
Provably Secure FFT Hashing

Vadim Lyubashevsky∗ Daniele Micciancio† Chris Peikert‡ Alon Rosen§

July 28, 2006

Abstract

We propose a new family of collision resistant hash functions with the distinguishing feature
of being provably secure. The main technique underlying our functions is a novel use of the
Fast Fourier Transform to achieve ideal “diffusion” properties, together with a random linear
function to achieve compression and “confusion”. Our functions admit fast implementation
both in hardware and software, but are set apart from previous proposals (based on similar
building blocks) in the literature by a supporting security proof: it can be formally proven
that (asymptotically) finding collisions to our functions (for keys chosen uniformly at random)
with non-negligible probability is at least as hard as solving certain lattice problems in the
worst case. Our proposal and techniques are based on previous work by Micciancio (FOCS
2002, Computational Complexity 2007), Peikert and Rosen (TCC 2006) and Lyubashevsky and
Micciancio (ICALP 2006).

1 Introduction

Provably secure collision resistant hash functions can be built based on the assumption that vari-
ous problems from computational number theory (e.g., the discrete logarithm problem or factoring
large integers) are hard to solve on the average. Unfortunately, all known such proposals result
in hash functions with computation cost comparable to typical public key cryptographic opera-
tions, making them unattractive from a practical point of view. Intuitively, collision free hashing
seems a substantially easier problem than public key encryption, and better solutions are expected.
As a result, practical design of collision resistant hash functions has, so far, focused on ad-hoc
constructions, similar to those employed in the design of block ciphers.

Ad-hoc hash functions (like MD5, SHA1, etc.) are not supported by security proofs. Rather,
their design is usually justified based on intuitive but vague cryptographic engineering principles
(like “diffusion” and “confusion” properties) and validated by intensive cryptanalytic efforts. Re-
cently, newly discovered cryptanalytic attacks [19, 20, 3] have started casting serious doubts both on
the security of these specific functions and the effectiveness of the underlying design methodology.

In this paper we propose a new family of hash functions that is very appealing and intuitive from
a traditional design point of view, and, at the same time, achieves the robustness and reliability
benefits of provable security. The high level structure of our functions (see Figure 1) is very simple:

∗University of California, San Diego vlyubash@cs.ucsd.edu
†University of California, San Diego daniele@cs.ucsd.edu
‡Massachusetts Institute of Technology cpeikert@mit.edu
§Harvard University alon@eecs.harvard.edu



1. The input is represented as an m × n matrix (xi,j), where n = 2k is the security parameter,
m is a small constant (e.g., m = 8), and each xi,j is a small (e.g., xi,j ≤ 4 or 8) non-negative
integer.

2. The input is first processed by multiplying each column by ωj−1 for an appropriately-chosen
constant ω, and taking the Fast Fourier Transform of every row:

(yi,1, . . . , yi,n) = FFT(ω0xi,1, . . . , ω
n−1xi,n).

We remark that this first operation is easy to invert, and it is performed to achieve “diffusion,”
i.e., to mix the input bits in every row.

3. Next a random linear combination of every column

zj = a1,j,y1,j + · · · + am,jym,j

is computed. The output is the vector (z1, . . . , zn). This second operation compresses the
input and achieves “confusion.”

All arithmetic operations are performed modulo a small prime (or product of primes) p of the
form p = 2t ·n+1, so that Z∗

p has an element ω of order 2n and the n-dimensional Fourier transform
can be efficiently computed over Zp. We remark that the modulus p is fairly small (e.g., 16 bits or
so, but bigger than the input values xi,j) and m is just a small constant (e.g., m = 8).

Viewed independently, the linear equations zj = a1,j,y1,j + · · · + am,jym,j admit many solu-
tions, and these solutions can easily be found individually. However, the rows (yi,1, . . . , yi,n) are
constrained to be the result of applying Step 2 to vectors whose entries xi,j are small integers.

Perhaps surprisingly, these constraints turn out to be sufficient to guarantee provable cryp-
tographic hardness (i.e., one-wayness and even collision-resistance) of the compression function.
Specifically, the function admits a proof of security of a very strong type: finding collisions on the
average (when the key (ai,j) is chosen uniformly at random in Zp) even with very small but non-
negligible probability is at least as hard as solving an underlying mathematical problem on point
lattices in the worst case (over the choice of the input, and with probability exponentially close to 1
over the internal randomness of the algorithm). The proof of security follows from the observation
that the above function is a special case of the ideal lattice functions of [9], and a variant of the
cyclic lattice functions of [10, 13].

Related work. The idea of using the Fast Fourier Transform (FFT) as a building block for the
construction of hash functions is not new. Examples of such functions are the FFT hash functions
of Schnorr [14, 15, 16]. Unfortunately, most of these functions were subsequently cryptanalyzed
and shown to be insecure [5, 2, 17]. The distinguishing feature of our hash function, that sets it
apart from previous work, is the way FFT is used, and the resulting proof of security. Namely,
while in previous work [14, 15, 16] FFT was applied to unrestricted input vectors (x1, . . . , xn) ∈ Zn

p ,
here we require the input values xi to belong to a small subset of Zp. This introduces non-linear
constraints on the output values of the FFT operation, a fact that plays a fundamental role both
in our theoretical proof of security as well on the impact of heuristic attacks to our function. We
believe that our novel use of FFT might be of independent interest, and find other applications in
cryptographic design.



Another important ingredient in the conceptual design of our function (and associated proof
of security) is the use of lattices with special structure as an underlying mathematical problem.
Special classes of lattices (with closely related, but somehow different structure than ours) also
have been used before in practical constructions (most notably, the NTRU encryption scheme [8]),
but without a mathematical proof of security.

More closely related to our work, is the theoretical study initiated by Ajtai [1] of cryptographic
functions that are provably secure based on worst-case assumptions for lattice problems. Ajtai’s
work and subsequent improvements [7, 4, 11, 12] leading to provably secure hash functions, are
based on general lattices and do not lead to very efficient implementations, mostly because of the
huge key size (which grows quadratically in the security parameter.) A first step toward bridging
the gap between theoretical constructions and practical functions was taken by Micciancio [10] who
proposed the use of lattices with special structure (namely, cyclic lattices) and showed how they lead
to cryptographic functions that are provably secure (in the strong worst-case/average-case sense of
[1]) and still admit very fast implementation. In fact, the use of FFT in the implementation of these
provably secure cryptographic functions was already suggested in [10]. The main limitation of the
function proposed in [10] was the notion of security achieved: they are provably one-way (based
on worst-case assumption on the complexity of cyclic lattices), but not (as subsequently shown in
[13, 9]) collision resistant. This difficulty was finally overcome by the authors in [13, 9], where the
function initially proposed in [10] is modified and generalized to achieve collision resistance.

From a theoretical point of view, the functions proposed in this paper are equivalent to and
inherit all provable security features from the cyclic/ideal hash functions of [13, 9]. But differently
from [10, 13, 9], the emphasis in this paper is on practical implementation issues, and the construc-
tion of instances and variants of those hash functions that enjoy very efficient implementation from
a practical point of view. For a deeper understanding of the theoretical ideas undelying the proof
of security of our hash functions the reader is referred to [10, 13, 9].

Organization The rest of the paper is organized as follows. In section 2 we give some mathe-
matical background. In section 3 we give a detailed description of our hash function family. In
section 4 we describe the relation between our functions and the functions of [10, 13, 9], resulting in
a security proof. In sections 5 and 6 we describe implementation issues and possible instantiations
of our function family to give an idea of the efficiency of our construction. Finally, in section 7 we
discuss practical attacks, their (in)effectiveness and open problems.

2 Preliminaries

The preliminaries below are not needed for the reader who is only interested in the implementation
of the hash function. Such a reader may safely skip to section 3.

Lattices An n-dimensional integer lattice is a subgroup of Zn generated by linearly independent
vectors b1, . . . ,bn ∈ Zn. The set of vectors b1, . . . ,bn is called a basis for the lattice, and can be
compactly represented by the matrix B having the basis vectors as rows. The minimum distance
of a lattice L(B), denoted λ∞1 (L(B)), is the minimum distance between any two (distinct) lattice
points and equals the length of the shortest nonzero lattice vector. The minimum distance can
be defined with respect to any norm, but we are mainly interested in the `∞ norm. The γ-
approximate Shortest Vector Problem, SV Pγ is the following: given a lattice L(B), find a nonzero



vector v ∈ L(B) such that ‖v‖∞ ≤ γλ∞1 (L(B)). The shortest vector problem in the infinity norm
was shown to be NP -hard for factor up to γ(n) = n1/ log log n by Dinur [6] and it is conjectured to
be hard to approximate to a polynomial factor.

Algebra An ideal I of a ring R is an additive sub-group of R with the additional property that
the product of any element in I with any element in R is in I. If R = Z[α]/〈f〉 for some irreducible
polynomial f of degree n, then any ideal I of R is isomorphic as an additive group to a full-rank
subgroup of Zn. In [9], an ideal lattice was defined as an integer lattice that is isomorphic as an
additive group to some ideal in a ring R = Z[α]/〈f〉 for some f . Ideal lattices are a generalization
of cyclic lattices that were introduced in [10]. The complexity of ideal lattices has not been studied
rigorously, but it does not seem that any current lattice basis reduction algorithm is able to take
advantage of their special structure. Thus it is reasonable to believe that finding the shortest vector
in ideal lattices is not much easier than finding the shortest vector in a general lattice.

The ideal lattices that are most relevant in this work are lattices that are isomorphic as additive
groups, under the obvious isomorphism, to ideals in the ring R = Z[α]/〈f〉, where f = αn + 1 for
n a power of 2. For such values of n, f is a monic irreducible polynomial over Q[α]. In fact, f is
known as the 2nth cyclotomic polynomial, which has as its zeros all n of the the primitive 2nth
complex roots of unity. As an aside, we mention n being a power of 2 is also a necessary condition
for αn + 1 to be irreducible over Q[α].

3 Algorithmic Description of the Function

We start by describing the function in manner that can be easily translated into an implementation.
This description fills in many of the details in the informal overview from Section 1.

3.1 Function Parameters

Our function involves the following parameters (concrete choices for our implementation are sug-
gested in Section 6):

• n — a positive power of 2, and the number of columns in the key and input matrices.

• m — the “width” of the function, i.e. the number of rows in the key and input matrices.

• p — a prime modulus over which the function is computed, of the form p = 2tn + 1 for some
positive integer t. This guarantees that Z∗

p has an element ω of order 2n.

• d — a bound on the entries of the input matrix, significantly smaller than p.

3.2 Modular Fast Fourier Transform

The main tool which allows our function to be computed efficiently is the modular Fast Fourier
transform (mFFT) over the field Zp. The modular FFT is a variant of the “classical” FFT. Both
algorithms compute the discrete Fourier transform (DFT) of a vector, but over different fields.
While the classical FFT computes the DFT over the field C of complex numbers, the modular FFT
computes the DFT over the field Zp.



x1,1 x1,2 x1,n

y1,2 y1,n

FFT

...

...
w0 w1 wn-1x x x

x2,1 x2,2 x2,n

y2,1 y2,2 y2,n

FFT

...

...
w0 w1 wn-1x x x

x3,1 x3,2 x3,n

y3,1 y3,2 y3,n

FFT

...

...
w0 w1 wn-1x x x

z1 z2 zn...

a2,1 xa1,1 x a1,2 x a2,2 xa1,n x a2,n x a3,n xa3,1 x a3,2 x

+

+

+

y1,1

Figure 1: Compression function with m = 3

To operate on vectors of dimension n over Zp, the mFFT algorithm requires an element ζ ∈ Z∗
p

which is a primitive nth root of unity. An element ζ is a primitive nth root of unity if its order is
n, i.e. ζn = 1 and ζi 6= 1 for every positive integer i < n. Because p is of the form p = 2tn + 1 and
we have an element ω ∈ Z∗

p of order 2n, we may take ζ = ω2.
The modular FFT performs all its operations using integer arithmetic modulo p, and requires

only 0.5n lg n multiplications and n lg n additions in Zp. The mFFT is highly parallelizable and
suitable for implementation both in hardware and software. See Section 5 for more details.

3.3 The Algorithm

The algorithm for computing our compression function can be described as follows (see Figure 1
for a graphical depiction):

Key: an m × n matrix A = (ai,j). Each entry ai,j is chosen uniformly and independently in Zp.

Input: an m × n matrix X = (xi,j). Each entry xi,j is an arbitrary value in D = {0, . . . , d} ⊂ Zp.

Function evaluation: Perform the following steps, where all arithmetic is performed in Zp:

1. For each i, j, let x′i,j = ωj−1 · xi,j .
2. For each row i = 1, . . . ,m, let (yi,1, . . . , yi,n) = mFFT(x′i,1, . . . , x

′
i,n).

3. For each column j = 1, . . . , n, let zj = a1,jy1,j + · · · + am,jym,j .
4. Output z = (z1, . . . , zn).

It can be seen that the algorithm maps mnblg(d + 1)c input bits into ndlg pe bits. Thus the
compression factor depends on the relationships among m, d, and p (these relationships also have
implications for the security of the function; see Section 4 for details). The key size is mndlg pe
bits. We refer the reader to Section 6 for concrete choices of parameters.



4 Proof of Security

In this section we relate our compression function to the theoretical results in [10, 13, 9]. In
particular, we show the equivalence of the compression function described in the previous section
with an algebraic function proven to be collision resistant in [9]. A reader interested only in the
algorithmic description and implementation may safely skip this entire section.

4.1 The Algebraic Function

The basic operations of the function are performed in the ring R = Zp[α]/〈f〉, where f = αn + 1
is a monic irreducible polynomial and p is a suitably-chosen integer. The ring R is an integral
domain consisting of all polynomials of degree less than n and having coefficients in Zp, where
multiplication and addition are performed modulo p and f . As above, let D = {0, . . . , d}. Define
S ⊂ R to be the subset of all polynomial residues in R whose coefficients are all in D. That is,
S = {x = x1 + x2α + · · · + xnαn−1 ∈ R : ∀ i, xi ∈ D}. The function can then be described
mathematically as follows:

Key: an m-tuple A = (a1, . . . , am) ∈ Rm. Each entry is chosen uniformly and independently in R.

Input: an arbitrary m-tuple X = (x1, . . . , xm) ∈ Sm.

Function value: The function is defined as follows (all arithmetic is performed in R):

hA(X) =
m∑

j=1

aj · xj .

The following theorem states that if one can find collisions, with non-negligible probability, for
randomly chosen keys A, then one can find the approximate shortest vector in any lattice isomor-
phic to an ideal in Z[α]/〈f〉.

Theorem 4.1 [9, Theorem 2] Let p > 6dmn1.5 log n and γ = 72dmn log2 n. If there is an algorithm
that, for a random choice of A ∈ Rm, is able to produce X1 6= X2 ∈ Sm such that hA(X1) = hA(X2)
with non-negligible probability, then the problem SV Pγ can be solved in polynomial time for any
lattice isomorphic to an ideal in Z[α]/〈f〉.

A result similar to Theorem 4.1 was shown by [13] for the related case of ideals in the ring
Z[α]/〈f〉 where f = αn − 1, and n is a prime. One may consider other choices of f as well, as
done in [9]. In this work, we chose f = αn + 1 for the sake of convenience of implementation. In
particular, it allows the dimension n to be a power of two (recall that αn + 1 is irreducible over Q
if and only if n is a power of two).

4.2 Equivalence of Functions

Now we show that the above function is equivalent to the one described in Section 3 (i.e. find-
ing collisions in one implies finding collisions in the other). This can be seen via the following
observations:



• There is a correspondence between n-dimensional vectors x ∈ Zn
p and elements x ∈ R: the

vector x = (x1, . . . , xn) corresponds to the polynomial x = x1 + x2α + · · · + xnαn−1 ∈ R.

• Multiplication of polynomials a, x ∈ Zp[α]/〈αn+1〉 can be implemented by evaluating a and x
on all the roots of αn + 1 and multiplying the corresponding values. The product polynomial
a · x can be interpolated from the result.

The roots of αn +1 are the primitive 2nth roots of unity, which are of the form ω2j+1 = ζj ·ω
for j = 0, . . . , n − 1. The polynomial x can be evaluated on these points by appropriately
pre-multiplying and applying the mFFT to the corresponding vector x:

x(ζj · ω) =
n∑

i=1

xi · (ζjω)i−1 =
n∑

i=1

(xi · ωi−1) · ζj(i−1) =
n∑

i=1

(x′i) · ζj(i−1) = mFFT(x′)j

where x′ = (x′1, . . . , x
′
n) and x′i = xi · ωi−1 as in the algorithm from Section 3.3.

• Because mFFT computes a bijection and the key matrix A is completely uniform, then so is
the mFFT of each column of A. Therefore in the algorithm we view A as already having had
mFFT applied to each of its rows.

• Finally, we note that there is no need for the algorithm to interpolate its output via an inverse
mFFT: the mFFT computes a bijection and is efficiently invertible, so collision-resistance and
one-wayness are preserved. In addition, the range of mFFT is equal to its domain, so omitting
the inverse mFFT does not introduce any difficulties in representing the output.

5 Implementation Details

5.1 Parallelizing the Computation

Our compression function is parallelizable to a very large degree. The two main targets of paral-
lelism are in (1) the FFT implementation and (2) the m invocations of FFT on each row of the
input matrix. There are many off-the-shelf FFT libraries which are optimized for parallel archi-
tectures, and parallelizing the m invocations of FFT is elementary, because they are independent.
As dual- and multi-core processors become more common in commodity hardware, we expect that
optimized implementations will be able to achieve many-fold improvements in speed.

5.2 Chinese Remaindering for Larger Moduli

For the best performance of a software implementation, multiplication modulo p must be done
using the on-chip registers and standard instruction set of the hardware. One way to ensure this
would be to simply choose a small enough value of p. However, by doing so we would no longer
know how to provide a proof of security for the function.

We instead propose choosing p = p1p2 to be the product of two different primes (of the form
pi = 2tn + 1), and computing the compression function in parallel modulo p1 and p2 (on the
same input). By the Chinese Remainder Theorem, it can be shown that the resulting compression
function is equivalent to the original one; in particular, finding collisions remains hard. This idea
can of course be generalized to values of p that are products of more than two primes.



Note that no explicit Chinese remainder reconstruction of the output is necessary; the outputs
of the parallel evaluations may simply be concatenated. We also stress that the factorization of
p need not be secret, and that the choice of p having these special properties does not affect the
security of the function.

5.3 Using Classical FFT Algorithms

Our compression function can also be implemented using a “classical” FFT over the field of complex
numbers, for which there is much preexisting code and specialized hardware. However, one must
account for the following issues (which do not arise when using a modular FFT):

• A classical FFT requires floating-point calculations, which are inexact and tend to be slower
than integer arithmetic. However, the advantages of customized hardware and parallel archi-
tecture may outweigh these concerns.

• The algorithm will additionally have to perform pre-multiplication and a classical FFT on
the rows of the key vector A, as it does with the rows of X. If the same key is to be used
multiple times, this processing can be performed as part of a setup phase, and the results
stored.

• The result of the “confusion” step (which has complex entries) must be interpolated via an
inverse FFT, interpreted as an integer vector, and reduced modulo p.

6 Concrete Parameters: Three Modes

The most attractive feature of our hash function family is an asymptotic proof of security showing
that, unless an underlying mathematical problem can be solved in polynomial time in the worst
case, finding collisions is infeasible. In particular (and differently from typical ad-hoc hash functions
with are defined only for specific values of the input/output/key parameters), the security of the
function can be arbitrarily increased by choosing a suitable large value of the security parameter. Of
course, increasing the security parameter results in a loss of efficiency (both in terms of computation
time and output size), but this loss is only polynomial (in fact, almost linear), while the complexity
of the underlying problem is conjectured to be superpolynomial (or even exponential). So, the
security of the function increases much faster than the computational cost of evaluating it, and
attacks can always be countered (unless an efficient algorithm to solve lattice problems in the worst
case is discovered) by choosing larger values of the security parameter.

Unfortunately, the current proofs of security underlying our function [10, 13, 9] are not very
tight from a numerical point of view, and the security parameter must be fairly large before the
asymptotics kick in and breaking the function becomes provably as hard as an underlying lattice
problem for which no efficient solution is believed to exist.

For concreteness, in this section we consider some possible instantiations of our function for
specific values of the security parameter. The goal here is mainly to give a sense of the potential
efficiency of functions based on our design techniques. More extensive analysis of the concrete
security of the functions is necessary before any of the instantiations can be used in practice.

We propose three sets of function parameters, which we call “modes,” in Figure 2. The “Bulk”
mode uses dimension n = 1024 and has a large input and output block size (64 Kbits and 28 Kbits,
respectively). For this concrete choice of parameters our proof of security is based on a reasonable



n m d p Input (bits) Output (bits)
Bulk 1024 16 15 ≈ 228 65536 28672
Mini 128 8 3 257 2048 1025
Nano 64 8 3 257 1024 513

Figure 2: Concrete parameter choices for three modes of our compression function.

Bulk Mini Nano SHA-1 (openssl) SHA-1 (sha1sum) SHA-256 (openssl)
Rate (MB/s) 0.43 0.69 0.67 155 35 42

Figure 3: Speed of three modes of our compression function (Bulk, Mini, Nano), two versions of
SHA-1, and SHA-256

hardness assumption (i.e. hardness of approximating the shortest vector in a certain class of 1024-
dimensional lattices to within a factor of 232 in the worst case. This is out of reach of the current
state of the art lattice algorithms.1) We propose the Bulk mode primarily for applications which
hash very large inputs and require a high level of security. If a smaller output size is needed,
the Bulk mode can be composed with a different provably secure hash function based on other
number-theoretic assumptions. This allows to amortize the cost of expensive number-theory based
functions over a very large document, leading to a function which is at the same time reasonably
efficient and provably secure.

We also propose the “Mini” and “Nano” modes, which have smaller output sizes (about 1 Kbit
and 512 bits, respectively) and have somewhat better throughput. Unfortunately, for these choices
of parameters, theorem 4.1 does not apply because the value of p is too small, and thus we do
not get a proof of security. It’s possible to increase the value of p, but the resulting proof of
security will not be based on reasonable hardness assumptions: that is, the security reduction will
yield an approximation factor which is easy to achieve efficiently. Said plainly, for these choices of
parameters we do not have a proof of security. However, we also do not know how to find collisions
in these modes of the function. It may be that finding such collisions is hard, but we do not
know how to prove it. We propose the Mini and Nano versions as targets for further study and
cryptanalysis.

6.1 Performance

We implemented the three modes of the compression function described above. Our implementation
was written in C, using a standard iterative modular FFT algorithm (for the Bulk mode, we used
the Chinese Remainder technique described in Section 5.2). No attempt was made to optimize or
parallelize the code, and we believe that there are many standard optimization techniques as well
as improvements to the core FFT algorithm which will improve performance. Our implementation
was compiled using gcc version 4.0.3 (compiler flags: -O4) on a Pentium M 1.6 GHz system having
2 MB of L2 cache and running Linux kernel 2.6.15.

We compared our implementation with the SHA-1 and SHA-256 hash algorithms on the same
system. We used the highly-optimized implementations included in openssl version 0.9.8a (using

1We remark that 1024 is the dimension of lattice problems that can be provably solved in the worst case should
our function be broken. Cryptanalysing our function seem to require the solution of lattice problems in even higher
dimension.



the openssl speed benchmarks), as well as the sha1sum command-line utility on a 40 MB file.
Aggregate performance numbers are presented in Figure 3. Our function appears to be about 60
times slower than SHA-256. With some modest programming effort, we increased the speed of
the “Nano” version of the function by a factor of four, thus making it only 15 times slower than
SHA-256. We believe that with additional programming effort, the performance of the function
can be greatly improved and we are currently working on a more efficient implementation.

7 Possible Attacks

We are still in the early stages of cryptanalysis, and we only considered a few standard attacks.
One possible attack is a lattice attack which was implicitly mentioned in [10]. The idea of the
attack is the following: given a random m-tuple of vectors (a1, . . . ,am), create an mn × n matrix
consisting of Rot(a1), . . . , Rot(am) (see figure 4) and call the resulting matrix A.

Figure 4: A and its kernel Ker(A)

If we are able to find a vector x such that xA = 0(mod p) where the absolute values of all the
coefficients of x are at most d, then we have a collision for the hash function. To find such an x,
we create a lattice all of whose vectors are solutions to xA = 0(mod p) and attempt to find the
shortest vector in this lattice. To compute the lattice, we compute the kernel of A, which can be
represented as shown in figure 4. We then transform Ker(A) into a lattice basis as in Figure 5 and
run LLL.

During our experiments, this attack worked only up to n = 32 (i.e. we were not able to find
collisions even in the “Nano” instantiation of the function). One of the reasons may have been the
fact that LLL and its Block-Korkin-Zolotarev (BKZ) variant return the smallest vector in the `2

norm, while we are looking for a smallest vector in the `∞ norm. But another reason for the failure
of the attack is that the lattices of dimension nm are too large for LLL to find the shortest vector.
A possible way to improve the attack is after finding a relatively short vector in the `2 norm, try
to enumerate the short vectors around it in hope of finding a short vector in `∞.



Figure 5: Basis for a lattice consisting of {x|xA = 0(mod p)}

Another possible attack is Wagner’s generalized birthday attack [18]. We do not describe the

particulars here, but the attack would take on the order of 2
n log p
log d+1 time. This makes it impractical

even for the “Nano” instantiation.
Essentially, any attack on our hash function is equivalent to trying to find a small x such that

xA = 0(mod p) (where A is as in figure 4). We believe that if there is an attack that will succeed in
finding collisions for the “Nano” and “Micro” versions, it should somehow use the fact that the rows
of A consist of Rot(ai) rather than random independent vectors. Because if A consists of random
independent vectors, then trying to find a small x such that xA = 0(mod p) is essentially the same
as solving a version of the random subset sum problem which has been studied extensively, but
eluded anything remotely close to an efficient solution. Both approaches that we have tried do not
take advantage of the structure of A, and thus it’s unlikely that they will lead to finding collisions.
We think that finding collisions efficiently may require a novel “algebraic” approach.

Finally, we mention that it would be interesting to analyze the security of our function (even for
scaled down values of the parameters for which the proof of security does not hold) with respect to
conventional cryptanalysis techniques, like linear or differential cryptanalysis. This may give further
insight both into the security of our function, and the applicability of the underlying techniques in
a wider cryptographic design context.

Acknowledgements

We would like to thank Ron Rivest for his kind advice and suggestions.

References

[1] M. Ajtai. Generating hard instances of lattice problems. In STOC, pages 99–108, 1996.

[2] T. Baritaud, H. Gilbert, and M. Girault. FFT hashing is not collision-free. In EUROCRYPT,
pages 35–44, 1992.



[3] E. Biham, R. Chen, A. Joux, P. Carribault, W. Jalby, and C. Lemuet. Collisions of SHA-0
and reduced SHA-1. In EUROCRYPT, 2005.

[4] J. Cai and A. Nerurkar. An improved worst-case to average-case connection for lattice prob-
lems. In FOCS, pages 468–477, 1997.

[5] J. Daemen, A. Bosselaers, R. Govaerts, and J. Vandewalle. Collisions for schnorr’s hash
function FFT-hash presented at crypto ’91. In ASIACRYPT.

[6] I. Dinur. Approximating SV P∞ to within almost-polynomial factors is NP-hard. Theor.
Comput. Sci., 285(1):55–71, 2002.

[7] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice problems.
Technical Report TR-42, ECCC, 1996.

[8] J. Hoffstein, J. Pipher, and J. H. Silverman. Ntru: A ring-based public key cryptosystem. In
ANTS, pages 267–288, 1998.

[9] V. Lyubashevsky and D.Micciancio. Generalized compact knapsacks are collision resistant. In
ICALP, 2006.

[10] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions
from worst-case complexity assumptions. Computational Complexity. (To appear. Preliminary
version in FOCS 2002).

[11] D. Micciancio. Almost perfect lattices, the covering radius problem, and applications to Ajtai’s
connection factor. SIAM J. on Computing, 34(1):118–169, 2004.

[12] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian mea-
sures. SIAM J. on Computing. (To appear. Preliminary version in FOCS 2004).

[13] C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case assumptions on
cyclic lattices. In TCC, 2006.

[14] C. P. Schnorr. FFT-hash, an efficient cryptographic hash function. In Crypto Rump Session,
1991.

[15] C. P. Schnorr. FFT–Hash II, efficient cryptographic hashing. In EUROCRYPT, pages 45–54,
1992.

[16] C.P. Schnorr and Serge Vaudenay. Parallel FFT-hashing. In Fast Software Encryption, pages
149–156, 1993.

[17] S. Vaudenay. FFT-Hash-II is not yet collision-free. In CRYPTO, pages 587–593, 1992.

[18] D. Wagner. A generalized birthday problem. In CRYPTO, pages 288–303, 2002.

[19] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis for hash functions MD4 and
RIPEMD. In EUROCRYPT, 2005.

[20] X. Wang and H. Yu. How to break MD5 and other hash functions. In EUROCRYPT, 2005.


