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Abstract

The computational hardness of factoring integers is the most established assumption on
which cryptographic primitives are based. This work presents an efficient construction of pseu-
dorandom functions whose security is based on the intractability of factoring. In particular, we
are able to construct efficient length-preserving pseudorandom functions where each evaluation
requires only a (small) constant number of modular multiplications per output bit. This is
substantially more efficient than any previous construction of pseudorandom functions based on
factoring, and matches (up to a constant factor) the efficiency of the best known factoring-based
pseudorandom bit generators.

1 Introduction

Almost any interesting cryptographic task must be based on the computational hardness of some
problem. Proving such hardness assumptions exceeds by far the the state of the art of Complexity
Theory. It is therefore desirable to base the security of a cryptographic construction on as reasonable
assumption as possible. A natural approach is to rely on a well studied problem where many
algorithms have been tried and their complexity is well understood. The most established candidate
in these respects, and certainly the one with the best pedigree, is the problem of factoring integers
(see [22] for the state of the art of factoring).

The focus of this paper is an efficient construction of pseudorandom functions (see definition
below) whose security is based on the intractability of factoring. In particular, we are able to

*An extended abstract appeared in the 32" annual ACM Symposium on the Theory of Computing, 2000.
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construct efficient length-preserving pseudorandom functions whose evaluation requires only a con-
stant number of modular multiplications per output bit. This is substantially more efficient than
any previous construction of pseudorandom functions based on factoring, and matches (up to a
constant factor) the efficiency of the best known factoring-based pseudorandom bit generators.

Pseudorandom functions', originally defined by Goldreich, Goldwasser and Micali [13] are an
important cryptographic primitive. A distribution of functions is pseudorandom if it satisfies the
following requirements:

Easy to sample: It is easy to sample a function according to the distribution.
Easy to compute: Given such a function it is easy to evaluate it at any given point.

Pseudorandom: It is hard to tell apart a function sampled according to the pseudorandom
distribution from a uniformly distributed function when the distinguisher is given access to
the function as a black-box.

Pseudorandom functions have a wide range of applications, most notably in cryptography, but
also in computational complexity and computational learning theory. Coming up with efficient
constructions for such functions is a challenge of great practical and theoretical interest.

The new construction improves the one by Naor and Reingold [20], who showed how to construct
pseudorandom functions based on factoring, where the cost of evaluation is comparable to two
modular exponentiations. The drawback of those functions is that the output is only a single
bit. In order to apply them for achieving a length preserving pseudorandom function one would
need to repeat the process n times, rendering it inefficient. The improvement we propose lies in a
method to expand the one bit output of the NR functions to polynomially many bits while paying
only a small overhead in the complexity of the evaluation (i.e. one modular multiplication for each
additional output bit). This improvement will be achieved through a surprising combination of the
NR functions and the Blum-Blum-Shub pseudorandom generator [5]. As will be demonstrated in
the sequel, in general such a composition does not necessarily yield a pseudorandom function. This
in particular implies a non-straightforward proof of security.

The method we suggest enables us to construct efficient length preserving pseudorandom func-
tions which are at least as secure as factoring Blum-integers and can be evaluated at the cost of
fewer than three modular exponentiations. This is comparable to another attractive construction
by NR [20], of pseudorandom functions which are at least as secure as the Decisional Diffie-Hellman
(DDH) problem. While the DDH problem has received much attention recently (see [4]), it is not
nearly as well established as factoring.

Organization: The next section contains the background material and our construction. The
main result of our work, the efficient construction of a pseudorandom function which is at least
as secure as factoring Blum-integers, is presented in Section 4. The proof of security is given in
Section 5.

"Note the difference between a pseudorandom function and a bit generator - the latter expands a random seed to
some fixed length sequence that should be indistinguishable from a random sequence of similar length; there is no
“probing” in the attack.



2 0Old and New Constructions

2.1 Background

When Goldreich, Goldwasser and Micali originally defined pseudorandom functions [13] they were
at least partly motivated by the construction of the Blum-Blum-Shub (BBS) pseudorandom gen-
erator [5] and, in particular, by an open question suggested there — the easy-access problem?.
Nevertheless, the actual GGM construction of pseudorandom functions did not appear to have
any direct connection to the BBS generator (apart from the fact that the BBS generator can be
used as a building block for the GGM construction). The current work suggests a construction
which is directly related to the BBS generator. We now turn to survey previous constructions of
pseudorandom functions (as well as the BBS generator).

2.1.1 The Blum-Blum-Shub Generator

The Blum-Micali Paradigm: Let f : {0,1}" — {0,1}" be a one-way permutation (i.e. one
where it is easy to compute f(z) but intractable to find z = f~'(y)), and let B(-) be a a hard-core
predicate for f(-) (i.e. given y it is difficult to guess B(f (y))). Let £: N — N be a function so
that ¢(n) > n for all n. Blum and Micali proposed the following scheme to construct a generator
stretching an n-bit seed, x, to an {-bit pseudorandom string:

B(x), B(f(x)),- .., B(fP(x)),..., B (@) (1)

As a candidate one-way permutation (based on factoring) BBS [5] considered the squaring function
modulo an integer N = P- (@ (i.e. the mapping x — 2 mod N)?. Following [5], the values of N are
restricted to integers of the form N = P - (@ where P and @) are two distinct primes both congruent
to 3 mod 4 (such integers are known as Blum-integers).

Blum-integers: Restricting NV to be a Blum-integer enabled BBS to prove that the squaring
function is indeed a permutation (when its domain is limited to the subgroup of quadratic residues
in Z%). Let N = P - (@ be an integer, an element in Z7} is called a quadratic residue if it has a
square root, namely there is a y € Z% such that y?> = x mod N. It is easy to verify that the set
of quadratic residues in Z7} forms a subgroup (which we denote by QRy). We note that every
2?2 € QRy has exactly four distinct square roots, +x,+y € Z’%, and in the special case that NV
is a Blum-integer it is possible to prove [5] that exactly one of these square roots resides in QRy
(which implies that squaring is indeed a permutation over QRy ).

Constructing the BBS Generator: The BBS pseudorandom generator is obtained by applying
the Blum—Micali paradigm to the squaring permutation together with the LSB(-) (least significant
bit) hard-core predicate. This generator has been originally proven secure assuming intractability
of Quadratic Residuosity Problem in [5], and subsequently under the assumption that factoring
Blum-integers is hard (Assumption 4.1) in [26] (by adapting the techniques in [1]). Note also
that it is the basis for the Blum-Goldwasser public-key encryption scheme [6]. For simplicity of
exposition , we choose to replace the LSB(-) hard-core predicate with the Goldreich-Levin B, (-)

2The easy-access problem arises when one notices that it is easy to access exponentially far away bits in the BBS
pseudorandom pad. The question is whether the BBS pad remains pseudorandom even when the distinguisher has
access to these exponentially far away bits.

%It was shown by Rabin [23] that the problem of factoring an integer N = P - @ can be reduced to the problem
of extracting square roots in Z%. Thus, if factoring N = P - Q is hard, then squaring is indeed one-way.



predicate [14] (where B,.(m) denotes the inner product, (m,r) mod 2). We obtain a generator which
stretches an n-bit seed, © € QRy, to an ¢(-bit pseudorandom string (and is completely analogous
to the BBS generator):*

Bo(z), Br(z2), ..., Be(z®), ..., Bo(z2™ ) (2)

The BBS generator is considered efficient (relative to other generators based on factoring), each bit
in its output can be obtained at the cost of one modular multiplication. In particular, by performing
2n modular multiplications it is possible to stretch an n-bit seed to a 2n-bit pseudorandom string.

The Easy-Access Problem: In the BBS generator a seed (z, N) defines an infinite (ultimately
periodic) bit-sequence by, by, ... (even though a pseudorandom string generated with an n-bit long
seed consists of only polynomially many (in n) bits). An interesting feature of the BBS generator
is that knowledge of the factorization of IV allows easy access to each of the first 2" bits; that is, if
logi < n, the " bit, b;, can be computed in poly(n) time (by first computing 3; = 2~ mod p(N)
and then setting b; = B,(z%)). However, as GGM noted [13], this easily accessible exponentially
long bit-string may not appear “random”. What BBS have proved, is that any single polynomially
long interval of consecutive bits in the string is pseudorandom (provided that factoring Blum-
integers is hard). Indeed, it might be the case that, say, given by,...,b, and bovi 15+ s boym s 1t
is easy to compute any other bit in the string.

The easy-access problem is whether direct access to exponentially far away bits in the BBS
bit-sequence is an operation which preserves pseudorandomness. This problem was discussed in
[2, 8, 5, 13] and is still unresolved.

2.1.2 The GGM Construction

Motivated in part by the easy-access problem, Goldreich, Goldwasser and Micali [13] introduced the
notion of pseudorandom functions and provided a generic construction based on any length doubling
pseudorandom generator. Note that a pseudorandom function may be viewed as an exponentially
long bit-string which remains pseudorandom even after its bits are accessed in a direct manner.
Thus, in some sense, GGM have bypassed the easy access problem.?

When applied to an efficient pseudorandom generator based on factoring (e.g. the BBS gener-
ator), the GGM construction yields a length-preserving pseudorandom function which is as secure
as factoring, but requires as much as O(n?) modular multiplications per evaluation. On the other
hand, a positive answer to the easy-access problem implies that the function:

INgn(i) =GR ) (3)

is a length preserving pseudorandom function which is at least as secure as factoring and requires
only O(n) modular multiplications per evaluation. Thus, in some sense, the question of whether it
is possible to construct such efficient pseudorandom functions based on factoring (which require as

much modular multiplications as fﬁlgf), remained open.

“We denote by n the size (in bits) of N, and by 2% the value of 2’ mod N.

SWhat GGM have actually demonstrated is how to construct exponentially long, easily accessible, pseudorandom
strings based on any one-way function (following [16]). However, this does not imply that the specific BBS bit-sequence
remains pseudorandom given direct access to exponentially many of its bits.



2.1.3 The NR Constructions

About a decade after the GGM paper appeared, Naor and Reingold (NR) [19] suggested a paral-
lel construction of pseudorandom functions. The NR construction was obtained by introducing a
new cryptographic primitive, the pseudorandom synthesizer. By applying their method to specific
constructions of pseudorandom synthesizers, they were later able to present efficient pseudorandom
functions based on standard number-theoretic assumptions [20]. These constructions are consider-
ably more efficient than the constructions which would have been obtained by applying the generic
GGM construction to specific pseudorandom generators that are based on the same assumptions.

The DDH Construction: A construction of length preserving pseudorandom functions as secure
as the Decisional Diffie-Hellman (DDH) problem which require roughly 2n modular multiplications
per evaluation [20]. This already matches the efficiency offered by fﬁgﬁ and, to the best of our
knowledge, is the most efficient construction of pseudorandom functions to date (based on standard

intractability assumptions).

The Factoring Construction: A construction of pseudorandom functions at least as secure
as factoring, which require roughly 2n modular multiplications per evaluation [20] (their proof
of security utilizes Biham, Boneh and Reingold’s [3] result that breaking the Generalized Diffie-
Hellman assumption over composites implies an efficient algorithm for factoring.)

For every n € N, a key of a function in the NR pseudorandom function ensemble, F,,, is a tuple
(N,d,g,r), where N is an n-bit Blum-integer, @ = (a1,0, a1,1,02,0,02,1,---,0n0,0n,1) IS & sequence
of 2n elements in {1,..., N}, g is a quadratic-residue in Z%; and r is an n-bit string. For any n bit
input x = x123...x,, the NR function (with a single bit of output) is defined as:

fN,E,g,r(x) = Br(gnyzlai’zi) (4)

The NR construction gives a pseudorandom function which seems to be as efficient as fﬁf;ﬁ. Note
however, that the NR function has only one bit of output, whereas fﬁgﬁ has linear output length.
While this may be sufficient for some applications, in most scenarios it is not. The goal of our work
is to match the result one would have obtained by proving that fﬁfgﬁ are indeed pseudorandom
functions. That is, we provide a new construction of pseudorandom functions that: (1) are at
least as secure as factoring Blum-integers, (2) have linear output length, and (3) require only O(n)

modular multiplications per evaluation.

2.2  Our Construction

The NR pseudorandom function, fy g4, is obtained by extracting the B,(-) predicate from the
value of the function:

hyag(z) = gli=1 %o (5)

It turns out that, even though it is not pseudorandom in itself, the function hy g 4 is unpredictable
in some weak sense. Assuming the intractability of factoring Blum-integers, Naor and Reingold
have shown [20, 21] that hy z , is unpredictable against an adaptive sample and a random challenge.
That is, for a random z € {0,1}", no polynomial-time adversary is able to predict the value of h(z)
after adaptively querying the value of h(y) for polynomially many y # x of his choice.

The main idea behind our construction is using the value of hy gz, as a seed to the BBS
pseudorandom generator. At first glance, it is not clear why this method should work at all.
Indeed, applying a pseudorandom generator to an “unpredictable” value does not necessarily yield



a pseudorandom function (see section 5.1 for a more detailed discussion on the subject). The
reason for which our construction does work lies in the specific number theoretic features which the
function hy g, and the BBS generator have in common.

This enables us to expand the output length of the NR function to polynomially many bits while
paying a “reasonable” overhead in the complexity of the evaluation (i.e. one modular multiplication
for each additional output bit). Specifically, let N, d, g and r be defined as in the NR function, the
function we propose is defined as:

fN,d‘,g,r (x) = Gﬁgi(gnyzlai’mi) (6)

Even though this does not solve the particular easy-access problem, it does match the efficiency
one would have obtained by proving that f ﬁgﬁ are indeed pseudorandom functions (as well as the
efficiency of the DD H-based pseudorandom functions by NR [20]). By taking (n) = n, we obtain a
length preserving pseudorandom function which is at least as secure as factoring, has linear output
length, and requires only 3n modular multiplications per evaluation. This already matches (up to a
constant factor) the efficiency of the best known factoring-based pseudorandom generators (which
also require O(n) multiplications per evaluation) and certainly improves the efficiency of the GGM

pseudorandom functions which use BBS as a building block.

3 Preliminaries

For the sake of completeness we present the formal definition of pseudorandom functions. Our
exposition follows the ones appearing in [11, 12, 19].

3.1 Pseudorandom Functions - Definition

Pseudorandom functions were defined by Goldreich, Goldwasser and Micali [13]. Loosely speaking,
these are efficient distributions of functions that cannot be efficiently distinguished from the uniform
distribution. That is, an efficient algorithm that gets a function as a black box cannot tell (with
non-negligible advantage) from which of the distributions it was sampled.® To formalize the notion
of pseudorandom functions, we will need to consider ensembles of functions.

Definition 3.1 Let {4 and ¢, be any two integer functions. An I — I’ function ensemble is a
sequence F = {F,}nen of random variables, such that the random wvariable F,, assumes values in
the set of I'a(™) — 1) functions. The uniform I — I function ensemble, R = {R,}nen, has
Ry, uniformly distributed over the set of I%(™ — 1™ functions.

An explicit description of a function f : I@ — I requires as much as 26r24 hits. This suggests
an alternative view of pseudorandom functions: These are distributions of exponentially long bit-
sequences that cannot be distinguished from random by an efficient algorithm which has direct
access to the sequence. To be of practical value however, we require that pseudorandom functions
can be efficiently sampled and computed. This property is not satisfied by every function ensemble
(e.g. the uniform function ensemble: It contains 92624 functions whose mere representation requires
as much as £,2% bits), we therefore restrict ourselves to efficiently computable function ensembles.

Definition 3.2 A function ensemble, F = {F, }nen, is efficiently computable if there exist prob-
abilistic polynomial-time algorithms, T and V, and a mapping from strings to functions, ¢, such
that ¢(Z(1™)) and F, are identically distributed and V(i,x) = (¢(i))(x).

For a detailed exposition on pseudorandom functions and their applications we refer the reader to [24].



We denote by f; the function assigned to i (i.e. f; def #(i)). We refer to i as the key of f; and

to T as the key-generating algorithm of F.

In particular, functions in efficiently computable function ensembles have relatively succinct repre-
sentation (i.e. of polynomial rather than exponential length). As a consequence, these ensembles
may have only exponentially many functions (out of double-exponentially many possible functions).

The distinguisher, in our setting, is defined to be an oracle machine that can make queries to a
function (which is either sampled from the pseudorandom function ensemble” or from the uniform
function ensemble®). We assume that on input 1™ the oracle machine makes only n-bit queries. For
any probabilistic oracle machine, M, and any I"™ — I*(™) function, O, we denote by MO (1™) the
distribution of M’s output on input 1™ and with access to O.

Definition 3.3 An efficiently computable I" — T*™) function ensemble, F = {F.}nen, is pseudo-
random if for every probabilistic polynomial-time oracle machine M, every polynomial p(), and all
sufficiently large n’s

1
Pr[M™(1") =1] — Pr (Mt (1") = 1]| < —
[Pr M (") =1] = Pr M) = 1]| < o
where R = {Ry, ¢Ynen is the uniform I™ — T“M) function ensemble.

The term “pseudorandom functions” is hereafter used as an abbreviation for “efficiently computable
pseudorandom function ensemble”.

3.2 Notation
e N denotes the set of all natural numbers.
e For any integer £ € N, denote by [k] the set of integers {0,1,...,k — 1}.
e For any integer NV € N the multiplicative group modulo N is denoted by Z7.
e The order of Z} (i.e. the number of z € [N] such that ged(z, N) = 1) is denoted by ¢(N).
e [™ denotes the set of all n-bit strings, {0,1}".
e U, denotes the random variable uniformly distributed over I™.

e Let x and y be any two bit strings then x,y denotes the string x concatenated with y.

4 The Main Result

We are now ready to present the main result of our work, an efficient construction of pseudorandom
functions whose security is based on the intractability of factoring. Specifically, we are able to show
how any procedure which is able to distinguish our functions from randomly chosen ones can be
turned into an algorithm which factors a non-negligible fraction of Blum-Integers. We begin by
formalizing the assumption that factoring Blum-integers is hard.

"We stress that in the case that the function is sampled from the pseudorandom function ensemble the distinguisher
is not given the representation of the function f; (i.e. the key 7).

8 As we have mentioned, it is not clear even how to efficiently represent a uniformly distributed function (as the
representation it is too large to store). Still, one may simulate such a function by answering given queries with
independently and uniformly chosen answers (while memorizing previous answers for the sake of consistency).



4.1 The Factoring Assumption

In order to keep our result general, we let NV be generated by some polynomial-time algorithm FIG
(where FIG stands for factoring-instance-generator).

Definition 4.1 A factoring-instance-generator, FIG, is a probabilistic polynomial-time algorithm
such that on input 1™ its output, N = P - Q, is distributed over n — bit integers, where P and Q
are two primes that satisfy P = Q = 3 mod 4 (such N is known as a Blum-integer).

A natural example for a factoring-instance-generator would be to let FIG(1™) be uniformly dis-
tributed over n—bit Blum-integers.” However, other choices were previously considered (e.g., letting
P and Q obey some “safety” conditions).'® We now formalize the assumption that factoring Blum-
integers is hard.

Definition 4.2 (e-factoring) Let A be a probabilistic Turing machine and let € = €(n) be a real-
valued function. A e-factors if for infinitely many n’s

PrlA(P - Q) € {P,Q}] > €(n)
where the distribution of N = P - Q is FIG(1"™).

In spite of the extensive research directed towards the construction of efficient integer factoring
algorithms, the best algorithms currently known for factoring an integer N, have (heuristic) running

time L(N) el £1.92(log N) '/ (log log )/ (cf. [22]). This (together with the fact that Blum-integers
are a non-negligible fraction of all n-bit integers) leads us to the following assumption.

Assumption 4.1 (Factoring FIG Blum-Integers) Let A be any probabilistic polynomial-time
machine. There is no positive constant o such that A n%—factors.

All exponentiations in the rest of this Section are in Z%. To simplify the notations, we omit the
expression “mod N” from now on.

4.2 The Construction

Construction 4.1 We define a function in the ensemble F = {F,, },en. For everyn € N, a key of
a function in F, is a tuple (N,d,g,r), where N is an n-bit Blum-integer, g is a quadratic-residue
in Ly, @=(a1,0,01,1,02,0,021,..-,0n,0,0n1) is @ sequence of 2n elements in [N] and r is an n-bit
string. For any mn bit input © = x1x9...%,, and for every integer valued function ¢ = {(n), the
function fngg,: 1" — I s defined by:

def
fN7(_i7g7r (:I:) é

n

n X n A k1in X —1 .
BT (gHizlaz,zi )7 B’l" (gQHizlal’mi )7 e 7‘87" (92 Hi:laz,zi )7 e 787"(92 Hl:lal,mi)

where B,.(m) denotes the inner product, (m,r) mod 2. The distribution of functions in F, is induced
by the following distribution on their keys: @, g and r are uniform in their range and the distribution
of N is FIG(1™).

9We note that n— bit Blum-integers are a non-negligible fraction of all n — bit integers and that it is easy to sample
a uniformly distributed n — bit Blum-integer.
OFor example, it is often required that P and Q are of equal size, and that P, Q are of the form P = 2P' 4+ 1 and
Q = 2Q' + 1 for some primes P',Q’.



Remark 4.1 Construction 4.1 employs a Blum-integer, N. In this we follow [5] and many other
works. As discussed in Section 2.1.1, this restriction implies that squaring is a permutation on
the subgroup of quadratic residues in Z%. Nevertheless, as was pointed out to us by Shai Halev:
and an anonymous referee, it is rather easy to extend our construction (as well as many previous
results) in order to allow an arbitrary moduli N = P - Q (that is assumed to be hard to factor)
instead of a Blum-integer. The main observation that is needed is that for any such N, squaring is
a permutation on the subgroup of 2™-powers in Zy. See [15, 25] for additional details on avoiding
the restriction to Blum-integer in related contexts.

An additional variant of the construction is discussed in Section 6. There, we discuss how to
replace the Goldreich-Levin hard-core bit with the LSB predicate.

4.3 Efficiency of the Construction

Consider a function fy g4, € F, as in Construction 4.1. Computing the value of this function at
any given point, z, involves one multiple product y = []7_, a; 4, (which can be performed modulo
©(N)), one modular exponentiation, z = ¢g¥ mod N, and £(n) — 2 successive modular squaring
22,..., sz, el 227 (which require less than one modular multiplication each). The value of the
function is finally obtained by computing B,(z), B.(z?),... ,Br(zﬂ_l) (which is a cheap operation
compared to modular multiplication). As discussed in [20], it is possible to use preprocessing in
order to get improved efficiency.!! This gives us a pseudorandom function which can be evaluated
roughly at the cost of 2n + £(n) modular multiplications (a modular exponentiation is counted as
n modular multiplications).

An attractive feature of our construction is that for each input we can have a wvariable length
output, i.e. if for some 2’s one needs more bits in the output of f(x), then the natural way of simply
taking more bits of the form B,(z?") works. While it is possible to get this feature generically, by
combining a pseudorandom function and a generator, here we get it “for free.”

5 Proof of Security

Theorem 5.1 If the Factoring-assumption holds (Assumption 4.1) then F = {F, },en (as in Con-
struction 4.1) is an efficiently computable pseudorandom function ensemble.

Remark 5.1 The proof of Theorem 5.1 yields a more quantitative version as well: Assume that
there exists a probabilistic polynomial-time oracle machine with running time t(n) that distinguishes
INdgr from pn, with advantage e(n) (where p,p is uniformly distributed in the set of functions
with domain {0,1}" and range {0,1}(")). Let ¢ = q(n) be a bound on the number of queries
made this machine. Then there exists a probabilistic polynomial-time algorithm with running time

poly(ﬁ,t(n),((n)) that €"-factors, for €'(n) which equals Q (7,1(:)(272?,1)2)-

5.1 On the Methodology
5.1.1 A simple approach does not work

In order to prove Theorem 5.1, one might be tempted to use the following approach: Recall the
definition of the function hy z 4(7) = g'=1%=: in Equation (5). As mentioned above, it was shown

"' The most obvious preprocessing would be to compute the values gQi (for every positive integer 7 up to the length
of (P—1)-(Q —1)). See [20] for additional preprocessing techniques which further improve the efficiency.



in [20, 21] that hy g, is unpredictable against an adaptive sample and a random challenge. In light
of this, Construction 4.1 can be viewed as based on the following methodology:

1. Take an “unpredictable” function hs : {0,1}" — {0,1}"
2. Take a pseudorandom generator G : {0,1}* — {0,1}¢
3. Obtain a pseudorandom function f : {0,1}™ — {0,1}* by setting f(z) = G (hs(x)).

Unfortunately, this method does not work in general. As will be demonstrated next, there exists
an “unpredictable” function and a pseudorandom generator such that their composition is not a
pseudorandom function.

5.1.2 The Counter Example

Consider the following (unnatural) counter-example:
1. (a) Let A% :{0,1}" — {0,1}% be an unpredictable function.
(b) For y € {0,1}5 define hyy : {0,1}" — {0,1}" as hy,(z) = (B(2),y).

)
)
(c) Clearly hg, is unpredictable.
)
)
)

2. (a) Let G':{0,1}% — {0,1}* be a pseudo-random generator.
(b) For z,y € {0,1}% define G : {0,1}" — {0,1}¢ as G(z,y) = G'(y).

(c) Clearly G is pseudo-random.

3. However, the function f : {0,1}™ — {0, 1}* obtained by setting fs ,(z) = G(hs4(z)) is always
equal to G'(y) (regardless of the value of z). Obviously, fs, cannot be pseudo-random.

It seems that the reason our construction does work lies in the specific number theoretic features
which the function ¢"=1%=: and the BBS generator have in common. Since we do not know what
precisely are the features of a function hs; and of a pseudorandom generator G that are needed in
order to obtain a pseudorandom function (using the above methodology), we are forced to provide
a direct proof for our construction. As most proofs of pseudorandomness we will use a hybrid
argument, i.e. mixing a truly random and pseudorandom distribution. The type of hybrid we apply
is the reverse hybrid, where first the random part is used and only then the pseudorandom one.
This is an instance of the principle of deferred decision (see [18]): Do not commit to any value in
the pseudorandom part of the distribution until you have to.

5.2 Proof of Theorem 5.1

Proof: Let F = {F,},en be as in construction 4.1. It is clear that F' is efficiently computable.
Assume that F' is not pseudorandom, then there exists a probabilistic polynomial-time oracle
machine M and a non-negligible real valued function € = €(n), such that for infinitely many n’s

[Pr [MIvaar (1m) = 1] = Primene 1) = 11| > e(n) (7)
where in the first probability fx g4, is distributed according to F, and in the second probability

pn,e is distributed according to R, (the uniform ensemble of functions with domain {0,1}" and
range {0, 1}4(™).
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A Hybrid Black-Box: Inequality (7) tells us that there is a non-negligible difference between
the output behavior of M in the case it is given access to a black-box which answers according to
fn,ag,r and in the case it is given access to a black-box which answers according to p,, ». However,
M’s response is still a well defined random variable even when its queries are answered according
to some other distribution. This means that we are allowed to invoke M, and answer its queries
in whatever way we find suitable for our purposes. The way we choose to do it is by defining a
hybrid black-box.'? Informally, this is a black-box which starts by answering M’s queries according
to pne, and then switches mode to continue and answer according to fy g g.r-

Let t = t(n) be a polynomial that bounds the running time of M, assume wlog that M always
makes exactly ¢ queries. Since each single answer given to these queries is /-bit long, we have that
the total number of bits which M gets as answers during its execution is precisely ¢-£. Each one of
these bits corresponds to a location for which one of the hybrid black-box distributions will switch
from answering according to p, ¢ to answering according to fy z 4, (note that this may also happen
in the middle of an answer).

Definition 5.1 (Hybrid Black-Box) Let J be an element in [t - { + 1] written as J =1-L+ k
(where 0 < T <t and 0 <k < £). The J" hybrid black-boz, Hl{fﬁ,g,r’ 18 defined by the answers it
gives to M’s queries. The first I queries are answered according to p, ¢ (i.e. at random), the answer
to the (I 4+ 1)t query up to the k' bit-location is according to pne, and from then on, according to
INagr- All remaining queries are answered according to fy g g.r-

Notice that HJOV dgr is a black-box which always answers according to fy g, Whereas H}ffﬁ o
always answers according to p,, ¢. By Inequality (7), we have that M distinguishes between fx z 4

and pp ¢ with advantage e(n). Therefore, if we pick J at random, the expected advantage that M

has in distinguishing between H]‘{,&.g . and H]{,'Elg . is at least €'(n) = t(;)(_’zzn). An example of an

hybrid black-box is depicted in Figure 1.

I I+1 T+2 ... t
1 r or .- r r
2 ror T T
k r F,
k+1
4 ror T

Figure 1: Illustrates the J™ hybrid black-box, H]{,dg . (where J =1 -/ + k). Columns correspond
to queries given to the black-box and rows correspond to individual bits in the relevant answers.

5.2.1 Simplified Proof

We start by giving a simplified version of the proof under the assumption that M decides mem-
bership in F, with advantage e¢(n) for any sequence @ of 2n elements in [N] (recall that @ equals

12This is just a methodological modification of the standard hybrid technique (see [11] for details on the hybrid
technique).
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(a1,0,a1,1,02,0,021,--.,0n,0,0n,1)). We then proceed and show how to modify the proof so it will
work for a randomly chosen a.

Roughly speaking, we show how given a distinguisher for our pseudorandom functions, we can
construct an algorithm that on input (v? mod N, N,r) predicts the value of B,(u), where u is
the unique quadratic residue in Z7% which satisfies u? = v? mod N. Using the Goldreich-Levin
reconstruction algorithm we are then able to retrieve u (see [11] for details). This means that we
can extract square-roots in Z} and consequently factor Blum-integers (as described in [23]).

Theorem 5.2 (Goldreich-Levin [14]) Let z,r € {0,1}". Given an oracle that, on input r,
predicts the value of B,(z) with advantage e(n) (over the choice of r) in time t(n), there ezists a

probabilistic polynomaial-time algorithm with running time O("f(ﬁ()’;)) that retrieves z with probability

at least Q(e(n)).

The following Lemma can be viewed as the heart of the simplified part of the proof. It describes
how given a distinguisher for our pseudorandom functions, it is possible to construct an algorithm,
D, which can be used by the reconstruction algorithm as an oracle for the value of B, (u).

Lemma 5.3 Assume there exists a probabilistic polynomial-time machine M, satisfying Inequality
(7) for any choice of d@. Then there exists a probabilistic polynomial-time algorithm D, such that
for infinitely many n’s

|Pr [D(v*, N, 7, Br(u)) = 1] — Pr [D(v*,N,r,b) = 1]| > €'(n)

where the distribution of N = P-Q is FIG(1"), v is uniformly distributed in Z’;, v is a random n-bit
string, b €g {0,1}, and w is the unique quadratic residue in 7% which satisfies u? = v? mod N.

€'(n)

Using an averaging argument, it can be shown that on at least an ——~ fraction of the choices of

2
N and v?, algorithm D distinguishes the value of B,(u) from random with advantage LQ”) (over

the choice of r). In particular, D can be used in order to predict B, (u) with probability 1 + 51(4”).
By Theorem 5.2 we know that we can use D in order to construct a probabilistic polynomial-time
algorithm that retrieves u mod N with probability Q (¢'(n)). We now have that «> = v? mod N and
Pr[u # £+v] = 1/2. This implies (cf. [23]) that Pr[ged(u — v, N) € {P,Q}] = 1/2, which enables us
to construct an algorithm that €2 (e’(n)z)—factors, in contradiction to Assumption 4.1.

Description of D: Let the input of D be (v, N, 7, «), where the distribution of N, v and r is as
in Lemma 5.3. Let u be the unique quadratic residue in Z%; which satisfies u? = v2 mod N. On this
input, D first picks J = I -/ +k at random in [t-£]. Then D invokes M and answers its queries in a
way that simulates HI{T,E,g,r (for some value of @ and g¢) if @ equals B,.(u), and simulates H}{,}{w if a
is a random bit. D will now be able to utilize the expected advantage that M has in distinguishing
between H]{,ﬁ’g’r and H]‘{,Ew in order to guess the actual distribution of «. Specifically, D will
answer M’s queries in the following way:

1. Answer the first I queries according to py .

2. Answer the (I +1)* query with b, b1,...,bx_1, a, B.(u?),... ,Br(uﬂ_k_l)
(where boby ...bg_1 denotes a random k-bit string).

3. Answer the remaining queries consistently according to fx g g -

The challenge in constructing D is to assign values to @ and ¢ such that the above answers will be
distributed according to the correct hybrid black-box distribution, and will be efficiently computable
by D.
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Defining @ and g: The way we define the value of ¢ depends on the choice of J, whereas the
values assigned to @ will depend on the (I + 1)t query made by M. We require that if z is the
(I4+1)*" query, then the value of the (k+1)% bit of fx z 4(2) (which is answered with o by D), will
be equal to B,.(u). In addition, we require that D will be able to efficiently compute the answers
to all the subsequent, queries made by M (starting from the (k 4+ 2)™¢ bit-location in the answer to
the (I + 1)% query).

The definition of g: D computes s = £-n — k and sets ¢ = v>" mod N.
Claim 5.1 Let v be the order of g in ZY, then vy is odd.

Proof: It will be sufficient to show that the size of QRy is odd. This implies that all quadratic
residues in Z} (and in particular ¢g) have odd order. Since N is a Blum-integer, for every quadratic

residue in 77} exactly one of its four square roots resides in QRy. This means that |QRy| = @ =

(1971)4&. Since P = @@ = 3 mod 4, then % and % are odd, which implies that %4@71) is
also odd and the claim follows. O

Claim 5.2 For every 0 <i < s, g2~ mod7 = 42" mod N.13

Proof: By Claim 5.1 we have that v is odd. This implies that 2 € Z7 and therefore 271 mod v exists
1
2
We now have that whenever 27! appears in the exponent it denotes the value 27! mod ~

). For simplicity of exposition, let us denote by g2 the value ¢ ™°47 mod N.
— o+l
= 2

(and is simply

Similarly, 27* in the exponent denotes the value 27 mod v = (YT“)Z mod v. Therefore, for every i

the value g2 ' mod N is a quadratic-residue (since g is a quadratic-residue). Take i = 1, we now
have that both 92_1 and v2 are square roots of g and they are both quadratic-residues. Since
squaring is a permutation over the set of quadratic-residues in Z}; (for any Blum-integer N') we must
have that ¢> and v2"" are equal. By induction on 0 < i < s, we get that g2~ = v2" mod N. O

Corollary 5.1 Let u = ¢g> " mod N, then u?* = v?> mod N.

The definition of @: Since the first I queries of M are answered randomly, we can defer the
assignment to the values of @ until D is given the (I +1)% query, * = 2123 ... z,. It is then possible
to define @ so that the value of the (k+1) bit of fx z,,(z) (namely, Br(gzkn?ﬂai,mi)) will be equal
to B,(u).!* Let @ be the vector (a1,0,a1,1,02,0,02,1,---,0n,0,0n,1) , Wwhere for all ¢, a; », = 2= mod ~
and a; z; is uniformly distributed in [N].

Claim 5.3 Let @,g and u be defined as above, then
By(g* 1) = B, (u)
Proof: By the above notations,
2k gk—tn 2~

g i=1%,2; — g = g ° = U mOd N

and the claim follows. O

3Note that v is not known to D. However, as long as s — i > 0, it is possible for D to compute v®"" mod N.
171t is worth noticing that this would not have been possible in the case that D would have answered M’s queries
in a reverse order (i.e by first answering according to fn,z,4,» and then switching mode to p, ¢).
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The Running-Time of D: We now show that D is indeed able to complete steps (2) and (3)
(i.e. answer all the remaining queries of M starting from the (k 4 2)"? bit-location in the answer
to the (I +1)*" query in a way which is consistent with the definition of @ and g). The key point
is that D can achieve this task even though it does not actually know the values of a; ..

Claim 5.4 Algorithm D is able to efficiently complete the answer to the (I + 1)t query (step 2).

Proof: Since v? = u? mod N, and since v? and r are given to him in the input, D is able to complete

the answer to the (I + 1) query and answer M with

ol—k—1

bo,biy. .. bp_1, 0, Br(v?), ..., B (v )

as required. O
Claim 5.5 For any query y # x, D is able to efficiently compute the value of fxaq.(y) (step 3).

Proof: It will be sufficient to show that for any query ¥y = y1y2 ... yn # x, D is able to compute the
value ¢'l=1%vi and thus it is always able to answer the query with the value of Inagr(y). Now:

gH?=1ai,yi = g(H{yi=wi}“i=yi Yy, 20,1 0iy;)
9(2_” Mgy, £2;3 0iy;)

@ TN My 20.3000) mod N

where j is the number of locations for which y; equals x;. Since j < n (remember that y # x), and
since k < ¢ then we always have that s —£j = (n—j)¢ —k is at least 1 over the integers. As we have
already stated, D knows the value of v?, therefore by performing the appropriate exponentiations,
it is always able to compute gli=1%vi = U(QSiej)(H{yﬁé“’i}“i*yi), as required (remember that D knows
the value of a;,, for all y; # z;). O

We are finally ready to establish Lemma 5.3. Recall that given some J, the value of o determines
which of the possible hybrid black-boxes is simulated by D. If « equals B,(u), then D simulates
H]{,ﬁg > Whereas if a is a random bit, D simulates H]{,Jralg .- Since the expected advantage M has

in distinguishing the above neighboring hybrid black-boxes is € (n) and since D picks J at random,
we expect that D will be able to decide with advantage €'(n) whether « is indeed the value of B, (u).

5.2.2 Completing the Proof

To complete the proof we follow the same lines, along with an additional “randomization” of the
values in @, achieved by taking a; »; = & + 27¢ mod ~. This causes the value of the (k + 1)** bit in
the answer to the (I + 1)*! query to change into BT(QQkH?Zl‘”@i) = Br(g2knzﬂ=1(5i+24)) = B.(u - w),
where w is an element in Z% which is completely determined by the ¢;’s and by the value of v? (and
is efficiently computable given the above values). Note that now algorithm D becomes an oracle
for the value of B, (u - w), and will therefore be used in order to retrieve u - w (rather than u).
Jumping ahead, we note that letting D pick the random ¢;’s by himself would have caused
the value of w (and therefore u - w) to change each time D is invoked. This would not allow the
reconstruction algorithm to retrieve w - w for any specific value of w. The solution to this problem
will be to fix the values which determine w in advance, and then use D (which now takes only r as

14



input) as an oracle for B,(u - w)."> For the time being, we ignore the above issue, and let D pick
the random &;’s by himself. We now give the (full) analogue of Lemma 5.3.

Lemma 5.4 Assume there exists a probabilistic polynomial-time machine M, satisfying Inequality
(7). Then there exists a probabilistic polynomial-time algorithm D, such that for infinitely many n’s

‘Pr [D(?, N, 7, B.(u-w)) =1] — Pr [D(v?,N,r,b) = 1] ‘ > € (n) —n-2790M

where the distribution of N = P-Q is FIG(1"), v is uniformly distributed in Z’;, v is a random n-bit
string, b €g {0,1}, u-w is the unique quadratic residue in Z%; which satisfies (u-w)? = v*-w? mod N,
and w is a randomly chosen quadratic residue in Z7y (which is completely determined by the value
of v? and D’s internal coin tosses and is efficiently computable by D).

Proof: On input (v2, N,r,a), D is defined as follows:

1. (a) Sample J =T -{ + k uniformly at random in [t - £].
(b) Sample J random bits (needed in order to simulate the hybrid black-box).
(¢) Sample € = (&, &, ... y&n,y &1, 8L, .., &) by uniformly picking 2n elements in [N].

2. Compute s = £-n — k and set ¢ = v2" mod N.
3. Invoke M on input 1™:

(a) Answer each of its first I queries with a random string in {0, 1}*.

(b) Let 123 ...2, be M’s (I + 1) query.
For 1 < ¢ < n, denote by a; », the value &; + 27% mod ~, and by a; 7 the value £!. Denote
by @ the sequence (ai,0,@1,1,020,82,1,--.,0n0,0n,1) (@iz; is not actually known to D).
Let boby ... br_1 be a random k-bit string, answer the (I +1)*" query with the /-bit string

DL | T =117y ..
b[])bl)"'abk—laaaB’l"(g =17, 1)7---7‘87‘(9 =1, Z)

(c) Answer each remaining query of M, y, with the value fx g 4-(y)-

4. If M outputs 1, then output 1.
If M outputs 0, then output 0.

Why does D Predict the Value of B,(u-w): To define u, we set u = ¢g>” " mod N. As before
(see Corollary 5.1), we have that u? = v2 mod N. To define w, we set w = v(ZiZ0 820D 1od N,
where (3; are the coefficients (over Z) of the polynomial p(z) = [[/_,(& + z) = 2™ + Z?:_()l 2t
Note that the 3;’s can be efficiently computed given the &;’s (either recursively or by interpolation).
Given the values of the 3;’s and of v2, we are able to compute w (note that the exponent of v in
the definition of w is always even). Therefore, w is an efficiently computable quadratic residue in
Z’n which is completely determined by the value of v? and D’s internal coin tosses (i.e. the &;’s
sampled in step (1c)).

Here we use a special property of the B, predicate, which enables the reconstruction of u - w by only asking
queries which refer to u-w (i.e. u-w is fized throughout the process, and only r changes from one query to another).
As discussed in Section 6, a similar property is satisfied by the £LSB-based reconstruction techniques by Alexi et al.
[1, 10]. See Section 6 for an analogous construction that uses the LSB predicate.
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Claim 5.6 Let @, g,u and w be defined as above, then Br(ngHLl‘”*zi) = B (u - w).

Proof: Using the above notations (and Claim 5.2), we have:

I 45 0, 2P, (&4+279)

9 9

9
2k—2n+27}_—1 iz—(li—k)
g =t f

2kp(271)
1
—s n—1 s—(li—
2 . ’U(Zizl /812 (Z k))

= 9
- (SIS Bi20 )

= wu-wmodN
and the claim follows. O

This implies that the (k + 1) bit in the answer that the fy z,, black box is supposed to give to
the (I+1)% query (and is answered with « instead), is equal to B,.(u-w). As we have already seen,
this fact can be used by D in order to decide whether « equals B, (u - w).

The Running-Time of D: It is clear that steps (1),(2) and (3a) can be carried out in time
poly(n,£(n)). In order to prove that steps (3b) and (3c) can be carried out in time poly(n, £(n))-t(n),
we observe that if for some j in [¢], D is able to compute A = g* i=1%=2: mod N, then by squaring
and taking the inner product of the results with r, it is also able to compute any bit-sequence of
the form B, (), Br(A2), ..., B,(A\*7"7").

Claim 5.7 Algorithm D is able to efficiently complete the answer to the (I + 1) query (step 3b).

Proof: By the %bove observation, it will be sufficient tg show that D is able to efficiently compute

t+11Tn . . LTI . . .
the value of g2 M=1%=i To see that, notice that ¢> "=1%=: equals u - w (see Claim 5.6). This
implies that gzkHH?:l“i’mi = u?-w? = v?-w? mod N. Since both the values of v? and w? are known

to D, it is possible for him to efficiently answer the (I + 1)%* query (as described in step 3b). O
Claim 5.8 For any query y # x, D is able to efficiently compute the value of fyaq.(y) (step 3c).

Proof: By the above observation, it will be sufficient to show that D is able to compute the value
g'i=1%wi (and consequently it will be able to compute the value of fya,.(y)). Given a query
Y = Y1Y2...-Yn # x, D starts by computing (in time poly(n)) the coefficients, §; € Z, of the
polynomial ¢(z) =[], _,1(& +2) = 1_, 8;x* (where j is the number of locations for which y;
equals x;). Under this notation, H{yi:xi} aiy; equals ¢(27), we then have:

gn?zlai,yi — g(H{yi:mi}ai,yi)(H{yi;émi}ai,yi)

g(EZ:o5i2’ei)(H{yi¢zi}ﬂi,yi)
J v

— Hg(&'?* V(I gy, ;) Giy;)
1=0
J v

= H”QS 8illgy; 223 %0:) mod N
1=0
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since i < j < n (remember that y # x), and since k¥ < ¢ then we always have that the value of
s —li = (n—1i)l —k is at least 1 over the integers. Therefore, D is always able to compute all the
values v2" " Cillyze3%.0:) 1od N (by performing the appropriate exponentiations of v2, remember
that D knows the value of all §;’s, and the value of a;,, for all y; # x;). Finally, by taking the
product of the above values (reduced mod N), D is able to compute the value of gli=1%vi | as
required. O

The Success-Probability of D: To find the success probability of D, we notice that the distri-
bution of the function fy z,, (which is induced by the way D chooses @ and g) is statistically close
to the distribution of functions in F),. To see this, we will need the following claims regarding the
distributions of @ and g.

Claim 5.9 g is a uniformly distributed quadratic residue in ZYy,.

Proof: Since v2

tion over the set of quadratic-residues in 7%, it immediately follows that ¢ = v
distributed quadratic-residue in Z7%. O

is a uniformly distributed quadratic-residue in Z}; and squaring is a permuta-
2" is a uniformly

Claim 5.10 Let &; and a;,wi be uniformly distributed elements in [N], and denote by a; 5, the value
& 4+ 27" mod y. Then the statistical distance of a; ., and a; ., mod 7 is 2-0(n),

Proof: Note that v divides (P-1)(Q—1). Therefore, the distribution of a; ., conditioned on the event
that & € [(P-1)(Q-1)] is the same as the distribution of a;@i mod 7 conditioned on the event that

afivxi € [(P=1)(@-1)] (and in both cases it is simply the uniform distribution over [y]). It remains to

notice that:
Pri¢; € [(P-1@-1)] = Prla}, €[(P-1@Q-1)]
(P-1)(Q-1)
N
P
= -5
— 1—9-0(®)

which completes the proof. O

Claim 5.11 Let fy g g, be distributed according to F,, and let fn g4, be distributed as in the con-
struction of D. Then the statistical distance of fn g gr and fng g, 151 - 2-0(n)

Proof: Let each element in @’ = (af o,a 1,0, a1, .., 0y, a, 1) be uniformly distributed in [N].
By Claim 5.10 we have that for every 1 < i < n, a;,, and a », mod v are of statistical distance

2-9() Tt follows (by the triangle inequality), that @ and @ mod ~ are of statistical distance
n -2 90 Tt is then immediate that fNagrand fya 4, are of statistical distance n - 2-0(n) o

Since applying any function (even a randomized one) does not increase the statistical distance, then
by Claim 5.11 we have that for infinitely many n’s

[Pr [MIarar(17) = 1] = Pr [MIvase (17) = 1] | < 02700

To complete the proof, we recall Definition 5.1 of the hybrid distribution, H]{,ﬁg .- By Claim 5.6

we have that ngH?=1“i’“’i = u - w mod N. Therefore, the value of the (k + 1)% bit in the answer
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that D is supposed to give to the (I + 1)*' query is precisely equal to B,.(u - w). Given that J = j
and that a = B,(u - w) (where u - w is a quadratic residue in Z%), the distribution that M sees is
H]]v7a7g .- On the other hand, if o is random then the distribution that M sees is H]]eralg .- We now
have that for infinitely many n’s

|Pr [D(v* mod N, N,r,B,(u-w)) = 1] — Pr [D(v” mod N, N,r,b) = 1]|

tl—1
- t(n)-lﬁ(n) ST (Pr[DOA N, Br(u-w) =1 J = j] = Pr [P’ Nyrb) =1 J = j])
J=0
! n Hj+3 n
— t(’n)[(n) . Z ( [ Nu.gT‘(l ) = 1] — PI‘ [M N,a,g,r(l ) — 1])
=0
1
_ : s (1) = e (17) —
= [M Nodgor (1 1] Pr[MPrt(17) 1]‘

t(n)-£(n)

where the distribution of N = P-Q is FIG(1™), v is uniformly distributed in Z%, r is a random n-bit
string, b € {0, 1}, u-w is the unique quadratic residue in Z% which satisfies (uv-w)? = v?-w? mod N,
and w is a randomly chosen quadratic residue in Z%;. The proof of Lemma 5.4 is complete. m

Remark 5.2 From the proof of Lemma 5.4 we get that D works even if the distinguisher M has
access to N, g and r.

Reconstructing u - w mod N: Technically speaking, D is not suitable to be used as an oracle
for the Goldreich-Levin reconstruction algorithm. First of all, because it is not a predictor for the
value B,.(u - w), but rather a distinguisher. Furthermore, the value of w potentially changes each
time D is invoked (since it depends on v? and E), which does not allow the reconstruction algorithm
to retrieve u - w for any specific value of w. The transformation to a suitable predictor however is
not difficult. By fixing the values of v? and E in advance, we are able to construct an algorithm,
DN,E,UN which invokes D as a subroutine, and with non-negligible probability succeeds in predicting
B,(u-w). On input r, Dy g2 1s defined as follows:

1. Sample two independent random bits «, 3 in {0, 1}.
2. Invoke D on input (v%, N,r, a), feed it with gon its random tape.

3. (a) If D outputs 1, then output a.
(b) If D outputs 0, then output S.

Note that now, the value of w does not change each time DN£~U2 is invoked. This means that it is
possible to use DNEUQ as an oracle in order to reconstruct u - w.

Lemma 5.5 Assume there exists a probabilistic polynomz'al tz'me machine M, satisfyz'ng Inequality
(7), and let D 7 » be as above. Then with probability —5** (over the choices of Nw? and £), it
holds that for mﬁmtely many n’s

€(n)
PriDy z,2(r) :Br(u-w)] > -+ 4

N | =

18



where the distribution of N = P - Q is FIG(1"), v is uniformly drawn from Z%, v is a random

n-bit string, € is a random vector of 2n elements in [N], w = w(,v?) is a quadratic residue in yASS
and u - w is the unique quadratic residue in Z% which satisfies (u - w)? = v? - w? mod N.

Proof: By Lemma 5.4, D has an (¢/(n) — n - 2~ 9(™)-advantage in distinguishing B, (u - w) from a
€(n)

randomly chosen bit. Using an averaging argument, it is easy to see that on at least an —~ fraction

of the choices of N,v? and 5, algorithm D has an #—advan‘cage in distinguishing B, (u - w) from a
randomly chosen bit. It is then straightforward that Dy = » can predict the value of B, (u-w) with

advantage #, as required. ®

The Factoring Algorithm: For the sake of completeness, we now turn to describe an algorithm,

A, which uses Dy = , as oracle and succeeds to ¢’ (n)-factor (where €’(n) = Q(€'(n)?)), this is in

contradiction to Aééumption 4.1, and will complete the proof.

Lemma 5.6 Assume there exists a probabilistic polynomial-time machine M, satisfying Inequality
(7). Then there exists a probabilistic polynomial-time algorithm, A, that € (n)-factors.

Proof: On input N, A is defined as follows:

1. (a) Sample v uniformly at random in Z% and compute v? mod N.
(b) Sample € = (&, &, ... yEny &1, Eh, ... &L by uniformly picking 2n elements in [N].

2. Compute the value of w = p(Zio B:279) mod N, where 3; are the coefficients (over Z) of

the polynomial p(z) o [T, (& 4+ ) = 2" + 304 Bz’ (and are easily found given the &;’s).

3. Invoke the Goldreich-Levin reconstruction algorithm, R(1™).

a) Whenever asked for B, (z), invoke D, » , on input r; and give its output as an answer.
i N,Ev
(recall that Dy ¢,2 invokes M and answers its queries)

(b) Denote by z the output of R.

4. Compute v = z-w 'mod N. Given that R outputs the correct value (i.e. z = u - w),
then u? = v2 mod N. If u # +v mod N, output ged(u — v, N) which is indeed in {P,Q}.
Otherwise, output ‘failed’.

The Running-Time of A: Tt is clear that steps (1),(2) and (4) can be carried out efficiently
by A (and, in addition, are independent of DN’EvQ). As for step (3), assuming that DN’EJ)Q has

non-negligible advantage in predicting B, (u - w) (vlrhich by Lemma 5.5 happens with non-negligible
probability), we are guaranteed (by Theorem 5.2) that R will terminate in polynomial time.

The Success-Probability of A: Since with probability E’gn), D predicts the value of B, (u -

N,E w2
w) with advantage #, then by Theorem 5.2 we have that R retrieves the value of u - w with
probability at least Q(¢'(n)?) (over the choices of N, v2 and £). Note that u - w and w are both
quadratic residues in Z%;, therefore v must also be a quadratic residue in Z%. Given that, the
probability that u does not equal v mod N is exactly 1/2. We are finally able to conclude that

A €'(n)-factors, as required. m

This completes the proof of Theorem 5.1. W
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6 Using Other Hard-Core Bits

In Construction 4.1) we use the Goldreich-Levin hard-core bit, B,. The other, more natural, hard-
core bit in this context is the LSB predicate, shown to be secure by Alexi et al. [1] (the LSB
predicate was the one originally used in the BBS construction). The key property which we require
from the B, predicate is that its reconstruction algorithm fizes the unknown value and changes r
throughout the process (see Footnote 15). As pointed out to us by Roger Fischlin [9], a similar
property is satisfied by the £LSB-based reconstruction techniques [1, 10] (see Theorem 6.1 below,
where r is explicitly considered).

The above observation suggests that using the £LSB predicate in Construction 4.1 (rather than
using the B, predicate) may yield a secure pseudorandom function. However, we were not able to
prove it. What we are able to do is to slightly modify Construction 4.1 in order to obtain a secure
pseudorandom function that is secure when using the LSB predicate.

Interestingly, the modified construction does not exactly follow the paradigm of applying the
BBS generator to the unpredictable function h(z) = gi=1%: (but rather multiplies each of the
elements in the sequence with r before applying the £LSB predicate).

Construction 6.1 (LSB version of pseudorandom functions) We define a function in the
ensemble F' = {F, },en. For every n € N, a key of a function in F,, is a tuple (N,d,g,r), where
N is an n-bit Blum-integer, @ = (a170,a171,a270,a271, .. .,amg,an,l) 18 a sequence of 2n elements in
[N], g is a quadratic-residue in Z and r is an element in Z%. For any n bit input x = x 123 ... Ty,
and for every integer function £ = £(n), the function fy g4 : 1" — I s defined by:

In (@) LSB(r- glmitini), LSB(r - g*Mmr®es), . LSB(r - g Mt

The distribution of functions in F,, is induced by the following distribution on their keys: d@ and g
are uniform in their range and the distribution of N is FIG(1™).

Sketch of proof of security: The proof of security of Construction 6.1 is similar to the the
case of the B, hard-core predicate. Specifically it is shown how given a distinguisher for the above
pseudorandom functions, we can construct an algorithm D that on input (v? mod N, N, ) predicts
the value of LSB(r - u - w), where u - w is the unique quadratic residue in Z%} which satisfies
(u-w)? =02 w? mod N, and w is a randomly chosen quadratic residue in Z% (which is completely
determined by the value of v? and D’s internal coin tosses and is efficiently computable by D).
Using the reconstruction algorithm of Alexi et al. [1] (see [10] for tighter results) we are then able
to retrieve u - w (and so u). As before, this means that we can extract square-roots in Z% and

consequently factor Blum-integers.

Theorem 6.1 (ACGS [1], FS [10]) Let z,r € Z}. Given an oracle that, on input r, predicts
the value of LSB(r - z) with advantage e(n) (over the choice of r) in time t(n), there exists a

probabilistic polynomaial-time algorithm with running time O(”j(ff)’;)) that retrieves z with probability

at least Q(e(n)).

As in the proof of Theorem 5.1, the security of Construction 6.1 is proved using the following main
Lemma (which is the analog of Lemma 5.4).
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Lemma 6.2 Assume there exists a probabilistic polynomial-time machine M, satisfying Inequality
(7). Then there exists a probabilistic polynomial-time algorithm D, such that for infinitely many n’s

|Pr [D(v?, N, 7, LSB(r - u - w)) = 1] — Pr [D(v*, N,r,0) = 1]| > ¢'(n) —n - 2790

where the distribution of N = P - Q is FIG(1"), v is uniformly distributed in Z%;, v is a random

n-bit string, b € {0,1}, u - w is the unique quadratic residue in Z% which satisfies (u - w)* =
v2-w? mod N, and w is a randomly chosen quadratic residue in Ly (which is completely determined

by the value of v? and D’s internal coin tosses and is efficiently computable by D).

Proof Sketch: The proof of Lemma 6.2 is essentially identical to the proof of Lemma 5.4. Given
v, N,r and J = I - £ + k, the values of g,@,u and w are defined exactly as before. The following
Claim establishes the correctness of D (and is proved exactly in the same way as Claim 5.6).

Claim 6.1 Let @, g,u and w be defined as above, then LSB(r - g2kH?=1‘“’mi) = LSB(r - u-w).

As before, this implies that the (k-4 1)%! bit in the answer that the fN,,q,r black box is supposed to
give to the (I 4+ 1) query (and is answered with « instead), is equal to LSB(r - u-w). As we have
already seen, this fact can be used by D in order to decide whether or not a equals LSB(r - u - w).

As for D’s running time. Since the values of ¢, @, u and w are identical to the case of Lemma 5.4,
it follows that D is able to efficiently compute both r -ngHH?ﬂ‘”*zi and 7 - ¢'li=1%wi for all y # z.
In particular, D can be implemented in time poly(n,{(n)) - t(n).

Finally, since the distribution of the key (N, d, g,r) chosen by D is identical to the distribution
of the key chosen by the distinguisher in the proof of Lemma 5.4, then the success probability of
D is identical to the success probability of the distinguisher in the proof of Lemma 5.4. |l

7 Further Research

The proof of Theorem 5.1 is tailored to the specific cryptographic primitives which are used in Con-
struction 4.1 (i.e. the “unpredictable” function g'li=1%=: and the BBS generator). An interesting
open problem would be to provide an alternative proof for Theorem 5.1. Such a proof might make
use of more general notions and different techniques, and will hopefully shed more light on the rea-
sons for which our construction yields a pseudorandom function. In particular, it may provide new
constructions of pseudorandom functions based on more general (or more efficient) cryptographic
primitives.

As we have demonstrated (in Section 5.1, there exists an “unpredictable” function and a pseudo-
random generator such that their composition is not a pseudo-random function. It should be
interesting to recognize what precisely are the features of a function hs (from an ensemble H =
{hs}) and of a pseudo-random sequence generator G that are needed in order to prove that our
construction indeed yields pseudorandom functions.

Comparing to the DDH Pseudorandom Functions: As we have already mentioned, the
efficiency of Construction 4.1 is comparable to the efficiency of the DD H-functions by Naor and
Reingold [20]. Apart from being slightly more efficient than our functions, the DD H-functions
have some additional properties:

e The simple algebraic structure of the DD H-functions implies several attractive features (e.g.
zero-knowledge proof for the value of the function, function sharing and oblivious evaluation
of the value of the function). In spite of the similarity between the two constructions, we do
not know how to prove that similar protocols are secure in our case.
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e As opposed to the proof of Theorem 5.1, the security of the DD H-functions does not decrease
proportionally to the number of queries which are made by the adversary!'® (this is due to
the random self-reducibility of the DD H-assumption [20]).

It is natural to consider the features of the DD H-functions as guidelines for further research
regarding our functions.
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