
Concurrent Zero Knowledge with Logarithmic Round-Complexity

Manoj Prabhakaran∗

Princeton University

Alon Rosen†

Weizmann Institute of Science

Amit Sahai‡

Princeton University

Abstract

We show that every language in NP has a (black-box)

concurrent zero-knowledge proof system using Õ(log n)
rounds of interaction. The number of rounds in our protocol

is optimal, in the sense that any language outside BPP re-

quires at least Ω̃(log n) rounds of interaction in order to be

proved in black-box concurrent zero-knowledge. The zero-

knowledge property of our main protocol is proved under

the assumption that there exists a collection of claw-free

functions. Assuming only the existence of one-way func-

tions, we show the existence of Õ(log n)-round concurrent

zero-knowledge arguments for all languages in NP .

1 Introduction

Zero-knowledge proof systems, introduced by Gold-

wasser, Micali and Rackoff [14] are efficient interactive

proofs that have the remarkable property of yielding noth-

ing beyond the validity of the assertion being proved. The

generality of zero-knowledge proofs has been demonstrated

by Goldreich, Micali and Wigderson [13], who showed that

every NP-statement can be proved in zero-knowledge pro-

vided that one-way functions exist [16, 20]. Since then,

zero-knowledge proofs have turned out to be an extremely

useful tool in the design of various cryptographic protocols.

The original setting in which zero-knowledge proofs

were investigated consisted of a single prover and verifier

which execute only one instance of the protocol at a time.

A more realistic setting, especially in the time of the Inter-

net, is one which allows the concurrent execution of zero-

knowledge protocols [8, 6]. In the concurrent setting, many

protocols (sessions) are executed at the same time, involv-

ing many verifiers which may be talking with the same (or

many) provers simultaneously (the so-called parallel com-

position considered in [12, 9, 10] is a special case). This set-

ting presents the new risk of a coordinated attack in which

an adversary controls many verifiers, interleaving the exe-

cutions of the protocols and choosing verifiers’ messages

∗Email: mp@cs.princeton.edu.
†Email: alon@wisdom.weizmann.ac.il.
‡Email: sahai@cs.princeton.edu.

based on other partial executions of the protocol. Since

it seems unrealistic (and certainly undesirable) for honest

provers to coordinate their actions so that zero-knowledge

is preserved, we must assume that in each prover-verifier

pair the prover acts independently.

Loosely speaking, a zero-knowledge proof is said to

be concurrent zero-knowledge (cZK) if it remains zero-

knowledge even when executed in the concurrent setting.

Recall that in order to demonstrate that a certain proto-

col is zero-knowledge it is required to demonstrate that the

view of every probabilistic polynomial-time adversary in-

teracting with the prover can be simulated by a probabilis-

tic polynomial-time machine (a.k.a. the simulator). In the

concurrent setting, the verifiers’ view may include multiple

sessions running at the same time. Furthermore, the veri-

fiers may have control over the scheduling of the messages

in these sessions (i.e., the order in which the interleaved ex-

ecution of these sessions should be conducted). As a con-

sequence, the simulator’s task in the concurrent setting be-

comes considerably more complicated. In particular, stan-

dard techniques, based on “rewinding the adversary”, run

into trouble.

1.1 Previous Work

An informal argument concerning the difficulty of con-

structing round-efficient cZK was given by Dwork, Naor,

and Sahai in their paper introducing cZK [6]. The first

rigorous lower bound was given by Kilian, Petrank and

Rackoff [19] who showed, building on the techniques

of [12], that for every language outside BPP there is no 4-

round protocol whose concurrent execution is simulatable

in polynomial-time by a black-box simulator. (A black-box

simulator is a simulator that has only black-box access to

the adversarial verifier.) This lower bound was later im-

proved by Rosen to seven rounds [22], and was further im-

proved to Ω(log n/ log log n) rounds by Canetti, Kilian, Pe-

trank and Rosen [5].

Even ignoring issues of round efficiency, it was not a-

priori clear whether there exists cZK protocols for lan-

guages outside of BPP. Richardson and Kilian were the

first to exhibit a family of cZK protocols (parameterized

by the number of rounds) for all languages in NP [21].

The original analysis of the RK protocol showed how to

simulate in polynomial-time nO(1) concurrent sessions only

when the number of rounds in the protocol is at least nǫ (for

some arbitrary ǫ > 0). This analysis has been later im-

proved by Kilian and Petrank [18], who show that the RK

protocol remains concurrent zero-knowledge even if it has

O(α(n) · log2 n) rounds, where α(·) is any non-constant

function (e.g., α(n) = log log n).

In a recent breakthrough result, Barak [1] constructs a

constant-round protocol for all languages in NP whose

zero-knowledge property is proved using a non black-box

simulator. Such a method of simulation enables him to

prove that for every (predetermined) polynomial p(·), there

exists a constant-round protocol that preserves its zero-

knowledge property even when it is executed p(n) times

concurrently (where n denotes the size of the common in-

put). This has been previously shown to be unachievable

via black-box simulation [5] (unless NP ⊆ BPP).

A major drawback of Barak’s protocol is that the (poly-

nomial) number of concurrent sessions relative to which the

protocol should be secure must be fixed before the protocol

is specified. Moreover, the length of the messages in the

protocol grows linearly with the number of concurrent ses-

sions. Thus, from both a theoretical and a practical point

of view, Barak’s protocol is still not satisfactory. What we

would like to have is a single protocol that preserves its

zero-knowledge property even when it is executed concur-

rently for any (not predetermined) polynomial number of

times. Such a property is indeed satisfied by the protocols

of [21, 18] (alas these protocols are not constant-round).

1.2 Our Results

In this work we close the gap between the known up-

per and lower bounds on the round-complexity of black-

box cZK [18, 5]. Specifically, assuming the existence of

perfectly-hiding commitment schemes (which exist assum-

ing the existence of a collection of claw-free functions [15]),

we show that every language in NP can be proved in cZK
using only Õ(log n) rounds of interaction. Our main result

is stated in the following theorem:

Theorem 1 (Main Theorem) Assuming the existence

of perfectly-hiding commitment schemes, there exists an

Õ(log n)-round black-box concurrent zero-knowledge

proof system for every language L ∈ NP (that is, for

every input x, the number of messages exchanged is at most

Õ(log(|x|))).

We stress that our protocol retains its zero-knowledge prop-

erty even under “full fledged” concurrent composition. That

is, once the protocol is fixed it will remain zero-knowledge

no matter how many times it is executed concurrently (as

long as the number of concurrent sessions is polynomial in

the size of the input).

Notice that the above theorem completes the classifica-

tion of the round-complexity of black-box cZK. Namely,

by combining Theorem 1 with the lower bound of Canetti

et al. [5], we have:

Corollary 1 The round-complexity of black-box concurrent

zero-knowledge is Θ̃(log n) rounds.1

By relaxing the soundness requirement of the protocol to

hold only against computationally bounded provers (that

is, by considering so-called zero-knowledge arguments [14,

3]), we are able to achieve a similar result assuming only

the existence of one-way functions, namely:

Theorem 2 Assuming the existence of one-way functions,

there exists an Õ(log n)-round black-box concurrent zero-

knowledge argument system for every language L ∈ NP .

We note that the lower-bound by Canetti et al. [5] applies

also in the case of arguments.

1.3 Techniques

The proof of Theorem 1 builds on the protocol by

Richardson and Kilian [21] and on the simulator by Kilian

and Petrank [18]. However, our analysis of the simulator’s

execution is more sophisticated and thus yields a stronger

result. We introduce a novel counting argument that in-

volves a direct analysis of the underlying probability space.

This is in contrast to previous results that required subtle

manipulations of conditional probabilities. We also present

a new variant of the RK protocol [21] which is both simpler

and more amenable to analysis than the original version. In

the rest of this section, we briefly sketch the ideas we use to

obtain our main result.

Constructing zero-knowledge proofs for NP involves

resolving a tension between the soundness and zero knowl-

edge conditions: In (black-box) zero-knowledge proofs, the

simulator can be thought of as a party that interacts with

the verifier, but unlike the prover, the simulator must be

able to convince the verifier of both true and false state-

ments. To enable this, the simulator is given a “super

power,” namely the ability to “rewind” the verifier to an

earlier state, and thus base its messages on future verifier

messages. Very roughly speaking, zero knowledge proofs

for NP have been constructed by inserting “rewinding op-

portunities” into protocols, which allow the simulator to

“win” if it can base one of its earlier messages to the veri-

fier on a future message received from the verifier. We stress

that in order to successfully “exploit” a “rewinding oppor-

tunity,” the simulator must take care not to “rewind” too far

back, otherwise the information it learned from the verifier

will no longer be useful. It is precisely this problem which

1f(n) = Θ̃(h(n)) if both f(n) = Õ(h(n)) and f(n) = Ω̃(h(n)).

2

makes simulation so difficult in concurrent zero knowledge,

because rewinding one verifier may cause another verifier

to be rewound “too much,” requiring re-simulation, as first

pointed out by [6].

The Richardson-Kilian (RK) protocol and Kilian-

Petrank simulation. The basic idea of the Richardson-

Kilian cZK protocol [21] is to have a protocol with many

rewinding opportunities, so that even if the simulator has

to miss one opportunity, it will still get many more. Kilian

and Petrank then showed that in fact, there exists a simula-

tor for the RK protocol which has a very natural “oblivious”

rewinding strategy [18] – in other words, the simulator’s de-

cisions of when and how much to rewind do not depend on

the behavior of the verifiers, but are predetermined.

At this point, we note that a simple technical calculation

shows that a single chance to exploit a rewinding oppor-

tunity results in only a constant probability that the sim-

ulator will “win.” Thus, the simulator needs a superlog-

arithmic number of (roughly independent) chances to ex-

ploit rewinding opportunities in order to reduce its fail-

ure probability to a negligible fraction. Kilian and Petrank

showed that in their oblivious rewinding strategy, through-

out the simulation, every time a session of the protocol

completes, the simulator will have chances to exploit at

least Ω(k/ logn) rewinding opportunities, where k is the

total number of rewinding opportunities in the protocol (the

number of rounds in the protocol would then be O(k)). This

implies that Õ(log2 n) rounds suffice for concurrent simu-

lation of the RK protocol.

The new ideas underlying this work. Unfortunately, the

Kilian-Petrank argument does not extend to the case when

k = Õ(log n). In fact, in such a case there may exists only

few (i.e., o(log n)) rewinding opportunities that can be ex-

ploited by the simulator.

We overcome this limitation by shifting our focus from

the number of “exposed” rewinding opportunities in the

protocol, to the total number of chances to exploit rewinding

opportunities counted with multiplicity, in case the rewind-

ing schedule permits multiple chances to exploit a single

rewinding opportunity in the protocol. In fact, we show that

the Kilian-Petrank oblivious rewinding strategy itself al-

ways yields roughly k−O(log n) such chances in total. This

allows us to conclude that Õ(log n) rounds suffice. Further-

more, rather than relying on a subtle manipulation of condi-

tional probabilities as done in previous work [21, 18], build-

ing on a suggestion of [17] we employ a direct counting ar-

gument to prove our claim. We essentially show directly

that there can only be very few random coins on which our

simulation fails, by arguing that for every choice of random

coins on which our simulation fails, there must be super-

polynomially more other choices for the random coins on

which it does not.

1.4 Conclusions and an open problem

Our result (together with [5]) essentially completes the

classification of the round-complexity of black-box cZK
(Corollary 1). Still, in light of Barak’s recent result [1],

constant-round cZK protocols (with non black-box simula-

tors) do not seem out of reach. A natural open question is

whether there exists a constant-round (non black-box) cZK
protocol for all languages in NP .

2 Definition of cZK

We use the standard definitions of interactive proofs (and

interactive Turing machines) [14, 11] and arguments (a.k.a

computationally-sound proofs) [3]. In defining concurrent

zero knowledge, we follow the original definition of [6],

using a refinement due to [5].

Let 〈P, V 〉 be an interactive proof (resp. argument) for

a language L, and consider a concurrent adversary (veri-

fier) V ∗ that, given input x∈L, interacts with an unbounded

number of independent copies of P (all on common input

x). The concurrent adversary V ∗ is allowed to interact with

the various copies of P concurrently, without any restric-

tions over the scheduling of the messages in the different

interactions with P (in particular, V ∗ has control over the

scheduling of the messages in these interactions).

The transcript of a concurrent interaction consists of the

common input x, followed by the sequence of prover and

verifier messages exchanged during the interaction. We de-

note by viewP

V ∗(x) a random variable describing the content

of the random tape of V ∗ and the transcript of the concur-

rent interaction between P and V ∗.

Following [5], we overcome subtle issues that arise in

the context of black-box cZK by allowing the existence of a

different simulator Sq for every V ∗ that runs at most q(|x|)
concurrent sessions. (This is in contrast to the customary

definition of “stand-alone” black-box ZK in which it is re-

quired that there exists a “universal” simulator that works

for all potential verifiers V ∗.)

Definition 1 (Black-Box cZK) Let 〈P, V 〉 be an interac-

tive proof system for a language L. We say that 〈P, V 〉 is

black-box concurrent zero-knowledge if for every poly-

nomial q(·), there exists a probabilistic polynomial-time al-

gorithm Sq , so that for every concurrent adversary V ∗ that

runs at most q(|x|) concurrent sessions, Sq(x) runs in time

polynomial in q(|x|) and |x|, and satisfies that the ensem-

bles {viewP

V ∗(x)}x∈L and {Sq(x)}x∈L are computation-

ally indistinguishable.

3 A new cZK Proof System for NP

In this section we present a high-level description of our

protocol, as well as a description of the black-box simulator

that establishes its zero-knowledge property.

3

Our protocol is inspired by the RK protocol [21] and

uses the well known 3-round protocol for Hamiltonicity

by Blum [2] as a building block. The crucial property of

Blum’s protocol that we need in order to construct a con-

current zero-knowledge simulator is that the simulation task

becomes trivial as soon as the verifier’s message is known in

advance. That is, if the prover knows the verifier’s “secret”

prior to the beginning of the protocol then it can always

make the verifier accept (regardless of whether the graph

is Hamiltonian). This is done by adjusting the prover’s

messages according to the contents of the verifier’s “secret”

(which, as we said, is known in advance).

We stress that the choice of Blum’s protocol as a build-

ing block is arbitrary (and is made just for simplicity of pre-

sentation). In fact, the above property is satisfied by many

other known protocols. Any one of these protocols could

have been used as a building block for our construction.

3.1 The Protocol

We let k be any super-logarithmic function in n. Our pro-

tocol consists of two stages. In the first stage (or pream-

ble), which is independent of the actual common input, the

verifier commits to a random n-bit string σ, and to two se-

quences, {σ0
i,j}

k
i,j=1, and {σ1

i,j}
k
i,j=1, each consisting of k2

random n-bit strings (this first message employs a perfectly-

hiding commitment scheme and is called the initial commit-

ment of the protocol). The sequences are chosen under the

constraint that for every i, j the value of σ0
i,j ⊕ σ1

i,j equals

σ. This is followed by k iterations so that in the jth iteration

the prover sends a random k-bit string, bj = b1,j, . . . , bk,j ,

and the verifier decommits to σ
b1,j

1,j , . . . , σ
bk,j

k,j .

In the second stage, the prover and verifier engage in

the 3-round protocol for Hamiltonicity, where the “secret”

sent by the verifier in the second round of the Hamiltonicity

protocol equals σ (at this point the verifier also decommits

to all the values σ, {σ
1−bi,j

i,j }k
i,j=1 that were not revealed in

the first stage). The protocol is depicted in Figure 1.

Intuitively, since in an actual execution of the protocol,

the prover does not know the value of σ, the protocol con-

stitutes a proof system for Hamiltonicity (with negligible

soundness error). However, knowing the value of σ in ad-

vance allows the simulation of the protocol: Whenever the

simulator may cause the verifier to reveal both σ0
i,j and σ1

i,j

for some i, j (this is done by the means of rewinding the ver-

ifier after the values σ
b1,j

1,j , . . . , σ
bk,j

k,j have been revealed),

it can simulate the rest of the protocol (and specifically

Stage 2) by adjusting the first message of the Hamiltonicity

protocol according to the value of σ = σ0
i,j ⊕ σ1

i,j (which,

as we said, is obtained before entering the second stage).

First stage:

V → P : Commit to σ, {σ0
i,j}

k
i,j=1, {σ

1
i,j}

k
i,j=1.

σ0
i,j ⊕ σ1

i,j = σ for every i, j.

For j = 1, . . . , k:

P → V : Send b1,j , . . . , bk,j
r
← {0, 1}k .

V → P : Decommit to σ
b1,j

1,j , . . . , σ
bk,j

k,j .

Second stage:

P → V : Send first message of Hamiltonicity protocol.

V → P : Decommit to σ and to {σ
1−bi,j

i,j }ki,j=1.

P → V : Answer according to the value of σ.

Figure 1. Our cZK protocol. The first stage is
independent of the common input and con­

sists of k iterations. The second stage con­

sists of a 3­round proof of Hamiltonicity.

3.2 The Simulator

Let (V0), (P1), (V1), . . . , (Pk), (Vk) denote the 2k +1
first stage messages in our protocol and let (p1), (v1), (p2)
denote the three (second stage) messages in the Hamiltonic-

ity proof system. Loosely speaking, the simulator is said to

rewind the the jth round if after receiving a (Vj) message,

it “goes back” to some point preceding the corresponding

(Pj) message and “re-executes” the relevant part of the in-

teraction until (Vj) is reached again.

Note that, if the simulator manages to receive (Vj) as

answer to two different (Pj) messages (due to rewinding)

the simulator has obtained both σ0
i,j and σ1

i,j for some i ∈
{1, . . . , k}. If this happens in even one of the rounds j in

the first stage, then it reveals the verifier’s “secret” (which

is equal to σ0
i,j ⊕ σ1

i,j). Once the secret is revealed, the

simulator can cheat arbitrarily in the second stage of the

protocol.

To simplify the analysis, we let the simulator always pick

the (Pj)’s uniformly at random. Since the length of the

(Pj) messages is super-logarithmic, the probability that any

two (Pj) messages sent during the simulation are equal is

negligible.

Motivating discussion. The binding property of the ini-

tial commitment guarantees us that, once σ0
i,j and σ1

i,j have

been revealed, the verifier cannot “change his mind” and

decommit to σ 6= σ0
i,j ⊕ σ1

i,j on a later stage. However,

this remains true only if we have not rewound past the ini-

tial commitment. As observed by Dwork et al. [6], rewind-

ing a specific session in the concurrent setting may result

in rewinding past the initial commitment of other sessions.

This means that the “work” done for these sessions may be

lost (since once we rewind past the initial commitment of a

4

Input: (ℓ,hist, T)

Bottom level (ℓ = 1):

• Uniformly choose a first stage prover message p, and feed V ∗ with (hist, p).

• Store V ∗’s answer v, in T .

• Output (p,v), T .

Recursive step (ℓ > 1):

• Set (p̃1, ṽ1, . . . , p̃ℓ/2, ṽℓ/2), T1 ←SIMULATE(ℓ/2, hist, T).

• Set (p1, v1, . . . , pℓ/2, vℓ/2), T2 ← SIMULATE(ℓ/2, hist, T1).

• Set (p̃ℓ/2+1, ṽℓ/2+1, . . . , p̃ℓ, ṽℓ), T3 ←SIMULATE(ℓ/2, (hist, p1, v1, . . . , pℓ/2, vℓ/2), T2).

• Set (pℓ/2+1, vℓ/2+1, . . . , pℓ, vℓ), T4 ← SIMULATE(ℓ/2, (hist, p1, v1, . . . , pℓ/2, vℓ/2), T3).

• Output (p1, v1, . . . , pℓ, vℓ), T4.

Figure 2. The rewinding strategy of the simulator. Even though messages (p̃1, ṽ1, . . . , p̃ℓ, ṽℓ) do not

explicitly appear in the output, some of them do appear in the table T4.

session all σ
bi,j

i,j values that we have gathered in this session

become irrelevant). Consequently, the simulator may find

himself doing the same amount of “work” again.

The rewinding strategy. The big question is how to de-

sign a simulation strategy that will manage to overcome the

above difficulty. In this work we follow the approach taken

by Kilian and Petrank [18] and let the simulator determine

the order and timing of its rewindings obliviously of the con-

current scheduling.

The rewinding strategy of our simulator is specified by

the SIMULATE procedure. The goal of the SIMULATE pro-

cedure is to supply the simulator with V ∗’s “secret” for each

session before reaching the second stage in the protocol. As

discussed above, this is done by rewinding the interaction

with V ∗ while trying to make the verifier answer two differ-

ent challenges (Pj).

The timing of the rewindings performed by the SIM-

ULATE procedure depends only on the number of verifier

messages received so far (and on the size of the schedule).

For the sake of simplicity, we currently ignore second stage

messages and refrain from specifying the way they are han-

dled. On a very high level, the SIMULATE procedure splits

the first stage messages it is about to explore into two halves

and invokes itself recursively twice for each half (complet-

ing the two runs of the first half before proceeding to the

two runs of the second half).

At the top level of the recursion, the messages that are

about to be explored consist of the entire schedule, whereas

at the bottom level the procedure explores only a single

message (at this level, the verifier message explored is

stored in a special data-structure, denoted T). The solve

procedure always outputs the sequence of “most recently

explored” messages.

The input to the SIMULATE procedure consists of a triplet

(ℓ, hist, T). The parameter ℓ corresponds to the number of

verifier messages to be explored, the string hist is a tran-

script of the current thread of interaction, and T is a table

containing the contents of all the messages explored so far

(to be used whenever the second stage is reached in some

session).2

The simulation is performed by invoking the SIMULATE

procedure with the appropriate parameters. Specifically,

whenever the schedule contains m = poly(n) sessions, the

SIMULATE procedure is invoked with input (m(k+2), φ, φ)
(wherem(k+2) is the total number of verifier messages in

a schedule of m sessions). The SIMULATE procedure is de-

picted in Figure 2.

If the simulation reaches the second stage (the main ZK
proof part) in the protocol at any time, without the secret

having been extracted, the simulator commits to a random

string.3 But if subsequently the verifier sends the message

(v1) to reveal a secret consistent with its earlier messages,

the simulator “gets stuck,” i.e., it cannot continue the proof

as in the original protocol and keep it indistinguishable from

an actual proof. Then it gives up the entire simulation and

outputs ⊥.

A slot in the simulation consists of two messages: a

prover message and the next verifier message. The two mes-

sages of a slot may be from different sessions; but for each

verifier message, the next message in the simulation is the

simulated prover’s reply to it (in the same session). The

simulator will rewind to points between slots. A session

2The messages stored in T are used in order to determine the verifier’s

“secret” according to “different” answers to (Vj).
3If the secret has been extracted, it is used to manufacture a message

which helps the simulator complete the proof later.

5

during the run of the simulator is identified by the slot in the

simulation where the first message of the session, namely

the initial commit message (V0) from the verifier, arrives

(thereby ending that slot).

3.3 Blocks

We define a block as the part of execution of the simu-

lator within an invocation of the SIMULATE procedure. The

smallest block is a single slot, corresponding to the base of

recursion. The other blocks are composed of four blocks of

the next lower level.

Figure 3 illustrates one block. The way in which the

history is passed to the lower level invocations tie them to-

gether as shown. The invocation of the (lower level) block

called 1′ in the top thread corresponds to the first (look-

ahead) call. It is truncated immediately (i.e., its history is

not continued further) as the simulator rewinds when the

call returns; the second call (block marked 1) starts off with

the same history as the first one, as indicated by the first fork

in the thread; the resulting thread continues, as the SIMU-

LATE procedure goes to the next half in the recursion. Again

the first call is truncated by rewinding, and the history from

the second call is passed to the outside of the block.

Of these four blocks, the first one (in Figure 3, 1′) is

called the look-ahead block of the second one (1). Sim-

ilarly the third block (2′) is the look-ahead block of the

fourth one (2). Every block except the one at the top-most

level either is a look-ahead block or has a look-ahead block.

A block may contain another block of a lower level, but no

two blocks can ever overlap otherwise.

1 2’

2

1’

Figure 3. The Threads of execution of the sim­

ulator. The shaded blocks hide the threads
in the recursive calls. The block returns the

messages from blocks 1 and 2.

Figure 4 illustrates the “threads” in the simulation. A

thread refers to a path from left to right in such a figure.

A thread from the initial point of simulation, up to a slot x

corresponds to the transcript of the simulated protocol when

the simulation reaches x.

4 High Level Analysis of the Simulator

In order to prove the correctness of the simulation, it will

be sufficient to show that for every adversary verifier V ∗,

the three conditions corresponding to the following subsec-

tions are satisfied.

Figure 4. A block in the execution of the

simulator. The shaded boxes correspond to
blocks two levels below the block shown. The

lines indicate the different “threads” of exe­

cution taken by the simulator.

4.1 The simulator runs in polynomial­time

Each invocation of the SIMULATE procedure with param-

eter ℓ > 1 involves four recursive invocations of the SIMU-

LATE procedure with parameter ℓ/2. In addition, the work

invested at the bottom of the recursion (i.e., when ℓ = 1)

is upper bounded by poly(n). Thus, the recursive work

W (m ·(k+1)), that is invested by the SIMULATE procedure

in order to handle m · (k + 1) (first stage) verifier messages

satisfies W (m · (k + 1)) ≤ (m · (k + 1))2 · poly(n) =
poly(n).

4.2 The simulator’s output is “correctly” dis­
tributed

Indistinguishability of the simulator’s output from V ∗’s

view (of m = poly(n) concurrent interactions with P) is

shown assuming that the simulator does not “get stuck” and

output ⊥ during its execution (see the next section). Since

the simulator S will get stuck only with negligible proba-

bility, indistinguishability will immediately follow. The key

for proving the above lies in the following two properties:

• First stage messages output by S are identically dis-

tributed to first stage messages sent by P . This is

proved based on the definition of the simulator’s ac-

tions. (Note that this property is easier to prove for our

protocol than it is for the RK protocol.)

• Second stage messages output by S are computation-

ally indistinguishable from second stage messages sent

by P . This is proved based on the fact that the verifier

cannot feasibly distinguish between the prover using a

real witness and the prover cheating by knowing the

secret string used by the verifier. This follows from the

security of the commitment scheme used by the prover

inside the ZK proof system employed in the second

stage of the protocol.

6

A formal proof can be given using a hybrid simulator

which differs from the original simulator only in that for

each session s, it knows the witness for xs ∈ L, and uses

that for the second stage. Though the hybrid simulator does

not use the entries in the Solution Table, it also fails if it

reaches the last message in an unsolved session. In the se-

quel, we shall analyse this hybrid simulator.

4.3 The simulator (almost) never “gets stuck”

This is the most involved part of the proof. What is re-

quired is to show that whenever a session in the simulation

reaches the second stage of the protocol, the simulator has

already solved it – i.e., managed to obtain the value of the

verifier’s “secret” corresponding to that session (if there is a

valid secret for the session) with overwhelming probability.

The adversarial verifier is said to succeed on a random

tape of the simulator, if the simulator gets stuck in some

session s. Recall that a session is specifed by the “start-

slot.” In contrast, the simulator is said to secure a session

if it does not get stuck in that session (but the simulator

may still get stuck in some other session). We would like

to bound the probability that the adversary succeeds in any

session.

We shall bound this probability for each setting of the

coin flips of the verifier. So now onwards we fix the coin

flips of the verifier and consider the probability with respect

to the coin-flips of the simulated prover only. So given the

random tape of the simulator (i.e., the randmoness used to

generate the prover messages), the entire execution of the

simulator is determined.

To bound the probability that the adversary succeeds we

have to bound the number of random tapes on which the ad-

versary succeeds. We shall show that for every random tape

on which the adversary succeeds with respect to a particular

session s, there are many other tapes with which that is not

the case (taking care not to double-count the tapes). In the

sequel we restrict ourselves to random tapes which cause

the simulator to never pick two identical challenges; this

does not affect the probabilities by more than a negligible

fraction.

Lemma 1 Let R be the set of all random tapes used by the

simulator. There exists a mapping f : R → 2R such that for

every R ∈ R, if the adversary succeeds on R for a session

s, then

1. ∀R′ ∈ R\{R}, f(R) ∩ f(R′) = φ

2. |f(R)| ≥ 2k−O(h), where h is the maximum depth of

recursion of the simulator.

3. ∀R′ ∈ f(R)\{R}, the simulator secures s on random

tape R′.

We shall sketch the proof of this lemma in the next sec-

tion, but before that note that it achieves our goal. Since

all the random tapes are equally probable, the next lemma

follows immediately from Lemma 1.

Lemma 2 The probability that the adversary succeeds for

a given session s is at most 2−(k−O(h)).

Now we prove the assertion of this section:

The number of possible sessions is at most the num-

ber of slots, and therefore poly(n). (When the simulator

is simulating a concurrent session involving at most ℓ mes-

sages, the number of slots in the simulation is at most ℓ2.)

Thus by union bound, Lemma 2 implies that the probabil-

ity of the simulator getting stuck (i.e., that of the adver-

sary succeeding with respect to some session) is at most

poly(n)2−(k−O(h)). This is negligible in n as we take

k = ω(log n), and h = O(log n). The latter follows, be-

cause h, the depth of the recursion, is logarithmic in the

number of slots.

5 Proof Sketch of Lemma 1

Here we sketch the proof of Lemma 1. (A more complete

proof is included in the full version of this paper).

5.1 Overview

Let the adversary succeed on the random tape (deck) R,

in session s which starts at a slot start (when the message

(V0) arrives) and ends at the slot stop (at whose beginning

the simulator gets stuck unable to send (p2)). The map f
is established by demonstrating a procedure which takes R
and outputs at least 2k−O(h) distinct tapes in which the sim-

ulator secures s. To show that f(R) ∩ (R′) = φ we will

demonstrate an inverse procedure which takes any tape in

f(R) and gives back R.

The random-tape of the simulator can be considered a

concatenation of the random strings used at each slot (nor-

malized to the same length). Imagine that each such random

string is a card drawn from a large universe, and the random

tape is a deck of such cards. Then, each tape output by the

procedure is obtained by shuffling the input deck. That is,

the order in which the different random strings are used is

changed, but the random strings themselves are not altered.

Spans. Suppose the verifier sends a correct message (Vj)
in session s in response to prover’s challenge in a message

(Pj). The prover’s challenge (Pj) starts a slot x and the

subsequent verifier’s answer ends a slot y (the two slots may

be the same). The set of slots along the x-y thread, between

(and inclusive of) x and y is called a span.

Let us call the segment of the thread between, but not in-

cluding, the slots start and stop the start-stop seg-

ment. Since the simulator reaches (p2) at the slot stop,

7

within the start-stop segment the prover (simulator)

must send the k challenges (P1), . . . , (Pk), and the verifier

must properly answer in messages (V1), . . . , (Vk). Thus

the start-stop segment is partitioned into k spans.

A span is called good if the challenge at the beginning of

the span is correctly answered in the verifier message at the

end of the span. With the random tape R all the k spans in

the start-stop segment are good, and there are no other

good spans.

Shuffling Threads. The random strings (cards) in all the

slots along a thread fixes the execution of that thread4 So

if we move the randomness in a thread (or in a segment

thereof) to some other thread (or its segment), the execution

in the latter will be identical to that of the former before the

change, as long as the two threads or segments in question

fork off from the same point.

Suppose that there is a look-ahead thread that starts after

the slot start, but is not as long as the start-stop seg-

ment, and that the execution in the start-stop segment

were to be advanced to that thread. Then if the latter thread

is long enough, at least one of the k good spans originally in

the start-stop segment, with messages (Pj) and (Vj)
say, will appear in that thread. If that happens the simula-

tor would have secured the session (i.e., it will not get stuck

in that session) by the time it rewinds out of that thread,

because if the verifier answers a later challenge (Pj) cor-

rectly (since we are assuming that no two challenges are the

same), it can successfully extract the secret σ for session s.

The above observation suggests that from a random tape

in which the adversary succeeds for a session s, just by

swapping the randomness of the “crashing thread” with that

of many other appropriate threads, we get random tapes in

which the session s is secured. But the resulting mapping

is not invertible. For our counting argument to go through

smoothly, we do a slightly more sophisticated mapping, as

explained in Section 5.2.

5.2 Shuffling by Swapping Blocks

The aim of the shuffling procedure is to establish that

there are some non-overlapping “swappable” segments

(each containing one good span) in the start-stop

thread, and for each segment there are many segments with

which it can be swapped. Further each of these swappings

can be carried out independently one after the other, and still

the entire swapping remains invertible. We shall show that

there are at least 2k−O(h) distinct tapes that can be produced

by these swappings, all of which will allow the simulator to

secure session s.

The shuffling procedure can be described in terms of

4Recall that the hybrid simulator that we are analysing does not make

use of the table T . Also, the verifier is assumed to be deterministic.

the block structure of the execution of the simulator as de-

scribed in Section 3.3.

A block is said to be swappable if it is the smallest block

containing a good span, it does not properly contain any

other good span, and it does not contain the slots start or

stop. Note that the minimal block containing a good span,

as long as it does not contain start or stop, either is a

swappable block, or contains a swappable block. The part

of the start-stop segment inside a swappable block is

called a swappable segment. A swappable segment will be

swapped with some other segments as described shortly.

The swappable blocks are ordered according to the order

of their associated spans. A block is called an allied block

of a swappable block B if (a) it contains (or is) B, but does

not contain the previous swappable block, and (b) does not

contain the start or stop slots.

A swappable block B is an allied block of itself. At each

higher level, there is one allied block of B, namely the one

containing the allied block of the lower level, up to the level

at which the block containing B also contains its previous

swappable block or start or stop. The number of allied

blocks of B will be denoted by tB .

Note that since an allied block cannot contain the start

or stop slots, the start-stop segment enters the block

and leaves it. Such a block cannot be a look-ahead block (as

defined in Section 3.3), because a look-ahead block cannot

have any thread continuing out of it. Thus every allied block

has a look-ahead block. We are now ready to outline the

shuffling strategy.

Basic-Shuffle. The entire shuffling of a thread is com-

posed of many basic-shuffles, each of which works on a

swappable block. The basic-shuffle is a hierarchical proce-

dure involving the allied blocks of a swappable block. We

illustrate this through an example. A formal description is

available in the full version of this paper.

Figure 5 shows how the swappable block marked 1 in the

lower thread APQ is shuffled up to the upper thread ABC.

The block marked 1∗ (in thread ABC) is called the target.

The allied blocks of 1 are blocks marked 1, 2 and 3, and the

blocks containing 1∗ at the corresponding levels are marked

1∗, 2∗ and 3∗. First, block 1 is swapped with its look-ahead

block 1′, as 1∗ is a look-ahead block. But blocks 2 and

2′ are not swapped, because 2∗ is not a look-ahead block.

Finally blocks 3 and 3′ are swapped with each other as 3∗

is a look-ahead block, completing the basic-shuffle.

For a swappable block B, by choosing at each of the tB
levels whether to swap the allied block with its look-ahead

block or not, the above strategy specifies 2tB targets with

which B can be shuffled (one of them being itself). (In our

example this number is 23.)

8

B

A

1
1’ 2

2’

3

3’ (3*)

2*1*

X

P

Q

C

Figure 5. A basic­shuffle can move the swap­

pable block 1 to the block 1∗, one of its 8 target
blocks.

Inverting a Basic-Shuffle. Suppose the r-th swappable

block (ordered according to the order of the spans associ-

ated with the swappable blocks) with the original random

tape R is B, and it was shuffled to a target block B∗ to get

the tape R′. Inverting this basic-shuffle involves recovering

R from R′, as well as identifying the target block B∗. The

latter ensures that the tapes obtained by shuffling B with the

different targets of B are indeed distinct.

We note that shuffling B does not change anything out-

side the outer-most allied block and its look-ahead block.

In particular, all the previous r − 1 swappable blocks in the

simulation remain unchanged. Also, the shuffling makes

the execution of B∗ identical to that of B before the shuf-

fle. Further, the execution of every block till B∗ with R′, is

identical to that of some block before B, with the tape R.

Thus B∗ becomes the r-th swappable block after the shuf-

fle. This makes it possible to identify the target block of the

shuffle by inspecting R′. This is crucially used for inverting

the mapping.5

5Note that if a simpler shuffling strategy of exchanging the randomness

in the two threads to be shuffled is used, this may no longer be true. In

our illustration, if we just swap the randomness in the two threads ABC

and APQ, the execution in the segment BX for instance, will be unpre-

dictable (and in particular may introduce a good span in BX and introduce

an associated swappable block). This is because, in the original random

Having identified B∗, we are ready to start our unshuf-

fling. We set B∗ as the current block. Next we check if it

is a look-ahead block or not. If it is, then it means it reached

there due to a swap. So it is swapped to become a non-look-

ahead block, and the current-block is also changed to the

resulting block. Then we check if the block containing the

current-block is an allied block (i.e., we check if it contains

the r− 1-th swappable block or the start or stop slots).

If it is, we make it the current-block and repeat by checking

if it is a look-ahead block, and if necessary swapping. We

continue this way until the current block becomes the max-

imal allied block. It is not hard to see that this operation

undoes the basic-shuffle which takes B to B∗.

Shuffling the entire thread. To shuffle the entire thread,

the above basic-shuffle procedure is carried out on each of

the swappable blocks. This is done from right to left, i.e.,

the last (in simulation order) swappable block is shuffled

first, then the previous one, and so on. The first basic-shuffle

does not change the execution of any of the previous swap-

pable blocks (as all the segments involved in a swapping oc-

cur after the previous swappable segments). Then the next

swappable block is swapped and so on. This ensures that

the unswapping can be done, in the reverse order, first swap-

ping back the earliest swappable segment, then the next and

so on.

5.3 Counting Swaps

By the above, the random tape R can be invertibly

mapped to ΠB2tB = 2
P

B
tB tapes, where the summation

is over all swappable segments B. So to prove condition

(2) of Lemma 1 we need to count the total number of allied

blocks of all swappable blocks for the random tape R.

If B is a block which does not contain start or stop,

then we have the following: (1) For every good span q, if B
is the smallest block containing q, then B is either a swap-

pable block or contains a swappable block. (2) B is an allied

block of the first swappable block that it contains, if it con-

tains at least one swappable block. (3) Therefore, B is an

allied block (of the first swappable block that it contains) if

it contains at least one good span.

Suppose we map each of the k good spans in the start-

stop segment to the smallest block containing it. Then, a

block B can have at most one span mapped to it; this is be-

cause a span mapped to B must include slots in both halves

of the B, and the k spans are all disjoint. Thus there are

at least k blocks which contain at least one good span. Of

these, at most h blocks contain the slot start, and simi-

larly for stop. Thus by Observation 3 above, at least k−2h

tape there was no thread with the randomness same as in the thread ABX

after the swap. But when the swap is carried out systematically as illus-

trated above, every thread before ABC was already present in the original

setting, and none of them had a good span in them.

9

blocks are allied blocks, there by proving condition (2) of

Lemma 1.

5.4 Securing the session

Out of all the new random tapes obtained by the strategy

above, there is one which is identical to the original tape R.

In any other tape R′ ∈ f(R), there is one good span outside

the start-stop segment, in a look-ahead block, namely

the target of the left-most swappable block swapped. As

described earlier, if the call to SIMULATE returns from that

look-ahead segment to a point after the start slot, the sim-

ulator will be able to find the secret of the verifier (condi-

tional on all the challenges of the simulator being distinct)

the next time it goes through the same round in that session.

But we know that the call to SIMULATE will return because

the block swapped did not contain the slot stop, and that

it will return to a point after the start slot because it did

not contain the slot start. Thus on all random strings

obtained above except for the original adversarially given

one, the simulator indeed secures the session which began

at start. (The simulation may still get stuck, but only

for a different session. The union bound argument given in

Section 4.3 shows that this can’t happen too often, and the

proof goes through.) This completes the proof of Lemma 1

6 Acknowledgements

We gratefully thank Joe Kilian for sharing his thoughts

with us and generously giving us his permission to use and

build up on his suggestion [17] for an analysis which avoids

the dangers involved in earlier similar analyses involving

subtle arguments based on conditional probability.

We are grateful to Oded Goldreich for his support, for

enlightening conversations and for giving many useful re-

marks on previous manuscripts. We are also grateful to

Moni Naor for discussions leading to the new cZK pro-

tocol. Thanks also to Uri Feige, Ronen Shaltiel and Erez

Petrank for helpful discussions.

References

[1] B. Barak. How to go Beyond the Black-Box Simulation Bar-

rier. In 42nd FOCS, pages 106–115, 2001.

[2] M. Blum. How to prove a Theorem So No One Else Can

Claim It. Proc. of the International Congress of Mathemati-

cians, Berekeley, California, USA, pages 1444-1451, 1986.

[3] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure

Proofs of Knowledge. JCSS, Vol. 37, No. 2, pages 156–189,

1988.

[4] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Reset-

table Zero-Knowledge. In 32nd STOC, pages 235–244 ,2000.

[5] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box

Concurrent Zero-Knowledge Requires Ω̃(log n) Rounds. In

33rd STOC, pages 570–579 2001.

[6] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-

Knowledge. In 30th STOC, pages 409–418, 1998.

[7] C. Dwork, and A. Sahai. Concurrent Zero-Knowledge: Re-

ducing the Need for Timing Constraints. In Crypto98, Springer

LNCS 1462 , pages 442–457, 1998.

[8] U. Feige. Ph.D. thesis, Alternative Models for Zero Knowl-

edge Interactive Proofs. Weizmann Institute of Science, 1990.

[9] U. Feige and A. Shamir. Witness Indistinguishability and Wit-

ness Hiding Protocols. In 22nd STOC, pages 416–426, 1990.

[10] O. Goldreich. Concurrent Zero-Knowledge with Timing –

Revisited. To appear, in 34th STOC, 2002.

[11] O. Goldreich. Foundation of Cryptography – Basic Tools.

Cambridge University Press, 2001.

[12] O. Goldreich and H. Krawczyk. On the Composition of Zero-

Knowledge Proof Systems. SIAM J. Computing, Vol. 25, No. 1,

pages 169–192, 1996.

[13] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield

Nothing But Their Validity or All Languages in NP Have Zero-

Knowledge Proof Systems. JACM, Vol. 38, No. 1, pp. 691–729,

1991.

[14] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge

Complexity of Interactive Proof Systems. SIAM J. Comput.,

Vol. 18, No. 1, pp. 186–208, 1989.

[15] S. Goldwasser, S. Micali and R.L. Rivest. A Digital Sig-

nature Scheme Secure Against Adaptive Chosen Message At-

tacks. SIAM J. Comput., Vol. 17, No. 2, pp. 281–308, 1988.

[16] J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Con-

struction of Pseudorandom Generator from any One-Way

Function. SIAM Jour. on Computing, Vol. 28 (4), pages 1364–

1396, 1999.

[17] J. Kilian. Personal Communication

[18] J. Kilian and E. Petrank. Concurrent and Resettable Zero-

Knowledge in Poly-logarithmic Rounds. In 33rd STOC, pages

560–569, 2001.

[19] J. Kilian, E. Petrank, and C. Rackoff. Lower Bounds for

Zero-Knowledge on the Internet. In 39th FOCS, pages 484–

492, 1998.

[20] M. Naor. Bit Commitment using Pseudorandomness. Jour. of

Cryptology, Vol. 4, pages 151–158, 1991.

[21] R. Richardson and J. Kilian. On the Concurrent Composition

of Zero-Knowledge Proofs. In EuroCrypt99, Springer LNCS

1592, pages 415–431, 1999.

[22] A. Rosen. A note on the round-complexity of Concurrent

Zero-Knowledge. In Crypto2000, Springer LNCS 1880, pages

451–468, 2000.

10

