]≤ E[reward((P̃I,VI)(x))]+δ0 ≤ E[reward((PI,VI)(x))]+δ0−µ0∆ .

On the other hand, from the already justified item (b) of Theorem 5 it follows that

E[reward((P̃,VA)(x))] = E[reward((PA,VA)(x))]+δ
∗ ≥ E[reward((PI,VI)(x))] · (1−δ0)+δ

∗ .

Coupling the two above inequalities and the fact that the reward function assigns values from [0,1] yields

E[reward((PI,VI)(x))] · (1−δ0)+δ
∗ ≤ E[reward((PI,VI)(x))]+δ0−µ0∆ ,

µ0 ≤
δ0(E[reward((PI,VI)(x))]+1)−δ ∗

∆
,

µ0 ≤
2δ0−δ ∗

∆
.

Since µ0 ≥ 0, we get an upper bound δ ∗ ≤ 2δ0 on δ ∗. Finally, combining the upper bound on µ0 with
equation (3) gives

µ = Pr[output((P̃,VA)(x)) 6= f (x)]≤ µ0 +δ0 ≤
2δ0−δ ∗

∆
+δ0 ,

which implies δ ∗ ≤ 2δ0− (µ − δ0)∆ = (2+∆)δ0− µ∆. Thus we obtain (−δ ∗) ≥ µ∆− (2+∆)δ0 which
concludes the proof of Theorem 5.

3.4 Main result

We can now state our main result obtained by applying the transformation in Theorem 5 on an efficient
interactive rational proofs with noticeable reward gap from Section 4.4. Thus, showing an explicit construction
of efficient one-round rational arguments.

Corollary 8 (Main result). For any function f : {0,1}n→ {0,1} computable by log-space uniform NC1
of size S(n) = poly(n) and depth d = O(logn). Assume the existence of a PIR scheme with communication
complexity poly(κ) and receiver work poly(κ), where κ ≥max{d, logn} is the security parameter. Then f
admits efficient rational argument which has the following properties:

(a) The verifier runs in d ·poly(κ) and the prover runs in poly(κ,n).

(b) The length of prover’s message and the verifier’s challenge is d · poly(κ). The verifier’s challenge
depends only on his random coins and is independent of the input x.
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We note that for rational proofs with low complexity parameters, Corollary 8 is not that compelling due
to the overhead introduced by the PIR. It is the case especially for constant round rational proofs with up to
O(logn) communication and verification time, i.e., rational protocols for TC0 proposed both in this work or
by [AM13].

We already mentioned that the reward gap of rational proofs limits the use of the transformation into
rational arguments, however Corollary 8 could be in principle extended to all function in TC with respect to a
slightly weaker notion of rational arguments. A rational prover in the corresponding relaxed model would
need to be sensitive to negligible utility loss, and in a sense it would not be affected by the cost of computing
the function. The only semantic difference between the original and relaxed variant of the definition is in
the extra guarantee on the utility-loss with respect to deviating provers. That is, property (c) of Definition 2
would change as follows:(

E[reward((P̃,V )(x))]≥ E[reward((P,V )(x))]
)
⇒
(
Pr[output((P̃,V )(x)) 6= f (x)]≤ negl(κ)

)
.

Which demands slightly less, i.e., restricting only the computationally bounded provers achieving more than
the prescribed prover to lie with at most negligible probability.

4 Downscaling Rational Proofs

In this section we first illustrate the power of rational proofs for #P (Section 4.1) and then explore the
possibility of “scaling down” rational proofs for #P to NP and classes below. In Section 4.2, we give an
extremely laconic rational proof where the prover only needs to send one bit for any language in NP, however
the verification in this protocol is not sub-linear. In Section 4.3 we show evidence that existence of single
round rational proofs with sub-linear verification time is unlikely. In Section 4.4 we consider multiple-round
rational proofs, and we show a rational proof for any language computable by uniform threshold circuit
of depth d, where the verification time is Õ(d). In particular, we obtain sub-linear verification time when
d = o(n). In Section 4.5 we discuss the possibility to go beyond threshold circuits.

4.1 Rational Proofs for #P

The main tool used in the construction of rational Merlin Arthur games are scoring rules that allow to evaluate
quality of a forecast about probability of an uncertain future event. Any scoring rule assigns a numerical
value S(Q,x) to some predictive distribution Q and event x drawn from the actual distribution P that the
prediction tries to forecast. The expectation of the score is maximized when the forecaster reports Q= P .

Definition 9 (Strictly Proper Scoring Rule). Let P be a probability distribution over a probability space
Ω, and S a scoring rule. We say that S is a strictly proper scoring rule with respect to P if for all Q 6= P

∑
ω∈Ω

P(ω)S(P,ω)> ∑
ω∈Ω

P(ω)S(Q,ω),

where P(ω) is the probability that ω is drawn from P .

The study of scoring rules was initiated by Brier [Bri50], who introduced a first example of a strictly
proper scoring rule in the context of meteorological forecasts. A variant of the Brier’s scoring rule is given
by the function S(P,ω) = 2P(ω)−∑ω∈ΩP(ω)2−1. Another example of strictly proper scoring rule is the
logarithmic scoring rule S(P,ω) = log(P(ω)). For an extensive survey of scoring rules see Gneiting and
Raftery [GR07].

Rational Merlin Arthur games posses a surprising power when compared to classical Merlin Arthur
protocols. Azar and Micali [AM12] showed that any problem in #P, the class of counting problems associated
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with the decision problems in NP, has a rational Merlin Arthur game with a single n bits message from Merlin
and Arthur running in time poly(n). However in the classical setting, such extremely efficient protocol is
unlikely to exist.

A notable example of a problem in #P is #SAT i.e., given a Boolean formula φ to find the number of
satisfying assignments of φ . Azar and Micali gave Rational Merlin Arthur game for #SAT defined by the
following randomized reward function Brier. for which Arthur wants to know the number of satisfying
assignments. He selects a random assignment z ∈ {0,1}n and sets b = φ(z). The reward function is then

Brier(φ ,y) =


2(y/2n)− (y/2n)2− (1− y/2n)2 +1, if b = 1,

2(1− y/2n)− (y/2n)2− (1− y/2n)2 +1, if b = 0.

It is obviously a randomized function that can be computed in polynomial time in |φ | and |y|. Let y∗ be the
number of satisfying assignment of φ , by simple calculation,

E[Brier(φ ,y)] =−2(y/2n− y∗/2n)2 +2(y∗/2n)2−2(y∗/2n)+2. (5)

The fact that E[Brier(φ ,y)] is maximized exactly when Merlin sends y∗, the number of satisfying assignments
of φ , follows because Brier(φ ,y) is defined as the Brier’s scoring rule. Note that any formula φ defines a
probability distribution of a random variable that is one if a random assignment of φ is satisfying and zero
otherwise. By sending some y to Arthur, Merlin gives out a prediction about this distribution. Since his
reward is computed according to a strictly proper scoring rule, Merlin is incentivized to report the correct
number of satisfying assignments.

4.2 Extremely Laconic Rational Prover for any NP Language

In the rational Merlin Arthur game for #P of Azar and Micali, Merlin needs to send n bits to Arthur. We
investigate on the possibility of existence of extremely succinct rational proofs. Towards this direction, let us
restrict the communication to be only one bit. How can then Merlin convince Arthur about anything? Or else,
what information can Arthur obtain in the #SAT protocol?

Recall the expected reward for announcing y for a formula φ which has y∗ satisfying assignments given
by (5). Our main observation is that the expected reward E[Brier(φ ,y)] has the following favourable property;
the smaller |y− y∗| is, the larger is the expected reward E[Brier(φ ,y)]. If Merlin can only communicate one
bit to Arthur (i.e., y = 0 or y = 1), he will choose the y which is closer to the true y∗. In particular, rational
Merlin will tell Arthur y = 0 if y∗ = 0, and he will announce y = 1 in the other case when y∗ ≥ 1. With one
bit message from Merlin, Arthur does not expect to learn y∗. Nevertheless, he will obtain one bit information
about y∗ which is either that y∗ ≥ 1 or y∗ = 0. And this is sufficient information for Arthur to decide whether
φ ∈ SAT. It implies SAT has extremely succinct rational proof, and in fact any language in NP has such
laconic rational proof where prover sends only one bit to the verifier. This gives the following theorem, that
illuminates the power of rational proofs.

Theorem 10. NP⊂ DRMA[1,1,poly(n)].

The general protocol for any NP language is given in Figure 2. Moreover, similar rational proof will work
also for languages in coNP and PP. Thus, this two important classes are also contained in FRMA[1,1,poly(n)],
and unlike NP, both PP and coNP do not have classical one round interactive proof. For PP, our rational
proof improves the efficiency of communication to only one bit message, compared to the rational proof of
Azar and Micali with n bits of communication.

We formalize a general observation as following lemma which immediately implies Theorem 10.
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On common input x and L ∈ NP.

1. Merlin will send a bit y to Arthur denoting whether x ∈ L.

2. Arthur will sample a random candidate witness w for x, and compute the randomized reward for Merlin in
the following way:

Brier(x,y) =


2
(

y
|Wx|

)
−
(

y
|Wx|

)2
−
(

1− y
|Wx|

)2
+1, if (x,w) ∈RL,

2
(

1− y
|Wx|

)
−
(

y
|Wx|

)2
−
(

1− y
|Wx|

)2
+1, if (x,w) 6∈ RL.

Figure 2: Rational Merlin Arthur game for any NP language L.

Lemma 11 (Threshold Lemma). For any polynomially bounded function f : {0,1}∗ → {0,1}. Let C :
{0,1}∗×{0,1}∗→{0,1} be a randomized procedure, and let β0,β1 : N→ [0,1] be two functions such that
β0(n)< β1(n) for every n ∈ N. If for any x ∈ {0,1}∗ it holds that

(a) Prr[C(x;r) = 1| f (x) = 1]≥ β1(|x|), and

(b) Prr[C(x;r) = 1| f (x) = 0]≤ β0(|x|),

then f ∈ FRMA[1,1, t(·)], where t(·) is the running time of C.

Proof. Let x ∈ {0,1}∗ be a common input of length n on which Arthur wants to evaluate f . We show that the
following protocol constitutes a rational Merlin Arthur game for f :

1. Merlin sends y ∈ {0,1} to Arthur.

2. Arthur uniformly at random selects the random coins r for C and sets b =C(x;r). He then pays Merlin
Brier(x,y), where

Brier(x,y) =


2βy(n)− (βy(n))2− (1−βy(n))2 +1, if b = 1,

2(1−βy(n))− (βy(n))2− (1−βy(n))2 +1, if b = 0.

Clearly, the running time of Arthur is t(n).
Let β = Prr[C(x;r) = 1] (note that β would differ for another input x′ ∈ {0,1}∗). The expected reward

for Merlin when sending y is Er[Brier(x,y)] =−2(βy(n)−β )2 +2β 2−2β +2. Intuitively, β corresponds to
the true distribution that Arthur wants to learn. However, Merlin is restricted to report either β0(n) or β1(n)
by sending y ∈ {0,1} to Arthur in the above protocol. In order to maximize his reward, Merlin must choose y
such that βy(n) is the closer one to β .

Formally, if f (x) = 1 then β ≥ β1(n)> β0(n), thus Er[Brier(x,1)]−Er[Brier(x,0)] = 2((β0(n)−β )2−
(β1(n)−β )2) > 0. Moreover, if f (x) = 0 then β ≤ β0(n) < β1(n), thus Er[Brier(x,0)]−Er[Brier(x,1)] =
2((β1(n)−β )2− (β0(n)−β )2)> 0. In both cases, rational Merlin has a clear incentive to truthfully send
y = f (x).

Notice that the proof of Lemma 11 makes mainly use of the fact that the expected reward is a distance
function; the closer y is to the true answer, the more reward Merlin can get. Hence, we can replace the Brier’s
scoring rule with other scoring rules which have this property. For distributions over 0 and 1, most strictly
proper scoring rules have this property.
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Proof of Theorem 10. For any x ∈ L, let Wx be the space of all possible witnesses for membership of x in the
language L. We define the following randomized procedure CL. Select a candidate witness w uniformly at
random from Wx. Set CL(x;w) = 1 if w is a witness for x ∈ L, and CL(x;w) = 0 otherwise. Since L is an NP
language, CL(x;w) can be computed in polynomial time in |x|. Moreover, Prw∈Wx [CL(x;w) = 1] ≥ 1

|Wx| for
every x ∈ L and Prw∈Wx [CL(x;w) = 1] = 0 for any x 6∈ L. The theorem follows from Lemma 11.

4.3 Impossibility for Parity

A natural question to ask is if one can improve the verification time in our extremely laconic rational proofs
for NP to be sub-linear. Our first observation is that, even for such a simple function as parity, it is impossible
to have an extremely laconic rational proof with sub-linear verification. However, the verifier can compute
parity in linear time on his own. Consequently, any rational proof for parity with such extremely laconic
Merlin is not interesting from the perspective of delegation of computation.

Theorem 12.
⊕

x = x1⊕·· ·⊕ xn /∈ FRMA[1,1,o(n)].

Proof. Suppose
⊕

x ∈ FRMA[1,1,o(n)]. Then there exists a randomized reward function reward(x,y;r)
(here we explicitly use an argument r to denote the randomness of the reward function) of running time o(n),
such that for any x ∈ {0,1}n, Merlin will get higher expected reward by sending y =

⊕
x than by sending

y′ =
⊕

x. Formally, for any x ∈ {0,1}n

Er [reward(x,
⊕

x;r)]> Er[reward(x,
⊕

x;r)].

It implies that for all inputs, the average advantage of telling the truth to lying is greater than zero, i.e.,

Ex∼{0,1}n
[
Er[reward(x,

⊕
x;r)]−Er[reward(x,

⊕
x;r)]

]
> 0.

By linearity of expectation and after changing the order of variables, we obtain the following inequality

Er
[
Ex∼{0,1}n [reward(x,

⊕
x;r)− reward(x,

⊕
x;r)]

]
> 0.

To demonstrate the sought contradiction, it is sufficient to show that for any fixed r

Ex∼{0,1}n
[
reward(x,

⊕
x;r)− reward(x,

⊕
x;r)

]
= 0. (6)

Recall that for any fixed r, the reward function reward(·, ·;r) runs in time o(n). Thus, reward(·, ·;r) depends
on at most n−1 bits of the input. Without loss of generality, we assume that reward(·, ·;r) does not depend
on xn. In such case, for any choice of x1, . . . ,xn−1,y ∈ {0,1},

reward(x1, . . . ,xn−1,0,y;r) = reward(x1, . . . ,xn−1,1,y;r).

Therefore, for any choice of the bits x1, . . . ,xn−1, we have

Exn∼{0,1}
[
reward(x,

⊕
x;r)− reward(x,

⊕
x;r)

]
= 1/2

((
reward(x,b⊕0;r)− reward(x,b⊕1;r)

)
|xn=0 +

(
reward(x,b⊕1;r)− reward(x,b⊕0;r)

)
|xn=1

)
= 1/2

((
reward(x,b⊕0;r)− reward(x,b⊕1;r)

)
|xn=0 +

(
reward(x,b⊕1;r)− reward(x,b⊕0;r)

)
|xn=0

)
= 1/2

(
reward(x,b⊕0;r)− reward(x,b⊕1;r)+ reward(x,b⊕1;r)− reward(x,b⊕0;r)

)
|xn=0

= 0,
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where b = x1⊕·· ·⊕ xn−1. In fact, the above already shows that equation (6) holds, since for every fixed r,

Ex∼{0,1}n [reward(x,
⊕

x;r)− reward(x,
⊕

x;r)]

= Ex1,...,xn−1∼{0,1}Exn∼{0,1}[reward(x,
⊕

x;r)− reward(x,
⊕

x;r)]

= Ex1,...,xn−1∼{0,1} [0]

= 0.

This result demonstrates the difficulty of getting sub-linear verification with extremely laconic rational
proof (even for a very restricted problem in P). It hints that in order to circumvent this issue, we have to
increase the communication or the number of rounds.

4.4 Efficient Rational Proofs for TC

By using multiple rounds, we show a general solution for functions computable by log-space uniform threshold
circuits of depth d with d rounds, d−1 bit communication overhead and d ·polylog(n) verification time. In
particular, for the case of d = o(n), both communication and the verification time are sub-linear. Another
implication of this result is that we can give a rational proof with constant rounds, constant communication
bits and polylog(n) verification for parity since parity function is computable by constant depth threshold
circuit.

Theorem 13. If f : {0,1}∗ → {0,1} is computable by a family of O(log(S(n)))-space uniform threshold
circuits of size S(n) and depth d(n), then f ∈ FRMA[d(n),d(n),O(d(n) ·polylog(S(n))].

We provide the efficiency comparison with known delegation schemes in Section 1.4. Additional discussion
regarding threshold circuits, non-uniform model of computation and multi-output case are provided in
Section 4.4.2. Description of the protocol is given below.

Protocol. Let a circuit of depth d and x ∈ {0,1}n be the common input to Arthur and Merlin. The protocol
begins with the following conversation,

1. Merlin: Evaluate the circuit on x and send y1, the output value, to Arthur.

2. Arthur: Set γ = 1/(1+2m2
0), where m0 is the largest fan-in over all gates in the circuit.7 Identify the

’root’ gate g1, and invoke Round(1,g1,y1),

where the procedure Round(i,gi,yi) is for 1≤ i≤ d defined as

1. Arthur: Choose uniformly at random a ”child” gi+1 of gi.

• If gi+1 is an input wire of value z then pay Merlin γd−i/2 ·Brier(gi,yi) where b = z and STOP.

• Otherwise, ask Mi+1 for the value of gi+1.

2. Merlin: Send yi+1, the value of gi+1, to Arthur.

3. Arthur: Pay Merlin γd−i/2 ·Brier(gi,yi) where b = yi+1 and go to Round(i+1,gi+1,yi+1).

Notice that Brier is the reward function defined for single gate case (see (7)) and both Brier and the discounting
factor γ are efficiently computable in O(polylog(m0)) = O(polylog(S(n))) time.

7In fact m0 can be any number larger than the maximal fan-in (for example siz of the circuit). So that to settle m0 we don’t need
exactly compute the maximal fan-in.
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Efficiency. The protocol runs at most d rounds. In each round, Merlin sends one bit to Arthur, thus the
communication complexity is at most d bits. The computation of Arthur is sampling a child and calculating
the reward function in each round. By the uniformity of the circuit, any information about each gate (e.g. the
type of the gate, identifying the children) can be computed in space O(log(S(n))) and time O(polylog(S(n))).
In particular, sampling a child only takes O(polylog(S(n))) time. The reward function is computable in
polylog(n) time. Hence, Arthur runs in O(d ·polylog(S(n))). Remark that the computation of Arthur can be
done in space O(log(S(n))

)
since Arthur only needs to keep the information i,gi,yi for each Round(i,gi,yi)

and compute the reward in space O(log(S(n))).

Reward Gap. Recall the Definition 3. of reward gap. The above protocol achieves reward gap proportional
to the depth of the circuit, in particular

∆(|x|)> γd−1

2
· 1

m2
0
≥ 1

(2m2
0 +1)d−1 ·

1
2m2

0
≥ 1

(2m2
0 +1)d ,

where m0 is the maximal fan-in over all gates in the circuit. This gives noticeable reward gap for TC0, where
m0 = O(poly(|x|)) and d is constant and similarly for NC1, where m0 is constant and d = O(log |x|).

4.4.1 Proof of Theorem 13

First, we apply our Threshold lemma (Lemma 11) to obtain extremely laconic rational proof for any single
threshold gate which is the main building block.

Lemma 14. If g(x) is a threshold gate with fan-in n and threshold a, i.e.,

g(x) =


1, if x1 + · · ·+ xn ≥ a,

0, if x1 + · · ·+ xn ≤ a−1,

then g(x) ∈ FRMA[1,1,O(logn)].

Proof. Let C(x;r) be: on input x = (x1, . . . ,xn), uniformly at random choose r ∈ {1, . . . ,n}, and output xr.
Notice that the running time of C(x;r) is O(logn). Since g is a gate with threshold a, we get

(a) Prr[C(x;r) = 1|g(x) = 1]≥ β1(n), and

(b) Prr[C(x;r) = 1|g(x) = 0]≤ β0(n),

where β1(n) = a/n,β0(n) = (a− 1)/n. By Lemma 11, C(x;r) allows us to construct a rational proof. In
particular, if Merlin sends y∈ {0,1} to Arthur and the output of C(x;r) is b, Arthur will pay Merlin Brier(g,y),
where

Brier(g,y) =


2βy(g)− (βy(g))2− (1−βy(g))2 +1, if b = 1,

2(1−βy(g))− (βy(g))2− (1−βy(g))2 +1, if b = 0.

(7)

It follows that g(x) ∈ FRMA[1,1,O(logn)].

MAJORITY, AND, and OR are all threshold gates, hence this lemma implies MAJORITY, AND, and OR
are in FRMA[1,1,O(logn)].8 Let d−FRMA denote the class of languages that admit rational proof with d

8Remark that the NOT gate can be thought of as a threshold gate and has a similar rational proof, where one counts the number of
zeros in the input instead of the number of ones. We therefore handle MAJORITY, AND, OR, and NOT gates.
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independent Merlins. We show how to delegate threshold circuits using multiple independent Merlins, then
replace independent Merlins by one Merlin.

Lemma 15. If f : {0,1}∗ → {0,1} is computable by a family of O
(

log(S(n))
)
-space uniform threshold

circuits of size S(n) and depth d(n), then f ∈ d(n)−FRMA[d(n),d(n),O
(
d(n) ·polylog(S(n))

)
].

Proof. To give an idea of our proof, let us make the simplifying assumption that for x of length n, f is
computable by a tree of depth d = d(n). We denote Mi the ith Merlin and yi ∈ {0,1} the bit sent by Mi to
Arthur in our rational proof.

The protocol constitutes of d rounds. In the first round, M1 will tell Arthur the value y1 of the root gate g1.
In Lemma 14, Arthur incetivizes Merlin to tell the truth for a single gate g by randomly picking an input bit b
and paying Brier(g,y) defined as in equation (7) to Merlin. Similarly, Arthur will randomly pick a subtree
and pay Brier(g1,y1) to M1 where b is the value of the chosen subtree. Arthur can avoid computing b by
paying another independent Merlin M2 to get the bit b. Conditioned on M2 telling the correct value of b, M1
only maximizes his reward when telling the truth.

Thus, we reduce incentivizing M1 to tell the truth for the root of a depth d tree to making M2 tell the truth
for any depth d−1 subtree. By repeating this idea, we reduce the whole problem to making Md tell the truth
for any tree of depth 1 which is just a threshold gate, and this case is guaranteed by Lemma 14. The complete
protocol is as follows.

Protocol with d Merlins. Let x ∈ {0,1}n and some depth d circuit be the common input to Arthur and
M1, . . .Md . The protocol begins with following conversation,

1. Merlin M1: sends y1 to Arthur.

2. Arthur: identifies the ’root’ gate g1 and invokes Round(1,g1,y1),

where the procedure Round(i,gi,yi) is for 1≤ i≤ d defined as

1. Arthur: randomly and uniformly chooses a ’child’ gi+1 of gi.

• If gi+1 is an input wire of value z, then pay reward(gi,yi) to Mi where b = z and STOP.

• Otherwise, ask Mi+1 for the value of gi+1.

2. Merlin Mi+1: sends yi+1.

3. Arthur: Pay Brier(gi,yi) to Mi where b = yi+1 and go to Round(i+1,gi+1,yi+1).

The Figure 3. depicts the process of selecting a random path in the circuit by Arthur from our protocol.
Next, we prove the correctness. Note the achieved efficiency parameters are discussed in Section 4.4.

Correctness. We show by backward induction that for any 1≤ i≤ d, Mi prefers to answer Arthur with a
correct value on the root for any depth (d− i+1) threshold circuit. The base case is to show that Md will tell
the truth for any circuit of depth one, i.e., a threshold gate, which is guaranteed by Lemma 14. Assume that
Md , . . . ,Mi+1 are being truthful; we show that Mi will be consequently also truthful for any depth d− i+1
circuit X . Let the root gate g of X be connected to some depth (at most) d− i sub-circuits X1, . . . ,Xm. By
the inductive hypothesis, Md , . . . ,Mi+1 enable Arthur to learn the root value for each one of X1, . . . ,Xm, and
we can think of X1, . . . ,Xm as of fixed input bits each having depth zero, effectively reducing the depth of
X to one. Hence, due to the help of Md , . . . ,Mi+1, we only need to show that Mi will tell the truth for any
threshold gate g. This case is the same as basic case ensured by Lemma 14. Hence, we can conclude that all
of M1, . . . ,Md prefer to truthfully report the value of the root for their respective sub-circuits.
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Figure 3: An independent Merlin Mi provides the intermediate value for each level i in the circuit according
to Arthur’s query gi.

Arthur can in fact achieve the same when communicating with one Merlin. To merge the d independent
Merlins into a protocol with a single Merlin, we discount the reward on the consecutive levels from the input
gates to the root.9

Proof of Theorem 13. Besides the fact that Arthur is communicating with a single Merlin, the only difference
between the new protocol and the protocol described in the proof of Lemma 15 is that instead of paying
Brier(gi,yi) in Round(i,gi,yi), Arthur now computes the reward as γd−i/2 ·Brier(gi,yi), where γ = 1/(1+
2m2

0) and m0 is the largest fan-in over all gates. After the protocol finishes, Arthur pays Merlin the total sum
over all rounds.

The communication complexity and the number of rounds of the new protocol is exactly the same as of
the protocol in Lemma 15. To check that it also constitutes a rational proof, we use backward induction to
show that Merlin is truthful in each round when maximizing the expected reward. The base case is to prove
that Merlin will tell the truth in Round(d,gd ,yd). If Merlin lies in this round his expected loss is

γ
d−d/2 · |Er[Brier(gd ,0)]−Er[Brier(gd ,1)]|= γ

d−d/2 · |(β −β0(m))2− (β −β1(m))2|
≥ γ

d−d/2 · |(β0(m)−β1(m))(2β −β0(m)−β1(m))|

≥ γ
d−d/2 · (β0(m)−β1(m))2 = γ

d−d/2 · 1
m2 ≥

1
2m2

0
,

where m is the fan-in of gd . Since for every 1≤ j ≤ d we have Brier(g j,y j) ∈ [0,2], the maximal total reward
over the previous rounds 1, . . . ,d−1 can be bound, i.e.,

d−1

∑
j=1

γ
d− j/2 ·Brier(g j,y j)≤

d−1

∑
j=1

γ
d− j =

d−1

∑
j=1

(
1

1+2m2
0

)d− j

<
1

2m2
0
.

Note that the total reward conditioned on lying in the last round is strictly smaller than the reward in the last
round alone when telling the truth, hence a rational Merlin must be truthful in this round in order to maximize
his total reward.

Assume that Merlin is truthful in rounds d, . . . , i+1. Similarly to the base case, if he lies in Round(i,gi,yi),
then his expected loss is at least γd−i/2 ·1/m2

0 (conditioned on telling the truth in the next rounds). Moreover,
the maximal total income over rounds 1, . . . , i−1 is also bounded, i.e.,

i−1

∑
j=1

γ
d− j/2 ·Brier(g j,y j)≤

i−1

∑
j=1

γ
d− j < γ

d−i · (1/2m2
0).

9This idea resembles the proof of CH⊂ DRMA presented in [AM12], however the discounting differs in our context.
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By the same reasoning, Merlin is reporting the truth in Round (i,gi,yi) in order to maximize the total reward.
Therefore, we can conclude that rational Merlin will report the truth in every round, and the protocol indeed
constitutes a rational proof.

4.4.2 Discussion on Rational Proofs for Threshold Circuits

Circuit Model. Our rational proofs work for any circuit in TC, whereas interactive proofs of Goldwasser et
al.[GKR08] address circuits in NC. In general, the class TC and NC have the same computational power,
indeed it is possible to simulate any threshold gate with AND and OR gates. However, once we take depth of
the circuit into consideration, TC circuits may be much more powerful than NC circuits, and the advantage is
remarkably evident in the case of constant depth.

Unlike TC0, the class NC0 can only compute functions which depend on constant number of input
bits, since the fan-in of any gate is two. One can lift this restriction and allow the AND, and OR gates to
have unbounded fan-in which corresponds to the class AC0. Nevertheless, we do know functions which are
computable in TC0, but are outside AC0, e.g., parity, majority and some pseudorandom functions (under
a computational assumption, see Naor and Reingold [NR04]). Note that TC0 is a class interesting also on
its own (see Reif and Tate [RT92]). Many important practical problems are in TC0, such as sorting a list of
n-bit numbers, multiplication of two n bit numbers, or integer division. Our result gives efficient delegation
schemes for these problems in the rational setting with constant number of rounds, constant communication,
and with a verifier running in polylog(n) time.

In the construction of both us and Goldwasser et al.[GKR08], the number of rounds and the amount
of communication is proportional to the depth of the circuit. However, for the same depth d, we need
only d rounds but Goldwasser et al.[GKR08] needs Ω(d logn) rounds. Hence, for those function which are
computable in TC0, our protocol only needs O(1) rounds O(1) bits communication that is in stark contrast to
Ω(logn) rounds and polylog(n) communication in [GKR08].

Multi-Output Case. Both our protocol and Goldwasser et al. [GKR08] can be transformed to protocols that
work for multi-output circuits of say m output bits. The general idea is to view these output bits as inputs to a
virtual AND gate. This AND gate then outputs 1 if and only if all output bits are correct, and turns the circuit
into a single-output circuit. The AND gate is however limited to fan-in two in NC, so the transformation adds
logm factor to the depth of the circuit, and consequently to the number of rounds. Our transformation for
multi-output circuits introduces only one additional round in which the verifier picks an output bit at random
and runs the rational verification for the corresponding single-output circuit. More specifically, we show
any f : {0,1}∗→ {0,1}` which can be computable by a family of O(log(S(n)))-space uniform threshold
circuits of size S(n) and depth d(n) is in FRMA[d(n),d(n)+ `−1,O(d(n) ·polylog(S(n)))]. The protocol
only differs from the protocol of Theorem 13 in the initial conversation.

(a) Merlin: sends z ∈ {0,1}`.

(b) Arthur: randomly chooses r ∈ {1, . . . , `}. Finds the corresponding ”root” gate, denotes it as g1, and
starts Round(1,g1,zr).

Suppose Merlin sends an incorrect z 6= f (x), and a is the number of bits where z and f (x) differ. With
probability of a/`, Arthur will start the first round with an incorrect zr. As shown in Theorem 13, conditioned
on zr being incorrect, the expected loss of Merlin is at least ∆d/2 ·1/m2

0, where m0 is the maximal fan-in
over all gates. Thus, the expected loss of Merlin when lying on a bits of z will be at least (a/`)(∆d/2 ·1/m2

0).
Merlin will again maximize the expected reward by sending z = f (x).
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Non-Uniform Circuits. Uniformity of circuits describe how complex the circuits are. The statements
of muggles and our protocol work demand O(log(S(n))) space uniform circuits where S(n) is the size of
circuit. It is because we want to get the information of circuit very efficiently without looking into the
whole description of circuit. O(logS(n)) space uniformity allows us to get the information of each gate in
polylog(S(n)) time. As discussed in Goldwasser et al. [GKR08], if preprocessing allowed, verifier can run
poly(S(n)) time in off-line phase but keep poly(d, log(S)) bits of information of the circuit. And in the online
phase, verifier can get the information of each gate in time poly(d, log(S(n))) such that the total running time
is O(d ·poly(d, log(S(n)))). The running time of Goldwasser et al. [GKR08] is O(n ·poly(d, log(S(n)))).

4.5 Beyond TC

We show some limitation on extremely efficient rational proof for classes beyond TC. In the rational proof
for any NP language described in Fig. 2, the assumption about rationality of Merlin allows him to convince
Arthur while being extremely laconic. However, Goldreich et al. [GVW02] showed that in the classical
setting it is impossible to construct an interactive proof with a single, one bit message from the verifier for
any NP-complete language.10 We show that similar impossibility transfers also into the rational setting.

As mentioned earlier, Brier’s score is not inherent to laconic rational proofs. However, for any bounded
scoring rule computable in polynomial time, we show in following theorem that the reward gap is related to
the randomized time needed for deciding the language, and we get as simple corollary that the reward gap
cannot be noticeable in every extremely laconic rational Merlin Arthur game for any NP language, unless
NP⊂ BPP.

Theorem 16. Let L be a language in DRMA[1,1,poly(|x|)], and reward(·, ·) be any bounded reward function
defining the corresponding rational Merlin-Arthur game with an extremely laconic Merlin. If ∆reward(·) is a
noticeable function, then L can be decided in randomized polynomial time with a constant error probability.

Proof. Given x ∈ {0,1}∗, consider the following procedure. Evaluate t times both reward(x,0) and
reward(x,1) to estimate E[reward(x,0)] respectively E[reward(x,1)]. If E[reward(x,0)] > E[reward(x,1)]
reject, and otherwise accept.

We use the Hoeffding’s inequality to give an upper bound on the number t of evaluations of the reward
function that suffices for the above procedure to decide L with a constant probability of error. The inequality
states that if X1, . . . ,Xt are i.i.d. random variables such that E[Xi] = µ and 0≤ Xi ≤ 1 for all i, then for any
ε > 0,

Pr

[∣∣∣∣∣1t t

∑
i=1

Xi−µ

∣∣∣∣∣≥ ε

]
≤ 2exp

(
−2tε2) .

Assume without loss of generality that reward function assigns values form [0,1]. Since ∆reward(·) is
noticeable function, there exists a polynomial p, such that ∆reward(|x|)> p(|x|)−1 for all large enough x.

If we approximate E[reward(x,0)], respectively E[reward(x,1)] within ε = ∆reward(|x|)/3, the proposed
procedure successfully determines if x∈ L. The Hoeffding’s inequality guarantees that after t = ln(12)/2ε2 =
O(p(|x|)2) evaluations of reward(x,b) we can approximate E[reward(x,b)] within ε with probability greater
than 5/6. Therefore, one can decide L in randomized polynomial time with probability greater than 2/3.

Note that the proof can be easily extended for any L ∈ DRMA[1, log(|x|),poly(|x|)].
10Goldreich et al.[GVW02] in fact showed that NP-complete languages cannot have interactive proofs in which the prover sends

only poly-logarithmically many bits to the verifier.
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5 Conclusion and Open Problems

This work presents an alternative approach to constructing delegation schemes. Our approach, to the extent
that it is meaningful, opens up the door for one-round protocols that demand minimal overhead for the prover
and allow extremely fast verification. These dramatic efficiency improvements are a direct result of the
relaxation in the soundness requirement. By penalizing the prover (on expectation) for even the slightest
deviation from the correct computation, it is possible to focus the verification efforts on local parts of the
computation (specifically paths along the computation), whose size is proportional to the depth of the circuit
being computed. This stands in stark contrast to the more “rigid” approach to verification, whose soundness
necessitates global dependence on the entire computation, and thus results in significantly more involved
proof and verification procedures (inducing significant overhead beyond the actual computation).

Our work gives rise to several interesting open problems:

• While we give extremely laconic rational proofs for all NP languages (thus bypassing the impossibility
result for interactive proofs), we also show that such succinct non-interactive public coin rational proofs
NP cannot have non-negligible reward gap. An interesting research direction is to understand if this
small gap is inherent. Specifically, can one construct succinct rational proofs for NP with large gap by
increasing the number of rounds, or by having the verifier use private coins?

• In the context of the above question, it is natural to consider computationally bounded rational provers.
Due to the impossibility result of Gentry and Wichs [GW11], constructions of succinct non-interactive
arguments (SNARGs) in the classical setting must be based on non-falsifiable assumptions. Can one
overcome this limitation in the rational model and construct rational SNARGs?

• The main advantage of our rational delegation is the utmost simplicity. Still, the complexity of
verification does depend on the depth of the underlying circuit. In particular, for P-complete problems
the scheme is no longer succinct. Kalai, Raz and Rothblum [KRR13] give a delegation scheme where
the complexity of verification depends on the space of a Turing Machine instead of depth of circuit.
Their scheme might potentially be simplified in the rational model, yielding a one-round succinct
rational delegation for all problems in P.

• In this work, we propose to model rationality in presence of computational cost via noticeable reward
gap. However, this modeling is not sensitive to different costs of computation while in reality a rational
prover may behave differently on computations that have different complexity. It is an interesting open
problem to refine our model, or even come up with a different approach, and capture rationality with
respect to various measures of costs of computation.
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