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Abstract

The computational hardness of factoring integers is the most established assumption on

which cryptographic primitives are based. This work presents an e�cient construction of pseu-

dorandom functions whose security is based on the intractability of factoring. In particular, we

are able to construct e�cient length-preserving pseudorandom functions where each evaluation

requires only a (small) constant number of modular multiplications per output bit. This is

substantially more e�cient than any previous construction of pseudorandom functions based on

factoring, and matches (up to a constant factor) the e�ciency of the best known factoring-based

pseudorandom bit generators.

1 Introduction

Almost any interesting cryptographic task must be based on the computational hardness of some

problem. Proving such hardness assumptions exceeds by far the the state of the art of Complexity

Theory. It is therefore desirable to base the security of a cryptographic construction on as reasonable

assumption as possible. A natural approach is to rely on a well studied problem where many

algorithms have been tried and their complexity is well understood. The most established candidate

in these respects, and certainly the one with the best pedigree, is the problem of factoring integers

(see [22] for the state of the art of factoring).

The focus of this paper is an e�cient construction of pseudorandom functions (see de�nition

below) whose security is based on the intractability of factoring. In particular, we are able to
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construct e�cient length-preserving pseudorandom functions whose evaluation requires only a con-

stant number of modular multiplications per output bit. This is substantially more e�cient than

any previous construction of pseudorandom functions based on factoring, and matches (up to a

constant factor) the e�ciency of the best known factoring-based pseudorandom bit generators.

Pseudorandom functions

1

, originally de�ned by Goldreich, Goldwasser and Micali [13] are an

important cryptographic primitive. A distribution of functions is pseudorandom if it satis�es the

following requirements:

Easy to sample: It is easy to sample a function according to the distribution.

Easy to compute: Given such a function it is easy to evaluate it at any given point.

Pseudorandom: It is hard to tell apart a function sampled according to the pseudorandom

distribution from a uniformly distributed function when the distinguisher is given access to

the function as a black-box.

Pseudorandom functions have a wide range of applications, most notably in cryptography, but

also in computational complexity and computational learning theory. Coming up with e�cient

constructions for such functions is a challenge of great practical and theoretical interest.

The new construction improves the one by Naor and Reingold [20], who showed how to construct

pseudorandom functions based on factoring, where the cost of evaluation is comparable to two

modular exponentiations. The drawback of those functions is that the output is only a single

bit. In order to apply them for achieving a length preserving pseudorandom function one would

need to repeat the process n times, rendering it ine�cient. The improvement we propose lies in a

method to expand the one bit output of the NR functions to polynomially many bits while paying

only a small overhead in the complexity of the evaluation (i.e. one modular multiplication for each

additional output bit). This improvement will be achieved through a surprising combination of the

NR functions and the Blum-Blum-Shub pseudorandom generator [5]. As will be demonstrated in

the sequel, in general such a composition does not necessarily yield a pseudorandom function. This

in particular implies a non-straightforward proof of security.

The method we suggest enables us to construct e�cient length preserving pseudorandom func-

tions which are at least as secure as factoring Blum-integers and can be evaluated at the cost of

fewer than three modular exponentiations. This is comparable to another attractive construction

by NR [20], of pseudorandom functions which are at least as secure as the Decisional Di�e-Hellman

(DDH) problem. While the DDH problem has received much attention recently (see [4]), it is not

nearly as well established as factoring.

Organization: The next section contains the background material and our construction. The

main result of our work, the e�cient construction of a pseudorandom function which is at least

as secure as factoring Blum-integers, is presented in Section 4. The proof of security is given in

Section 5.

1

Note the di�erence between a pseudorandom function and a bit generator - the latter expands a random seed to

some �xed length sequence that should be indistinguishable from a random sequence of similar length; there is no

\probing" in the attack.
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2 Old and New Constructions

2.1 Background

When Goldreich, Goldwasser and Micali originally de�ned pseudorandom functions [13] they were

at least partly motivated by the construction of the Blum-Blum-Shub (BBS) pseudorandom gen-

erator [5] and, in particular, by an open question suggested there | the easy-access problem

2

.

Nevertheless, the actual GGM construction of pseudorandom functions did not appear to have

any direct connection to the BBS generator (apart from the fact that the BBS generator can be

used as a building block for the GGM construction). The current work suggests a construction

which is directly related to the BBS generator. We now turn to survey previous constructions of

pseudorandom functions (as well as the BBS generator).

2.1.1 The Blum-Blum-Shub Generator

The Blum-Micali Paradigm: Let f : f0; 1g

n

! f0; 1g

n

be a one-way permutation (i.e. one

where it is easy to compute f(x) but intractable to �nd x = f

�1

(y)), and let B(�) be a a hard-core

predicate for f(�) (i.e. given y it is di�cult to guess B(f

�1

(y))). Let ` : N ! N be a function so

that `(n) > n for all n. Blum and Micali proposed the following scheme to construct a generator

stretching an n-bit seed, x, to an `-bit pseudorandom string:

B(x);B(f(x)); : : : ;B(f

(k)

(x)); : : : ;B(f

(`(n)�1)

(x)) (1)

As a candidate one-way permutation (based on factoring) BBS [5] considered the squaring function

modulo an integer N = P �Q (i.e. the mapping x 7! x

2

mod N)

3

. Following [5], the values of N are

restricted to integers of the form N = P �Q where P and Q are two distinct primes both congruent

to 3 mod 4 (such integers are known as Blum-integers).

Blum-integers: Restricting N to be a Blum-integer enabled BBS to prove that the squaring

function is indeed a permutation (when its domain is limited to the subgroup of quadratic residues

in Z

�

N

). Let N = P � Q be an integer, an element in Z

�

N

is called a quadratic residue if it has a

square root, namely there is a y 2 Z

�

N

such that y

2

= x mod N . It is easy to verify that the set

of quadratic residues in Z

�

N

forms a subgroup (which we denote by QR

N

). We note that every

x

2

2 QR

N

has exactly four distinct square roots, �x;�y 2 Z

�

N

, and in the special case that N

is a Blum-integer it is possible to prove [5] that exactly one of these square roots resides in QR

N

(which implies that squaring is indeed a permutation over QR

N

).

Constructing the BBS Generator: The BBS pseudorandom generator is obtained by applying

the Blum{Micali paradigm to the squaring permutation together with the LSB(�) (least signi�cant

bit) hard-core predicate. This generator has been originally proven secure assuming intractability

of Quadratic Residuosity Problem in [5], and subsequently under the assumption that factoring

Blum-integers is hard (Assumption 4.1) in [26] (by adapting the techniques in [1]). Note also

that it is the basis for the Blum-Goldwasser public-key encryption scheme [6]. For simplicity of

exposition , we choose to replace the LSB(�) hard-core predicate with the Goldreich-Levin B

r

(�)

2

The easy-access problem arises when one notices that it is easy to access exponentially far away bits in the BBS

pseudorandom pad. The question is whether the BBS pad remains pseudorandom even when the distinguisher has

access to these exponentially far away bits.

3

It was shown by Rabin [23] that the problem of factoring an integer N = P � Q can be reduced to the problem

of extracting square roots in Z

�

N

. Thus, if factoring N = P �Q is hard, then squaring is indeed one-way.

3



predicate [14] (where B

r

(m) denotes the inner product, hm; ri mod 2). We obtain a generator which

stretches an n-bit seed, x 2 QR

N

, to an `-bit pseudorandom string (and is completely analogous

to the BBS generator):

4

B

r

(x);B

r

(x

2

); : : : ;B

r

(x

2

k

); : : : ;B

r

(x

2

`(n)�1

) (2)

The BBS generator is considered e�cient (relative to other generators based on factoring), each bit

in its output can be obtained at the cost of one modular multiplication. In particular, by performing

2n modular multiplications it is possible to stretch an n-bit seed to a 2n-bit pseudorandom string.

The Easy-Access Problem: In the BBS generator a seed (x;N) de�nes an in�nite (ultimately

periodic) bit-sequence b

0

; b

1

; : : : (even though a pseudorandom string generated with an n-bit long

seed consists of only polynomially many (in n) bits). An interesting feature of the BBS generator

is that knowledge of the factorization of N allows easy access to each of the �rst 2

n

bits; that is, if

log i < n, the i

th

bit, b

i

, can be computed in poly(n) time (by �rst computing �

i

= 2

i�1

mod '(N)

and then setting b

i

= B

r

(x

�

i

)). However, as GGM noted [13], this easily accessible exponentially

long bit-string may not appear \random". What BBS have proved, is that any single polynomially

long interval of consecutive bits in the string is pseudorandom (provided that factoring Blum-

integers is hard). Indeed, it might be the case that, say, given b

1

; : : : ; b

n

and b

2

p

n

+1

; : : : ; b

2

p

n

+n

, it

is easy to compute any other bit in the string.

The easy-access problem is whether direct access to exponentially far away bits in the BBS

bit-sequence is an operation which preserves pseudorandomness. This problem was discussed in

[2, 8, 5, 13] and is still unresolved.

2.1.2 The GGM Construction

Motivated in part by the easy-access problem, Goldreich, Goldwasser and Micali [13] introduced the

notion of pseudorandom functions and provided a generic construction based on any length doubling

pseudorandom generator. Note that a pseudorandom function may be viewed as an exponentially

long bit-string which remains pseudorandom even after its bits are accessed in a direct manner.

Thus, in some sense, GGM have bypassed the easy access problem.

5

When applied to an e�cient pseudorandom generator based on factoring (e.g. the BBS gener-

ator), the GGM construction yields a length-preserving pseudorandom function which is as secure

as factoring, but requires as much as O(n

2

) modular multiplications per evaluation. On the other

hand, a positive answer to the easy-access problem implies that the function:

f

BBS

N;g;r

(i) = G

BBS

N;r;n

(g

2

i�n

) (3)

is a length preserving pseudorandom function which is at least as secure as factoring and requires

only O(n) modular multiplications per evaluation. Thus, in some sense, the question of whether it

is possible to construct such e�cient pseudorandom functions based on factoring (which require as

much modular multiplications as f

BBS

N;g;r

), remained open.

4

We denote by n the size (in bits) of N , and by x

2

j

the value of x

2

j

mod N .

5

What GGM have actually demonstrated is how to construct exponentially long, easily accessible, pseudorandom

strings based on any one-way function (following [16]). However, this does not imply that the speci�c BBS bit-sequence

remains pseudorandom given direct access to exponentially many of its bits.
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2.1.3 The NR Constructions

About a decade after the GGM paper appeared, Naor and Reingold (NR) [19] suggested a paral-

lel construction of pseudorandom functions. The NR construction was obtained by introducing a

new cryptographic primitive, the pseudorandom synthesizer. By applying their method to speci�c

constructions of pseudorandom synthesizers, they were later able to present e�cient pseudorandom

functions based on standard number-theoretic assumptions [20]. These constructions are consider-

ably more e�cient than the constructions which would have been obtained by applying the generic

GGM construction to speci�c pseudorandom generators that are based on the same assumptions.

The DDH Construction: A construction of length preserving pseudorandom functions as secure

as the Decisional Di�e-Hellman (DDH) problem which require roughly 2n modular multiplications

per evaluation [20]. This already matches the e�ciency o�ered by f

BBS

N;g;r

and, to the best of our

knowledge, is the most e�cient construction of pseudorandom functions to date (based on standard

intractability assumptions).

The Factoring Construction: A construction of pseudorandom functions at least as secure

as factoring, which require roughly 2n modular multiplications per evaluation [20] (their proof

of security utilizes Biham, Boneh and Reingold's [3] result that breaking the Generalized Di�e-

Hellman assumption over composites implies an e�cient algorithm for factoring.)

For every n 2 N, a key of a function in the NR pseudorandom function ensemble, F

n

, is a tuple

(N;~a; g; r), where N is an n-bit Blum-integer, ~a = (a

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : ; a

n;0

; a

n;1

) is a sequence

of 2n elements in f1; : : : ; Ng, g is a quadratic-residue in Z

�

N

and r is an n-bit string. For any n bit

input x = x

1

x

2

: : : x

n

, the NR function (with a single bit of output) is de�ned as:

f

N;~a;g;r

(x) = B

r

(g

�

n

i=1

a

i;x

i

) (4)

The NR construction gives a pseudorandom function which seems to be as e�cient as f

BBS

N;g;r

. Note

however, that the NR function has only one bit of output, whereas f

BBS

N;g;r

has linear output length.

While this may be su�cient for some applications, in most scenarios it is not. The goal of our work

is to match the result one would have obtained by proving that f

BBS

N;g;r

are indeed pseudorandom

functions. That is, we provide a new construction of pseudorandom functions that: (1) are at

least as secure as factoring Blum-integers, (2) have linear output length, and (3) require only O(n)

modular multiplications per evaluation.

2.2 Our Construction

The NR pseudorandom function, f

N;~a;g;r

, is obtained by extracting the B

r

(�) predicate from the

value of the function:

h

N;~a;g

(x) = g

�

n

i=1

a

i;x

i

(5)

It turns out that, even though it is not pseudorandom in itself, the function h

N;~a;g

is unpredictable

in some weak sense. Assuming the intractability of factoring Blum-integers, Naor and Reingold

have shown [20, 21] that h

N;~a;g

is unpredictable against an adaptive sample and a random challenge.

That is, for a random x 2 f0; 1g

n

, no polynomial-time adversary is able to predict the value of h(x)

after adaptively querying the value of h(y) for polynomially many y 6= x of his choice.

The main idea behind our construction is using the value of h

N;~a;g

as a seed to the BBS

pseudorandom generator. At �rst glance, it is not clear why this method should work at all.

Indeed, applying a pseudorandom generator to an \unpredictable" value does not necessarily yield

5



a pseudorandom function (see section 5.1 for a more detailed discussion on the subject). The

reason for which our construction does work lies in the speci�c number theoretic features which the

function h

N;~a;g

and the BBS generator have in common.

This enables us to expand the output length of the NR function to polynomially many bits while

paying a \reasonable" overhead in the complexity of the evaluation (i.e. one modular multiplication

for each additional output bit). Speci�cally, let N;~a; g and r be de�ned as in the NR function, the

function we propose is de�ned as:

f

N;~a;g;r

(x) = G

BBS

N;r;`

(g

�

n

i=1

a

i;x

i

) (6)

Even though this does not solve the particular easy-access problem, it does match the e�ciency

one would have obtained by proving that f

BBS

N;g;r

are indeed pseudorandom functions (as well as the

e�ciency of the DDH-based pseudorandom functions by NR [20]). By taking `(n) = n, we obtain a

length preserving pseudorandom function which is at least as secure as factoring, has linear output

length, and requires only 3n modular multiplications per evaluation. This already matches (up to a

constant factor) the e�ciency of the best known factoring-based pseudorandom generators (which

also require O(n) multiplications per evaluation) and certainly improves the e�ciency of the GGM

pseudorandom functions which use BBS as a building block.

3 Preliminaries

For the sake of completeness we present the formal de�nition of pseudorandom functions. Our

exposition follows the ones appearing in [11, 12, 19].

3.1 Pseudorandom Functions - De�nition

Pseudorandom functions were de�ned by Goldreich, Goldwasser and Micali [13]. Loosely speaking,

these are e�cient distributions of functions that cannot be e�ciently distinguished from the uniform

distribution. That is, an e�cient algorithm that gets a function as a black box cannot tell (with

non-negligible advantage) from which of the distributions it was sampled.

6

To formalize the notion

of pseudorandom functions, we will need to consider ensembles of functions.

De�nition 3.1 Let `

d

and `

r

be any two integer functions. An I

`

d

! I

`

r

function ensemble is a

sequence F = fF

n

g

n2N

of random variables, such that the random variable F

n

assumes values in

the set of I

`

d

(n)

! I

`

r

(n)

functions. The uniform I

`

d

! I

`

r

function ensemble, R = fR

n

g

n2N

, has

R

n

uniformly distributed over the set of I

`

d

(n)

! I

`

r

(n)

functions.

An explicit description of a function f : I

`

d

! I

`

r

requires as much as 2

`

r

2

`

d

bits. This suggests

an alternative view of pseudorandom functions: These are distributions of exponentially long bit-

sequences that cannot be distinguished from random by an e�cient algorithm which has direct

access to the sequence. To be of practical value however, we require that pseudorandom functions

can be e�ciently sampled and computed. This property is not satis�ed by every function ensemble

(e.g. the uniform function ensemble: It contains 2

`

r

2

`

d

functions whose mere representation requires

as much as `

r

2

`

d

bits), we therefore restrict ourselves to e�ciently computable function ensembles.

De�nition 3.2 A function ensemble, F = fF

n

g

n2N

, is e�ciently computable if there exist prob-

abilistic polynomial-time algorithms, I and V, and a mapping from strings to functions, �, such

that �(I(1

n

)) and F

n

are identically distributed and V(i; x) = (�(i))(x).

6

For a detailed exposition on pseudorandom functions and their applications we refer the reader to [24].
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We denote by f

i

the function assigned to i (i.e. f

i

def

= �(i)). We refer to i as the key of f

i

and

to I as the key-generating algorithm of F .

In particular, functions in e�ciently computable function ensembles have relatively succinct repre-

sentation (i.e. of polynomial rather than exponential length). As a consequence, these ensembles

may have only exponentially many functions (out of double-exponentially many possible functions).

The distinguisher, in our setting, is de�ned to be an oracle machine that can make queries to a

function (which is either sampled from the pseudorandom function ensemble

7

or from the uniform

function ensemble

8

). We assume that on input 1

n

the oracle machine makes only n-bit queries. For

any probabilistic oracle machine, M, and any I

n

! I

`(n)

function, O, we denote by M

O

(1

n

) the

distribution of M's output on input 1

n

and with access to O.

De�nition 3.3 An e�ciently computable I

n

! I

`(n)

function ensemble, F = fF

n

g

n2N

, is pseudo-

random if for every probabilistic polynomial-time oracle machine M, every polynomial p(�), and all

su�ciently large n's

�

�

Pr

�

M

F

n

(1

n

) = 1

�

� Pr

�

M

R

n;`

(1

n

) = 1

�

�

�

<

1

p(n)

where R = fR

n;`

g

n2N

is the uniform I

n

! I

`(n)

function ensemble.

The term \pseudorandom functions" is hereafter used as an abbreviation for \e�ciently computable

pseudorandom function ensemble".

3.2 Notation

� N denotes the set of all natural numbers.

� For any integer k 2 N, denote by [k] the set of integers f0; 1; : : : ; k � 1g.

� For any integer N 2 N the multiplicative group modulo N is denoted by Z

�

N

.

� The order of Z

�

N

(i.e. the number of x 2 [N ] such that gcd(x;N) = 1) is denoted by '(N).

� I

n

denotes the set of all n-bit strings, f0; 1g

n

.

� U

n

denotes the random variable uniformly distributed over I

n

.

� Let x and y be any two bit strings then x; y denotes the string x concatenated with y.

4 The Main Result

We are now ready to present the main result of our work, an e�cient construction of pseudorandom

functions whose security is based on the intractability of factoring. Speci�cally, we are able to show

how any procedure which is able to distinguish our functions from randomly chosen ones can be

turned into an algorithm which factors a non-negligible fraction of Blum-Integers. We begin by

formalizing the assumption that factoring Blum-integers is hard.

7

We stress that in the case that the function is sampled from the pseudorandom function ensemble the distinguisher

is not given the representation of the function f

i

(i.e. the key i).

8

As we have mentioned, it is not clear even how to e�ciently represent a uniformly distributed function (as the

representation it is too large to store). Still, one may simulate such a function by answering given queries with

independently and uniformly chosen answers (while memorizing previous answers for the sake of consistency).
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4.1 The Factoring Assumption

In order to keep our result general, we let N be generated by some polynomial-time algorithm FIG

(where FIG stands for factoring-instance-generator).

De�nition 4.1 A factoring-instance-generator, FIG, is a probabilistic polynomial-time algorithm

such that on input 1

n

its output, N = P � Q, is distributed over n � bit integers, where P and Q

are two primes that satisfy P = Q = 3 mod 4 (such N is known as a Blum-integer).

A natural example for a factoring-instance-generator would be to let FIG(1

n

) be uniformly dis-

tributed over n�bit Blum-integers.

9

However, other choices were previously considered (e.g., letting

P and Q obey some \safety" conditions).

10

We now formalize the assumption that factoring Blum-

integers is hard.

De�nition 4.2 (�-factoring) Let A be a probabilistic Turing machine and let � = �(n) be a real-

valued function. A �-factors if for in�nitely many n's

Pr[A(P �Q) 2 fP;Qg] > �(n)

where the distribution of N = P �Q is FIG(1

n

).

In spite of the extensive research directed towards the construction of e�cient integer factoring

algorithms, the best algorithms currently known for factoring an integer N , have (heuristic) running

time L(N)

def

= e

1:92(logN)

1=3

(log logN)

2=3

(cf. [22]). This (together with the fact that Blum-integers

are a non-negligible fraction of all n-bit integers) leads us to the following assumption.

Assumption 4.1 (Factoring FIG Blum-Integers) Let A be any probabilistic polynomial-time

machine. There is no positive constant � such that A

1

n

�

-factors.

All exponentiations in the rest of this Section are in Z

�

N

. To simplify the notations, we omit the

expression \mod N" from now on.

4.2 The Construction

Construction 4.1 We de�ne a function in the ensemble F = fF

n

g

n2N

. For every n 2 N, a key of

a function in F

n

is a tuple (N;~a; g; r), where N is an n-bit Blum-integer, g is a quadratic-residue

in Z

�

N

, ~a = (a

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : ; a

n;0

; a

n;1

) is a sequence of 2n elements in [N ] and r is an n-bit

string. For any n bit input x = x

1

x

2

: : : x

n

, and for every integer valued function ` = `(n), the

function f

N;~a;g;r

: I

n

! I

`(n)

is de�ned by:

f

N;~a;g;r

(x)

def

= B

r

(g

�

n

i=1

a

i;x

i

);B

r

(g

2�

n

i=1

a

i;x

i

); : : : ;B

r

(g

2

k

�

n

i=1

a

i;x

i

); : : : ;B

r

(g

2

`�1

�

n

i=1

a

i;x

i

)

where B

r

(m) denotes the inner product, hm; ri mod 2. The distribution of functions in F

n

is induced

by the following distribution on their keys: ~a, g and r are uniform in their range and the distribution

of N is FIG(1

n

).

9

We note that n�bit Blum-integers are a non-negligible fraction of all n�bit integers and that it is easy to sample

a uniformly distributed n � bit Blum-integer.

10

For example, it is often required that P and Q are of equal size, and that P;Q are of the form P = 2P

0

+ 1 and

Q = 2Q

0

+ 1 for some primes P

0

; Q

0

.
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Remark 4.1 Construction 4.1 employs a Blum-integer, N . In this we follow [5] and many other

works. As discussed in Section 2.1.1, this restriction implies that squaring is a permutation on

the subgroup of quadratic residues in Z

�

N

. Nevertheless, as was pointed out to us by Shai Halevi

and an anonymous referee, it is rather easy to extend our construction (as well as many previous

results) in order to allow an arbitrary moduli N = P � Q (that is assumed to be hard to factor)

instead of a Blum-integer. The main observation that is needed is that for any such N , squaring is

a permutation on the subgroup of 2

n

-powers in Z

�

N

. See [15, 25] for additional details on avoiding

the restriction to Blum-integer in related contexts.

An additional variant of the construction is discussed in Section 6. There, we discuss how to

replace the Goldreich-Levin hard-core bit with the LSB predicate.

4.3 E�ciency of the Construction

Consider a function f

N;~a;g;r

2 F

n

as in Construction 4.1. Computing the value of this function at

any given point, x, involves one multiple product y =

Q

n

i=1

a

i;x

i

(which can be performed modulo

'(N)), one modular exponentiation, z = g

y

mod N , and `(n) � 2 successive modular squaring

z

2

; : : : ; z

2

k

; : : : ; z

2

`�1

(which require less than one modular multiplication each). The value of the

function is �nally obtained by computing B

r

(z);B

r

(z

2

); : : : ;B

r

(z

2

`�1

) (which is a cheap operation

compared to modular multiplication). As discussed in [20], it is possible to use preprocessing in

order to get improved e�ciency.

11

This gives us a pseudorandom function which can be evaluated

roughly at the cost of 2n+ `(n) modular multiplications (a modular exponentiation is counted as

n modular multiplications).

An attractive feature of our construction is that for each input we can have a variable length

output, i.e. if for some x's one needs more bits in the output of f(x), then the natural way of simply

taking more bits of the form B

r

(z

2

j

) works. While it is possible to get this feature generically, by

combining a pseudorandom function and a generator, here we get it \for free."

5 Proof of Security

Theorem 5.1 If the Factoring-assumption holds (Assumption 4.1) then F = fF

n

g

n2N

(as in Con-

struction 4.1) is an e�ciently computable pseudorandom function ensemble.

Remark 5.1 The proof of Theorem 5.1 yields a more quantitative version as well: Assume that

there exists a probabilistic polynomial-time oracle machine with running time t(n) that distinguishes

f

N;~a;g;r

from �

n;`

with advantage �(n) (where �

n;`

is uniformly distributed in the set of functions

with domain f0; 1g

n

and range f0; 1g

`(n)

). Let q = q(n) be a bound on the number of queries

made this machine. Then there exists a probabilistic polynomial-time algorithm with running time

poly(

1

�(n)

; t(n); `(n)) that �

00

-factors, for �

00

(n) which equals 


�

�(n)

2

q(n)

2

�`(n)

2

�

.

5.1 On the Methodology

5.1.1 A simple approach does not work

In order to prove Theorem 5.1, one might be tempted to use the following approach: Recall the

de�nition of the function h

N;~a;g

(x) = g

�

n

i=1

a

i;x

i

in Equation (5). As mentioned above, it was shown

11

The most obvious preprocessing would be to compute the values g

2

i

(for every positive integer i up to the length

of (P � 1) � (Q� 1)). See [20] for additional preprocessing techniques which further improve the e�ciency.

9



in [20, 21] that h

N;~a;g

is unpredictable against an adaptive sample and a random challenge. In light

of this, Construction 4.1 can be viewed as based on the following methodology:

1. Take an \unpredictable" function h

s

: f0; 1g

n

! f0; 1g

n

2. Take a pseudorandom generator G : f0; 1g

n

! f0; 1g

`

3. Obtain a pseudorandom function f : f0; 1g

n

! f0; 1g

`

by setting f

s

(x) = G(h

s

(x)).

Unfortunately, this method does not work in general. As will be demonstrated next, there exists

an \unpredictable" function and a pseudorandom generator such that their composition is not a

pseudorandom function.

5.1.2 The Counter Example

Consider the following (unnatural) counter-example:

1. (a) Let h

0

s

: f0; 1g

n

! f0; 1g

n

2

be an unpredictable function.

(b) For y 2 f0; 1g

n

2

de�ne h

s;y

: f0; 1g

n

! f0; 1g

n

as h

s;y

(x) = (h

0

s

(x); y).

(c) Clearly h

s;y

is unpredictable.

2. (a) Let G

0

: f0; 1g

n

2

! f0; 1g

`

be a pseudo-random generator.

(b) For z; y 2 f0; 1g

n

2

de�ne G : f0; 1g

n

! f0; 1g

`

as G(z; y) = G

0

(y).

(c) Clearly G is pseudo-random.

3. However, the function f : f0; 1g

n

! f0; 1g

`

obtained by setting f

s;y

(x) = G(h

s;y

(x)) is always

equal to G

0

(y) (regardless of the value of x). Obviously, f

s;y

cannot be pseudo-random.

It seems that the reason our construction does work lies in the speci�c number theoretic features

which the function g

�

n

i=1

a

i;x

i

and the BBS generator have in common. Since we do not know what

precisely are the features of a function h

s

and of a pseudorandom generator G that are needed in

order to obtain a pseudorandom function (using the above methodology), we are forced to provide

a direct proof for our construction. As most proofs of pseudorandomness we will use a hybrid

argument, i.e. mixing a truly random and pseudorandom distribution. The type of hybrid we apply

is the reverse hybrid, where �rst the random part is used and only then the pseudorandom one.

This is an instance of the principle of deferred decision (see [18]): Do not commit to any value in

the pseudorandom part of the distribution until you have to.

5.2 Proof of Theorem 5.1

Proof: Let F = fF

n

g

n2N

be as in construction 4.1. It is clear that F is e�ciently computable.

Assume that F is not pseudorandom, then there exists a probabilistic polynomial-time oracle

machine M and a non-negligible real valued function � = �(n), such that for in�nitely many n's

�

�

�

Pr

h

M

f

N;~a;g;r

(1

n

) = 1

i

� Pr [M

�

n;`

(1

n

) = 1]

�

�

�

> �(n) (7)

where in the �rst probability f

N;~a;g;r

is distributed according to F

n

and in the second probability

�

n;`

is distributed according to R

n;`

(the uniform ensemble of functions with domain f0; 1g

n

and

range f0; 1g

`(n)

).

10



A Hybrid Black-Box: Inequality (7) tells us that there is a non-negligible di�erence between

the output behavior of M in the case it is given access to a black-box which answers according to

f

N;~a;g;r

and in the case it is given access to a black-box which answers according to �

n;`

. However,

M's response is still a well de�ned random variable even when its queries are answered according

to some other distribution. This means that we are allowed to invoke M, and answer its queries

in whatever way we �nd suitable for our purposes. The way we choose to do it is by de�ning a

hybrid black-box.

12

Informally, this is a black-box which starts by answeringM's queries according

to �

n;`

, and then switches mode to continue and answer according to f

N;~a;g;r

.

Let t = t(n) be a polynomial that bounds the running time of M, assume wlog that M always

makes exactly t queries. Since each single answer given to these queries is `-bit long, we have that

the total number of bits whichM gets as answers during its execution is precisely t � `. Each one of

these bits corresponds to a location for which one of the hybrid black-box distributions will switch

from answering according to �

n;`

to answering according to f

N;~a;g;r

(note that this may also happen

in the middle of an answer).

De�nition 5.1 (Hybrid Black-Box) Let J be an element in [t � ` + 1] written as J = I � ` + k

(where 0 � I � t and 0 � k < `). The J

th

hybrid black-box, H

J

N;~a;g;r

, is de�ned by the answers it

gives toM's queries. The �rst I queries are answered according to �

n;`

(i.e. at random), the answer

to the (I +1)

st

query up to the k

th

bit-location is according to �

n;`

, and from then on, according to

f

N;~a;g;r

. All remaining queries are answered according to f

N;~a;g;r

.

Notice that H

0

N;~a;g;r

is a black-box which always answers according to f

N;~a;g;r

, whereas H

t�`

N;~a;g;r

always answers according to �

n;`

. By Inequality (7), we have thatM distinguishes between f

N;~a;g;r

and �

n;`

with advantage �(n). Therefore, if we pick J at random, the expected advantage that M

has in distinguishing between H

J

N;~a;g;r

and H

J+1

N;~a;g;r

is at least �

0

(n) =

�(n)

t(n)�`(n)

. An example of an

hybrid black-box is depicted in Figure 1.

1 2 � � � I I+1 I+2 : : : t

1 r r � � � r r

2 r r r r

. . . : : : . .

k r r r r F

n

k + 1 r r r

. . . : : : .

` r r � � � r

Figure 1: Illustrates the J

th

hybrid black-box, H

J

N;~a;g;r

(where J = I � `+ k). Columns correspond

to queries given to the black-box and rows correspond to individual bits in the relevant answers.

5.2.1 Simpli�ed Proof

We start by giving a simpli�ed version of the proof under the assumption that M decides mem-

bership in F

n

with advantage �(n) for any sequence ~a of 2n elements in [N ] (recall that ~a equals

12

This is just a methodological modi�cation of the standard hybrid technique (see [11] for details on the hybrid

technique).

11



(a

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : ; a

n;0

; a

n;1

)). We then proceed and show how to modify the proof so it will

work for a randomly chosen ~a.

Roughly speaking, we show how given a distinguisher for our pseudorandom functions, we can

construct an algorithm that on input (v

2

mod N;N; r) predicts the value of B

r

(u), where u is

the unique quadratic residue in Z

�

N

which satis�es u

2

= v

2

mod N . Using the Goldreich-Levin

reconstruction algorithm we are then able to retrieve u (see [11] for details). This means that we

can extract square-roots in Z

�

N

and consequently factor Blum-integers (as described in [23]).

Theorem 5.2 (Goldreich-Levin [14]) Let z; r 2 f0; 1g

n

. Given an oracle that, on input r,

predicts the value of B

r

(z) with advantage �(n) (over the choice of r) in time t(n), there exists a

probabilistic polynomial-time algorithm with running time O(

n

2

�t(n)

�(n)

2

) that retrieves z with probability

at least 
(�(n)).

The following Lemma can be viewed as the heart of the simpli�ed part of the proof. It describes

how given a distinguisher for our pseudorandom functions, it is possible to construct an algorithm,

D, which can be used by the reconstruction algorithm as an oracle for the value of B

r

(u).

Lemma 5.3 Assume there exists a probabilistic polynomial-time machine M, satisfying Inequality

(7) for any choice of ~a. Then there exists a probabilistic polynomial-time algorithm D, such that

for in�nitely many n's

�

�

Pr

�

D(v

2

; N; r;B

r

(u)) = 1

�

� Pr

�

D(v

2

; N; r; b) = 1

�

�

�

> �

0

(n)

where the distribution of N = P �Q is FIG(1

n

), v is uniformly distributed in Z

�

N

, r is a random n-bit

string, b 2

R

f0; 1g, and u is the unique quadratic residue in Z

�

N

which satis�es u

2

= v

2

mod N .

Using an averaging argument, it can be shown that on at least an

�

0

(n)

2

fraction of the choices of

N and v

2

, algorithm D distinguishes the value of B

r

(u) from random with advantage

�

0

(n)

2

(over

the choice of r). In particular, D can be used in order to predict B

r

(u) with probability

1

2

+

�

0

(n)

4

.

By Theorem 5.2 we know that we can use D in order to construct a probabilistic polynomial-time

algorithm that retrieves u mod N with probability 
 (�

0

(n)). We now have that u

2

= v

2

mod N and

Pr [u 6= �v] = 1=2. This implies (cf. [23]) that Pr [gcd(u � v;N) 2 fP;Qg] = 1=2, which enables us

to construct an algorithm that 


�

�

0

(n)

2

�

-factors, in contradiction to Assumption 4.1.

Description of D: Let the input of D be (v

2

; N; r; �), where the distribution of N , v and r is as

in Lemma 5.3. Let u be the unique quadratic residue in Z

�

N

which satis�es u

2

= v

2

mod N . On this

input, D �rst picks J = I � `+k at random in [t � `]. Then D invokes M and answers its queries in a

way that simulates H

J

N;~a;g;r

(for some value of ~a and g) if � equals B

r

(u), and simulates H

J+1

N;~a;g;r

if �

is a random bit. D will now be able to utilize the expected advantage that M has in distinguishing

between H

J

N;~a;g;r

and H

J+1

N;~a;g;r

in order to guess the actual distribution of �. Speci�cally, D will

answer M's queries in the following way:

1. Answer the �rst I queries according to �

n;`

.

2. Answer the (I + 1)

st

query with b

0

; b

1

; : : : ; b

k�1

; �;B

r

(u

2

); : : : ;B

r

(u

2

`�k�1

)

(where b

0

b

1

: : : b

k�1

denotes a random k-bit string).

3. Answer the remaining queries consistently according to f

N;~a;g;r

.

The challenge in constructing D is to assign values to ~a and g such that the above answers will be

distributed according to the correct hybrid black-box distribution, and will be e�ciently computable

by D.

12



De�ning ~a and g: The way we de�ne the value of g depends on the choice of J , whereas the

values assigned to ~a will depend on the (I + 1)

st

query made by M. We require that if x is the

(I+1)

st

query, then the value of the (k+1)

st

bit of f

N;~a;g;r

(x) (which is answered with � by D), will

be equal to B

r

(u). In addition, we require that D will be able to e�ciently compute the answers

to all the subsequent queries made by M (starting from the (k+2)

nd

bit-location in the answer to

the (I + 1)

st

query).

The de�nition of g: D computes s = ` � n� k and sets g = v

2

s

mod N .

Claim 5.1 Let 
 be the order of g in Z

�

N

, then 
 is odd.

Proof: It will be su�cient to show that the size of QR

N

is odd. This implies that all quadratic

residues in Z

�

N

(and in particular g) have odd order. Since N is a Blum-integer, for every quadratic

residue in Z

�

N

exactly one of its four square roots resides in QR

N

. This means that jQR

N

j =

jZ

�

N

j

4

=

(P�1)�(Q�1)

4

. Since P = Q = 3 mod 4, then

P�1

2

and

Q�1

2

are odd, which implies that

(P�1)�(Q�1)

4

is

also odd and the claim follows. 2

Claim 5.2 For every 0 < i < s, g

2

�i

mod 


= v

2

s�i

mod N .

13

Proof: By Claim 5.1 we have that 
 is odd. This implies that 2 2 Z

�




and therefore 2

�1

mod 
 exists

(and is simply


+1

2

). For simplicity of exposition, let us denote by g

2

�1

the value g

2

�1

mod 


mod N .

We now have that whenever 2

�1

appears in the exponent it denotes the value 2

�1

mod 
 =


+1

2

.

Similarly, 2

�i

in the exponent denotes the value 2

�i

mod 
 = (


+1

2

)

i

mod 
. Therefore, for every i

the value g

2

�i

mod N is a quadratic-residue (since g is a quadratic-residue). Take i = 1, we now

have that both g

2

�1

and v

2

s�1

are square roots of g and they are both quadratic-residues. Since

squaring is a permutation over the set of quadratic-residues in Z

�

N

(for any Blum-integer N) we must

have that g

2

�1

and v

2

s�1

are equal. By induction on 0 < i < s, we get that g

2

�i

= v

2

s�i

mod N . 2

Corollary 5.1 Let u = g

2

�s

mod N , then u

2

= v

2

mod N .

The de�nition of ~a: Since the �rst I queries of M are answered randomly, we can defer the

assignment to the values of ~a until D is given the (I+1)

st

query, x = x

1

x

2

: : : x

n

. It is then possible

to de�ne ~a so that the value of the (k+1)

st

bit of f

N;~a;g;r

(x) (namely, B

r

(g

2

k

�

n

i=1

a

i;x

i

)) will be equal

to B

r

(u).

14

Let ~a be the vector (a

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : ; a

n;0

; a

n;1

) , where for all i, a

i;x

i

= 2

�`

mod 


and a

i;x

i

is uniformly distributed in [N ].

Claim 5.3 Let ~a; g and u be de�ned as above, then

B

r

(g

2

k

�

n

i=1

a

i;x

i

) = B

r

(u)

Proof: By the above notations,

g

2

k

�

n

i=1

a

i;x

i

= g

2

k�`n

= g

2

�s

= u mod N

and the claim follows. 2

13

Note that 
 is not known to D. However, as long as s� i > 0, it is possible for D to compute v

2

s�i

mod N .

14

It is worth noticing that this would not have been possible in the case that D would have answered M's queries

in a reverse order (i.e by �rst answering according to f

N;~a;g;r

and then switching mode to �

n;`

).
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The Running-Time of D: We now show that D is indeed able to complete steps (2) and (3)

(i.e. answer all the remaining queries of M starting from the (k + 2)

nd

bit-location in the answer

to the (I + 1)

st

query in a way which is consistent with the de�nition of ~a and g). The key point

is that D can achieve this task even though it does not actually know the values of a

i;x

i

.

Claim 5.4 Algorithm D is able to e�ciently complete the answer to the (I + 1)

st

query (step 2).

Proof: Since v

2

= u

2

mod N , and since v

2

and r are given to him in the input, D is able to complete

the answer to the (I + 1)

st

query and answer M with

b

0

; b

1

; : : : ; b

k�1

; �;B

r

(v

2

); : : : ;B

r

(v

2

`�k�1

)

as required. 2

Claim 5.5 For any query y 6= x, D is able to e�ciently compute the value of f

N;~a;g;r

(y) (step 3).

Proof: It will be su�cient to show that for any query y = y

1

y

2

: : : y

n

6= x, D is able to compute the

value g

�

n

i=1

a

i;y

i

, and thus it is always able to answer the query with the value of f

N;~a;g;r

(y). Now:

g

�

n

i=1

a

i;y

i

= g

(�

fy

i

=x

i

g

a

i;y

i

)(�

fy

i

6=x

i

g

a

i;y

i

)

= g

(2

�`j

)(�

fy

i

6=x

i

g

a

i;y

i

)

= v

(2

s�`j

)(�

fy

i

6=x

i

g

a

i;y

i

)

mod N

where j is the number of locations for which y

i

equals x

i

. Since j < n (remember that y 6= x), and

since k < ` then we always have that s�`j = (n�j)`�k is at least 1 over the integers. As we have

already stated, D knows the value of v

2

, therefore by performing the appropriate exponentiations,

it is always able to compute g

�

n

i=1

a

i;y

i

= v

(2

s�`j

)(�

fy

i

6=x

i

g

a

i;y

i

)

, as required (remember that D knows

the value of a

i;y

i

for all y

i

6= x

i

). 2

We are �nally ready to establish Lemma 5.3. Recall that given some J , the value of � determines

which of the possible hybrid black-boxes is simulated by D. If � equals B

r

(u), then D simulates

H

J

N;~a;g;r

, whereas if � is a random bit, D simulates H

J+1

N;~a;g;r

. Since the expected advantage M has

in distinguishing the above neighboring hybrid black-boxes is �

0

(n) and since D picks J at random,

we expect that D will be able to decide with advantage �

0

(n) whether � is indeed the value of B

r

(u).

5.2.2 Completing the Proof

To complete the proof we follow the same lines, along with an additional \randomization" of the

values in ~a, achieved by taking a

i;x

i

= �

i

+ 2

�`

mod 
. This causes the value of the (k + 1)

st

bit in

the answer to the (I + 1)

st

query to change into B

r

(g

2

k

�

n

i=1

a

i;x

i

) = B

r

(g

2

k

�

n

i=1

(�

i

+2

�`

)

) = B

r

(u � w),

where w is an element in Z

�

N

which is completely determined by the �

i

's and by the value of v

2

(and

is e�ciently computable given the above values). Note that now algorithm D becomes an oracle

for the value of B

r

(u � w), and will therefore be used in order to retrieve u � w (rather than u).

Jumping ahead, we note that letting D pick the random �

i

's by himself would have caused

the value of w (and therefore u � w) to change each time D is invoked. This would not allow the

reconstruction algorithm to retrieve u �w for any speci�c value of w. The solution to this problem

will be to �x the values which determine w in advance, and then use D (which now takes only r as

14



input) as an oracle for B

r

(u � w).

15

For the time being, we ignore the above issue, and let D pick

the random �

i

's by himself. We now give the (full) analogue of Lemma 5.3.

Lemma 5.4 Assume there exists a probabilistic polynomial-time machine M, satisfying Inequality

(7). Then there exists a probabilistic polynomial-time algorithm D, such that for in�nitely many n's

�

�

Pr

�

D(v

2

; N; r;B

r

(u � w)) = 1

�

� Pr

�

D(v

2

; N; r; b) = 1

�

�

�

> �

0

(n)� n � 2

�O(n)

where the distribution of N = P �Q is FIG(1

n

), v is uniformly distributed in Z

�

N

, r is a random n-bit

string, b 2

R

f0; 1g, u�w is the unique quadratic residue in Z

�

N

which satis�es (u�w)

2

= v

2

�w

2

mod N ,

and w is a randomly chosen quadratic residue in Z

�

N

(which is completely determined by the value

of v

2

and D's internal coin tosses and is e�ciently computable by D).

Proof: On input (v

2

; N; r; �), D is de�ned as follows:

1. (a) Sample J = I � `+ k uniformly at random in [t � `].

(b) Sample J random bits (needed in order to simulate the hybrid black-box).

(c) Sample

~

� = (�

1

; �

2

; : : : ; �

n

; �

0

1

; �

0

2

; : : : ; �

0

n

) by uniformly picking 2n elements in [N ].

2. Compute s = ` � n� k and set g = v

2

s

mod N .

3. Invoke M on input 1

n

:

(a) Answer each of its �rst I queries with a random string in f0; 1g

`

.

(b) Let x

1

x

2

: : : x

n

be M's (I + 1)

st

query.

For 1 � i � n, denote by a

i;x

i

the value �

i

+2

�`

mod 
, and by a

i;x

i

the value �

0

i

. Denote

by ~a the sequence (a

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : ; a

n;0

; a

n;1

) (a

i;x

i

is not actually known to D).

Let b

0

b

1

: : : b

k�1

be a random k-bit string, answer the (I+1)

st

query with the `-bit string

b

0

; b

1

; : : : ; b

k�1

; �;B

r

(g

2

k+1

�

n

i=1

a

i;x

i

); : : : ;B

r

(g

2

`�1

�

n

i=1

a

i;x

i

)

(c) Answer each remaining query of M, y, with the value f

N;~a;g;r

(y).

4. If M outputs 1, then output 1.

If M outputs 0, then output 0.

Why does D Predict the Value of B

r

(u � w): To de�ne u, we set u = g

2

�s

mod N . As before

(see Corollary 5.1), we have that u

2

= v

2

mod N . To de�ne w, we set w = v

(�

n�1

i=0

�

i

2

`(n�i)

)

mod N ,

where �

i

are the coe�cients (over Z) of the polynomial p(x) =

Q

n

i=1

(�

i

+ x) = x

n

+

P

n�1

i=0

�

i

x

i

.

Note that the �

i

's can be e�ciently computed given the �

i

's (either recursively or by interpolation).

Given the values of the �

i

's and of v

2

, we are able to compute w (note that the exponent of v in

the de�nition of w is always even). Therefore, w is an e�ciently computable quadratic residue in

Z

�

N

which is completely determined by the value of v

2

and D's internal coin tosses (i.e. the �

i

's

sampled in step (1c)).

15

Here we use a special property of the B

r

predicate, which enables the reconstruction of u � w by only asking

queries which refer to u �w (i.e. u �w is �xed throughout the process, and only r changes from one query to another).

As discussed in Section 6, a similar property is satis�ed by the LSB-based reconstruction techniques by Alexi et al.

[1, 10]. See Section 6 for an analogous construction that uses the LSB predicate.
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Claim 5.6 Let ~a; g; u and w be de�ned as above, then B

r

(g

2

k

�

n

i=1

a

i;x

i

) = B

r

(u � w).

Proof: Using the above notations (and Claim 5.2), we have:

g

2

k

�

n

i=1

a

i;x

i

= g

2

k

�

n

i=1

(�

i

+2

�`

)

= g

2

k

p(2

�`

)

= g

2

k�`n

+�

n�1

i=1

�

i

2

�(`i�k)

= g

2

�s

� v

(�

n�1

i=1

�

i

2

s�(`i�k)

)

= u � v

(�

n�1

i=1

�

i

2

`(n�i)

)

= u � w mod N

and the claim follows. 2

This implies that the (k + 1)

st

bit in the answer that the f

N;~a;g;r

black box is supposed to give to

the (I+1)

st

query (and is answered with � instead), is equal to B

r

(u �w). As we have already seen,

this fact can be used by D in order to decide whether � equals B

r

(u � w).

The Running-Time of D: It is clear that steps (1),(2) and (3a) can be carried out in time

poly(n; `(n)). In order to prove that steps (3b) and (3c) can be carried out in time poly(n; `(n))�t(n),

we observe that if for some j in [`], D is able to compute � = g

2

j

�

n

i=1

a

i;x

i

mod N , then by squaring

and taking the inner product of the results with r, it is also able to compute any bit-sequence of

the form B

r

(�);B

r

(�

2

); : : : ;B

r

(�

2

`�j�1

).

Claim 5.7 Algorithm D is able to e�ciently complete the answer to the (I + 1)

st

query (step 3b).

Proof: By the above observation, it will be su�cient to show that D is able to e�ciently compute

the value of g

2

k+1

�

n

i=1

a

i;x

i

. To see that, notice that g

2

k

�

n

i=1

a

i;x

i

equals u � w (see Claim 5.6). This

implies that g

2

k+1

�

n

i=1

a

i;x

i

= u

2

�w

2

= v

2

�w

2

mod N . Since both the values of v

2

and w

2

are known

to D, it is possible for him to e�ciently answer the (I + 1)

st

query (as described in step 3b). 2

Claim 5.8 For any query y 6= x, D is able to e�ciently compute the value of f

N;~a;g;r

(y) (step 3c).

Proof: By the above observation, it will be su�cient to show that D is able to compute the value

g

�

n

i=1

a

i;y

i

(and consequently it will be able to compute the value of f

N;~a;g;r

(y)). Given a query

y = y

1

y

2

: : : y

n

6= x, D starts by computing (in time poly(n)) the coe�cients, �

i

2 Z, of the

polynomial q(x) =

Q

fy

i

=x

i

g

(�

i

+ x) =

P

j

i=0

�

i

x

i

(where j is the number of locations for which y

i

equals x

i

). Under this notation,

Q

fy

i

=x

i

g

a

i;y

i

equals q(2

�`

), we then have:

g

�

n

i=1

a

i;y

i

= g

(�

fy

i

=x

i

g

a

i;y

i

)(�

fy

i

6=x

i

g

a

i;y

i

)

= g

(�

j

i=0

�

i

2

�`i

)(�

fy

i

6=x

i

g

a

i;y

i

)

=

j

Y

i=0

g

(�

i

2

�`i

)(�

fy

i

6=x

i

g

a

i;y

i

)

=

j

Y

i=0

v

2

s�`i

(�

i

�

fy

i

6=x

i

g

a

i;y

i

)

mod N
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since i � j < n (remember that y 6= x), and since k < ` then we always have that the value of

s� `i = (n� i)`� k is at least 1 over the integers. Therefore, D is always able to compute all the

values v

2

s�`i

(�

i

�

fy

i

6=x

i

g

a

i;y

i

)

mod N (by performing the appropriate exponentiations of v

2

, remember

that D knows the value of all �

i

's, and the value of a

i;y

i

for all y

i

6= x

i

). Finally, by taking the

product of the above values (reduced mod N), D is able to compute the value of g

�

n

i=1

a

i;y

i

, as

required. 2

The Success-Probability of D: To �nd the success probability of D, we notice that the distri-

bution of the function f

N;~a;g;r

(which is induced by the way D chooses ~a and g) is statistically close

to the distribution of functions in F

n

. To see this, we will need the following claims regarding the

distributions of ~a and g.

Claim 5.9 g is a uniformly distributed quadratic residue in Z

�

N

.

Proof: Since v

2

is a uniformly distributed quadratic-residue in Z

�

N

and squaring is a permuta-

tion over the set of quadratic-residues in Z

�

N

, it immediately follows that g = v

2

s

is a uniformly

distributed quadratic-residue in Z

�

N

. 2

Claim 5.10 Let �

i

and a

0

i;x

i

be uniformly distributed elements in [N ], and denote by a

i;x

i

the value

�

i

+ 2

�`

mod 
. Then the statistical distance of a

i;x

i

and a

0

i;x

i

mod 
 is 2

�O(n)

.

Proof: Note that 
 divides (P�1)(Q�1). Therefore, the distribution of a

i;x

i

conditioned on the event

that �

i

2 [(P�1)(Q�1)] is the same as the distribution of a

0

i;x

i

mod 
 conditioned on the event that

a

0

i;x

i

2 [(P�1)(Q�1)] (and in both cases it is simply the uniform distribution over [
]). It remains to

notice that:

Pr [�

i

2 [(P�1)(Q�1)]] = Pr

�

a

0

i;x

i

2 [(P�1)(Q�1)]

�

=

(P�1)(Q�1)

N

= 1�

P+Q

N

+

1

N

= 1� 2

�O(n)

which completes the proof. 2

Claim 5.11 Let f

N;~a

0

;g;r

be distributed according to F

n

and let f

N;~a;g;r

be distributed as in the con-

struction of D. Then the statistical distance of f

N;~a

0

;g;r

and f

N;~a;g;r

is n � 2

�O(n)

.

Proof: Let each element in ~a

0

= (a

0

1;0

; a

0

1;1

; a

0

2;0

; a

0

2;1

; : : : ; a

0

n;0

; a

0

n;1

) be uniformly distributed in [N ].

By Claim 5.10 we have that for every 1 � i � n, a

i;x

i

and a

0

i;x

i

mod 
 are of statistical distance

2

�O(n)

. It follows (by the triangle inequality), that ~a and ~a

0

mod 
 are of statistical distance

n � 2

�O(n)

. It is then immediate that f

N;~a;g;r

and f

N;~a

0

;g;r

are of statistical distance n � 2

�O(n)

. 2

Since applying any function (even a randomized one) does not increase the statistical distance, then

by Claim 5.11 we have that for in�nitely many n's

�

�

�

Pr

h

M

f

N;~a

0

;g;r

(1

n

) = 1

i

� Pr

h

M

f

N;~a;g;r

(1

n

) = 1

i

�

�

�

< n � 2

�O(n)

To complete the proof, we recall De�nition 5.1 of the hybrid distribution, H

J

N;~a;g;r

. By Claim 5.6

we have that g

2

k

�

n

i=1

a

i;x

i

= u � w mod N . Therefore, the value of the (k + 1)

st

bit in the answer
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that D is supposed to give to the (I + 1)

st

query is precisely equal to B

r

(u � w). Given that J = j

and that � = B

r

(u � w) (where u � w is a quadratic residue in Z

�

N

), the distribution that M sees is

H

j

N;~a;g;r

. On the other hand, if � is random then the distribution that M sees is H

j+1

N;~a;g;r

. We now

have that for in�nitely many n's

�

�

Pr

�

D(v

2

mod N;N; r;B

r

(u � w)) = 1

�

� Pr

�

D(v

2

mod N;N; r; b) = 1

�

�

�

=

1

t(n)�`(n)

�

�

�

�

�

�

�

t�`�1

X

j=0

�

Pr

�

D(v

2

; N; r;B

r

(u � w)) = 1 j J = j

�

� Pr

�

D(v

2

; N; r; b) = 1 j J = j

��

�

�

�

�

�

�

=

1

t(n)�`(n)

�

�

�

�

�

�

�

t�`�1

X

j=0

�

Pr

h

M

H

j

N;~a;g;r

(1

n

) = 1

i

� Pr

h

M

H

j+1

N;~a;g;r

(1

n

) = 1

i�

�

�

�

�

�

�

=

1

t(n)�`(n)

�

�

�

�

Pr

h

M

f

N;~a;g;r

(1

n

) = 1

i

� Pr [M

�

n;`

(1

n

) = 1]

�

�

�

�

�(n)

t(n)�`(n)

+ n � 2

�O(n)

(8)

where the distribution of N = P �Q is FIG(1

n

), v is uniformly distributed in Z

�

N

, r is a random n-bit

string, b 2

R

f0; 1g, u�w is the unique quadratic residue in Z

�

N

which satis�es (u�w)

2

= v

2

�w

2

mod N ,

and w is a randomly chosen quadratic residue in Z

�

N

. The proof of Lemma 5.4 is complete.

Remark 5.2 From the proof of Lemma 5.4 we get that D works even if the distinguisher M has

access to N; g and r.

Reconstructing u � w mod N : Technically speaking, D is not suitable to be used as an oracle

for the Goldreich-Levin reconstruction algorithm. First of all, because it is not a predictor for the

value B

r

(u � w), but rather a distinguisher. Furthermore, the value of w potentially changes each

time D is invoked (since it depends on v

2

and

~

�), which does not allow the reconstruction algorithm

to retrieve u � w for any speci�c value of w. The transformation to a suitable predictor however is

not di�cult. By �xing the values of v

2

and

~

� in advance, we are able to construct an algorithm,

D

N;

~

�;v

2

, which invokes D as a subroutine, and with non-negligible probability succeeds in predicting

B

r

(u � w). On input r, D

N;

~

�;v

2

is de�ned as follows:

1. Sample two independent random bits �, � in f0; 1g.

2. Invoke D on input (v

2

; N; r; �), feed it with

~

� on its random tape.

3. (a) If D outputs 1, then output �.

(b) If D outputs 0, then output �.

Note that now, the value of w does not change each time D

N;

~

�;v

2

is invoked. This means that it is

possible to use D

N;

~

�;v

2

as an oracle in order to reconstruct u � w.

Lemma 5.5 Assume there exists a probabilistic polynomial-time machine M, satisfying Inequality

(7), and let D

N;

~

�;v

2

be as above. Then with probability

�

0

(n)

2

(over the choices of N ,v

2

and

~

�), it

holds that for in�nitely many n's

Pr

h

D

N;

~

�;v

2

(r) = B

r

(u � w)

i

>

1

2

+

�

0

(n)

4
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where the distribution of N = P � Q is FIG(1

n

), v is uniformly drawn from Z

�

N

, r is a random

n-bit string,

~

� is a random vector of 2n elements in [N ], w = w(

~

�; v

2

) is a quadratic residue in Z

�

N

,

and u � w is the unique quadratic residue in Z

�

N

which satis�es (u � w)

2

= v

2

� w

2

mod N .

Proof: By Lemma 5.4, D has an (�

0

(n)� n � 2

�O(n)

)-advantage in distinguishing B

r

(u � w) from a

randomly chosen bit. Using an averaging argument, it is easy to see that on at least an

�

0

(n)

2

fraction

of the choices of N ,v

2

and

~

�, algorithm D has an

�

0

(n)

2

-advantage in distinguishing B

r

(u �w) from a

randomly chosen bit. It is then straightforward that D

N;

~

�;v

2

can predict the value of B

r

(u �w) with

advantage

�

0

(n)

4

, as required.

The Factoring Algorithm: For the sake of completeness, we now turn to describe an algorithm,

A, which uses D

N;

~

�;v

2

as oracle and succeeds to �

00

(n)-factor (where �

00

(n) = 
(�

0

(n)

2

)), this is in

contradiction to Assumption 4.1, and will complete the proof.

Lemma 5.6 Assume there exists a probabilistic polynomial-time machine M, satisfying Inequality

(7). Then there exists a probabilistic polynomial-time algorithm, A, that �

00

(n)-factors.

Proof: On input N , A is de�ned as follows:

1. (a) Sample v uniformly at random in Z

�

N

and compute v

2

mod N .

(b) Sample

~

� = (�

1

; �

2

; : : : ; �

n

; �

0

1

; �

0

2

; : : : ; �

0

n

) by uniformly picking 2n elements in [N ].

2. Compute the value of w = v

(�

n�1

i=0

�

i

2

`(n�i)

)

mod N , where �

i

are the coe�cients (over Z) of

the polynomial p(x)

def

=

Q

n

i=1

(�

i

+ x) = x

n

+

P

n�1

i=0

�

i

x

i

(and are easily found given the �

i

's).

3. Invoke the Goldreich-Levin reconstruction algorithm, R(1

n

).

(a) Whenever asked for B

r

i

(z), invoke D

N;

~

�;v

2

on input r

i

and give its output as an answer.

(recall that D

N;

~

�;v

2

invokes M and answers its queries)

(b) Denote by z the output of R.

4. Compute u = z � w

�1

mod N . Given that R outputs the correct value (i.e. z = u � w),

then u

2

= v

2

mod N . If u 6= �v mod N , output gcd(u � v;N) which is indeed in fP;Qg.

Otherwise, output `failed'.

The Running-Time of A: It is clear that steps (1),(2) and (4) can be carried out e�ciently

by A (and, in addition, are independent of D

N;

~

�;v

2

). As for step (3), assuming that D

N;

~

�;v

2

has

non-negligible advantage in predicting B

r

(u �w) (which by Lemma 5.5 happens with non-negligible

probability), we are guaranteed (by Theorem 5.2) that R will terminate in polynomial time.

The Success-Probability of A: Since with probability

�

0

(n)

2

, D

N;

~

�;v

2

predicts the value of B

r

(u �

w) with advantage

�

0

(n)

4

, then by Theorem 5.2 we have that R retrieves the value of u � w with

probability at least 
(�

0

(n)

2

) (over the choices of N , v

2

and

~

�). Note that u � w and w are both

quadratic residues in Z

�

N

, therefore u must also be a quadratic residue in Z

�

N

. Given that, the

probability that u does not equal �v mod N is exactly 1/2. We are �nally able to conclude that

A �

00

(n)-factors, as required.

This completes the proof of Theorem 5.1.
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6 Using Other Hard-Core Bits

In Construction 4.1) we use the Goldreich-Levin hard-core bit, B

r

. The other, more natural, hard-

core bit in this context is the LSB predicate, shown to be secure by Alexi et al. [1] (the LSB

predicate was the one originally used in the BBS construction). The key property which we require

from the B

r

predicate is that its reconstruction algorithm �xes the unknown value and changes r

throughout the process (see Footnote 15). As pointed out to us by Roger Fischlin [9], a similar

property is satis�ed by the LSB-based reconstruction techniques [1, 10] (see Theorem 6.1 below,

where r is explicitly considered).

The above observation suggests that using the LSB predicate in Construction 4.1 (rather than

using the B

r

predicate) may yield a secure pseudorandom function. However, we were not able to

prove it. What we are able to do is to slightly modify Construction 4.1 in order to obtain a secure

pseudorandom function that is secure when using the LSB predicate.

Interestingly, the modi�ed construction does not exactly follow the paradigm of applying the

BBS generator to the unpredictable function h(x) = g

�

n

i=1

a

i;x

i

(but rather multiplies each of the

elements in the sequence with r before applying the LSB predicate).

Construction 6.1 (LSB version of pseudorandom functions) We de�ne a function in the

ensemble F = fF

n

g

n2N

. For every n 2 N, a key of a function in F

n

is a tuple (N;~a; g; r), where

N is an n-bit Blum-integer, ~a = (a

1;0

; a

1;1

; a

2;0

; a

2;1

; : : : ; a

n;0

; a

n;1

) is a sequence of 2n elements in

[N ], g is a quadratic-residue in Z

�

N

and r is an element in Z

�

N

. For any n bit input x = x

1

x

2

: : : x

n

,

and for every integer function ` = `(n), the function f

N;~a;g

: I

n

! I

`(n)

is de�ned by:

f

N;~a;g;r

(x)

def

= LSB(r � g

�

n

i=1

a

i;x

i

);LSB(r � g

2�

n

i=1

a

i;x

i

); : : : ;LSB(r � g

2

`�1

�

n

i=1

a

i;x

i

)

The distribution of functions in F

n

is induced by the following distribution on their keys: ~a and g

are uniform in their range and the distribution of N is FIG(1

n

).

Sketch of proof of security: The proof of security of Construction 6.1 is similar to the the

case of the B

r

hard-core predicate. Speci�cally it is shown how given a distinguisher for the above

pseudorandom functions, we can construct an algorithm D that on input (v

2

mod N;N; r) predicts

the value of LSB(r � u � w), where u � w is the unique quadratic residue in Z

�

N

which satis�es

(u �w)

2

= v

2

�w

2

mod N , and w is a randomly chosen quadratic residue in Z

�

N

(which is completely

determined by the value of v

2

and D's internal coin tosses and is e�ciently computable by D).

Using the reconstruction algorithm of Alexi et al. [1] (see [10] for tighter results) we are then able

to retrieve u � w (and so u). As before, this means that we can extract square-roots in Z

�

N

and

consequently factor Blum-integers.

Theorem 6.1 (ACGS [1], FS [10]) Let z; r 2 Z

�

N

. Given an oracle that, on input r, predicts

the value of LSB(r � z) with advantage �(n) (over the choice of r) in time t(n), there exists a

probabilistic polynomial-time algorithm with running time O(

n

2

�t(n)

�(n)

2

) that retrieves z with probability

at least 
(�(n)).

As in the proof of Theorem 5.1, the security of Construction 6.1 is proved using the following main

Lemma (which is the analog of Lemma 5.4).
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Lemma 6.2 Assume there exists a probabilistic polynomial-time machine M, satisfying Inequality

(7). Then there exists a probabilistic polynomial-time algorithm D, such that for in�nitely many n's

�

�

Pr

�

D(v

2

; N; r;LSB(r � u � w)) = 1

�

� Pr

�

D(v

2

; N; r; b) = 1

�

�

�

> �

0

(n)� n � 2

�O(n)

where the distribution of N = P � Q is FIG(1

n

), v is uniformly distributed in Z

�

N

, r is a random

n-bit string, b 2

R

f0; 1g, u � w is the unique quadratic residue in Z

�

N

which satis�es (u � w)

2

=

v

2

�w

2

mod N , and w is a randomly chosen quadratic residue in Z

�

N

(which is completely determined

by the value of v

2

and D's internal coin tosses and is e�ciently computable by D).

Proof Sketch: The proof of Lemma 6.2 is essentially identical to the proof of Lemma 5.4. Given

v

2

; N; r and J = I � `+ k, the values of g;~a; u and w are de�ned exactly as before. The following

Claim establishes the correctness of D (and is proved exactly in the same way as Claim 5.6).

Claim 6.1 Let ~a; g; u and w be de�ned as above, then LSB(r � g

2

k

�

n

i=1

a

i;x

i

) = LSB(r � u � w).

As before, this implies that the (k+1)

st

bit in the answer that the f

N;~a;g;r

black box is supposed to

give to the (I +1)

st

query (and is answered with � instead), is equal to LSB(r � u �w). As we have

already seen, this fact can be used by D in order to decide whether or not � equals LSB(r � u �w).

As for D's running time. Since the values of g;~a; u and w are identical to the case of Lemma 5.4,

it follows that D is able to e�ciently compute both r � g

2

k+1

�

n

i=1

a

i;x

i

and r � g

�

n

i=1

a

i;y

i

for all y 6= x.

In particular, D can be implemented in time poly(n; `(n)) � t(n).

Finally, since the distribution of the key (N;~a; g; r) chosen by D is identical to the distribution

of the key chosen by the distinguisher in the proof of Lemma 5.4, then the success probability of

D is identical to the success probability of the distinguisher in the proof of Lemma 5.4.

7 Further Research

The proof of Theorem 5.1 is tailored to the speci�c cryptographic primitives which are used in Con-

struction 4.1 (i.e. the \unpredictable" function g

�

n

i=1

a

i;x

i

and the BBS generator). An interesting

open problem would be to provide an alternative proof for Theorem 5.1. Such a proof might make

use of more general notions and di�erent techniques, and will hopefully shed more light on the rea-

sons for which our construction yields a pseudorandom function. In particular, it may provide new

constructions of pseudorandom functions based on more general (or more e�cient) cryptographic

primitives.

As we have demonstrated (in Section 5.1, there exists an \unpredictable" function and a pseudo-

random generator such that their composition is not a pseudo-random function. It should be

interesting to recognize what precisely are the features of a function h

s

(from an ensemble H =

fh

s

g) and of a pseudo-random sequence generator G that are needed in order to prove that our

construction indeed yields pseudorandom functions.

Comparing to the DDH Pseudorandom Functions: As we have already mentioned, the

e�ciency of Construction 4.1 is comparable to the e�ciency of the DDH-functions by Naor and

Reingold [20]. Apart from being slightly more e�cient than our functions, the DDH-functions

have some additional properties:

� The simple algebraic structure of the DDH-functions implies several attractive features (e.g.

zero-knowledge proof for the value of the function, function sharing and oblivious evaluation

of the value of the function). In spite of the similarity between the two constructions, we do

not know how to prove that similar protocols are secure in our case.
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� As opposed to the proof of Theorem 5.1, the security of the DDH-functions does not decrease

proportionally to the number of queries which are made by the adversary

16

(this is due to

the random self-reducibility of the DDH-assumption [20]).

It is natural to consider the features of the DDH-functions as guidelines for further research

regarding our functions.
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