Black-Box Concurrent Zero-Knowledge Requires
(almost) Logarithmically Many Rounds*

Ran Canettif Joe Kiliant Erez Petrank® Alon Rosen?

July 3, 2002

Abstract

We show that any concurrent zero-knowledge protocol for a non-trivial language (i.e., for a
language outside BPP), whose security is proven via black-box simulation, must use at least

Q(logn) rounds of interaction. This result achieves a substantial improvement over previous
lower bounds, and is the first bound to rule out the possibility of constant-round concurrent
zero-knowledge when proven via black-box simulation. Furthermore, the bound is polynomially
related to the number of rounds in the best known concurrent zero-knowledge protocol for
languages in A"P (which is established via black-box simulation).

1 Introduction

Zero-knowledge proof systems, introduced by Goldwasser, Micali and Rackoff [21] are efficient
interactive proofs that have the remarkable property of yielding nothing beyond the validity of
the assertion being proved. The generality of zero-knowledge proofs has been demonstrated by
Goldreich, Micali and Wigderson [19], who showed that every NP-statement can be proved in zero-
knowledge provided that one-way functions exist [23, 27]. Since then, zero-knowledge proofs have
turned out to be an extremely useful tool in the design of various cryptographic protocols.

The original setting in which zero-knowledge proofs were investigated consisted of a single
prover and verifier that execute only one instance of the protocol at a time. A more realistic
setting, especially in the age of the Internet, is one that allows the concurrent execution of zero-
knowledge protocols. In the concurrent setting (see Feige [14], and more extensive treatment by
Dwork, Naor and Sahai [12]), many protocols (sessions) are executed at the same time, involving
many verifiers which may be talking with the same (or many) provers simultaneously (the so-called
parallel composition considered in [18, 15, 17, 6, 4] is merely a special case). This setting presents
the new risk of a coordinated attack in which an adversary controls many verifiers, interleaving the
executions of the protocols and choosing verifiers’” messages based on other partial executions of

*An extended abstract has appeared in the thirty third annual ACM Symposium on The Theory of Computing [8].

fIBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA. E-mail:
canetti@watson.ibm.com.

*Yianilos Labs. Yianilos Labs 707 State Rd., Rt. 206, Suite 212, Princeton, NJ 08540, USA. E-mail:
joe@pnylab.com.

8Dept. of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel. E-mail:
erez@cs.technion.ac.il.

TDept. of Computer Science and Applied Math., Weizmann Institute of Science, Rehovot 76100, Israel. E-mail:
alon@wisdom.weizmann.ac.il. Part of this work was done while visiting the IBM T.J. Watson Research Center.



the protocol. Since it seems unrealistic (and certainly undesirable) for honest provers to coordinate
their actions so that zero-knowledge is preserved, we must assume that in each prover-verifier pair
the prover acts independently.

Loosely speaking, a zero-knowledge proof is said to be concurrent zero-knowledge if it remains
zero-knowledge even when executed in the concurrent setting. Recall that in order to demonstrate
that a certain protocol is zero-knowledge it is required to demonstrate that the view of every
probabilistic polynomial-time adversary interacting with the prover can be simulated by a prob-
abilistic polynomial-time machine (a.k.a. the simulator). In the concurrent setting, the verifiers’
view may include multiple sessions running at the same time. Furthermore, the verifiers may have
control over the scheduling of the messages in these sessions (i.e., the order in which the interleaved
execution of these sessions should be conducted). As a consequence, the simulator’s task in the
concurrent setting becomes considerably more complicated. In particular, standard techniques,
based on “rewinding the adversary”, run into trouble.

1.1 Previous Work

Constructing a “round-efficient” concurrent zero-knowledge protocol for all languages in NP, or
even nontrivial languages (outside of BPP) seems to be a challenging task. Intuition on the diffi-
culty of this problem is given in [12], where it was argued that for a specific 4-round zero-knowledge
protocol and a specific recursive scheduling of n sessions, the straightforward adaptation of the simu-
lator to the concurrent setting requires time exponential in n. The first lower bound demonstrating
the difficulty of concurrent zero-knowledge was given by Kilian, Petrank and Rackoff [26] who
showed, building on the techniques of Goldreich and Krawczyk [18], that for every language outside
BPP there is no 4-round protocol whose concurrent execution is simulatable in polynomial-time
by a black-box simulator. (A black-box simulator is a simulator that has only black-box access
to the adversarial verifier. Essentially all previously known proofs of security of zero-knowledge
protocols use black-box simulators. An exception is the protocol of [22], which uses a non-standard
assumption of a "non black-box” nature.) This lower bound was later improved by Rosen to seven
rounds [29].

Indeed, even ignoring issues of round efficiency, it was not clear whether there exists a con-
current zero-knowledge protocol for nontrivial languages, without modifying the underlying model.
Richardson and Kilian [28] exhibited a family of concurrent zero-knowledge protocols (parameter-
ized by the number of rounds) for all languages in N'P. Their original analysis showed how to
simulate in polynomial-time n®(") concurrent sessions only when the number of rounds in the pro-
tocol is at least n (for some arbitrary € > 0). This result has recently been substantially improved
by Kilian and Petrank [25], who show that the Richardson-Kilian protocol remains concurrent
zero-knowledge even if it has O(g(n) - log? n) rounds, where g(-) is any non-constant function (e.g.,
g(n) =loglogn).

We note that previously there was a considerable gap between the known upper and lower
bounds on the round-complexity of concurrent zero-knowledge (i.e., [25, 29]): the best known proto-
col has O(log? n) rounds whereas the lower bound necessitates 7 rounds (via black-box simulation).'
In particular, the question consisting of whether constant-round concurrent zero-knowledge proto-
cols exist has been open.

Lf(n) = O(h(n)) if there exist constants c1,c2 > 0 so that for all sufficiently large n, f(n) < ci - (log h(n))°? - h(n)).



1.2 Our Result

We substantially narrow the above gap by presenting a lower bound on the number of rounds
required by concurrent zero-knowledge. We show that in the context of black-box concurrent zero-
knowledge, Q(log n) rounds of interaction are essential for non-trivial proof systems.? This bound
is the first to rule out the possibility of constant-round concurrent zero-knowledge, when proven
via black-box simulation. Furthermore, the bound is polynomially related to the number of rounds
in the best known concurrent zero-knowledge protocol for languages outside BPP ([25]). Our main
result is stated in the following theorem.

Theorem 1.1 Let r : N — N be a function so that r(n) = o(lololg” ). Suppose that (P, V') is an
glogn

r(-)-round proof system for a language L (i.e., on input x, the number of messages exchanged is at

most r(|x|)), and that concurrent executions of P can be simulated in polynomial-time using black-

box simulation. Then L € BPP. The theorem holds even if the proof system is only computationally-

sound (with negligible soundness error) and the simulation is only computationally-indistinguishable

(from the actual executions).

1.3 Techniques

The proof of Theorem 1.1 builds on the works of Goldreich and Krawczyk [18], Kilian, Petrank and
Rackoff [26], and Rosen [29]. On a very high level, the proof proceeds by constructing a specific
concurrent schedule of sessions, and demonstrating that a black-box simulator cannot successfully
generate a simulated accepting transcript for this schedule unless it “rewinds” the verifier many
times. The work spent on these rewindings will be super-polynomial unless the number of rounds
used by the protocol obeys the bound, or L € BPP. While the general outline of the proof remains
roughly the same as in [18, 26, 29|, the actual schedule of sessions, and its analysis, are new. One
main idea that, together with other ideas, enables the proof of the bound is to have the verifier
abort sessions depending on the history of the interaction. A more detailed outline, presenting both
the general structure and the new ideas in the proof, appears in Section 3.

Remark: The concurrent schedule in our proof is fixed and known to everybody. As a consequence,
Theorem 1.1 is actually stronger than stated. It will hold even if the simulator knows the schedule
in advance (in particular, it knows the number of concurrent sessions), and even if the schedule of
the messages does not change dynamically (as a function of the history of the interaction).

1.4 Conclusions and Open Problems
1.4.1 Alternative models

The lower bound presented here draws severe limitations on the ability of black-box simulators
to cope with the standard concurrent zero-knowledge setting, and provides motivation to consider
relaxations of and augmentations to the standard model. Indeed, several works have managed
to “bypass” the difficulty in constructing concurrent zero-knowledge protocols by modifying the
standard model in a number of ways. Dwork, Naor and Sahai augment the communication model
with assumptions on the maximum delay of messages and skews of local clocks of parties [12, 13].
Damgard uses a common random string [11], and Canetti et.al. use a public registry file [7].

A different approach would be to try and achieve security properties that are weaker than
zero-knowledge but are still useful. For example, Feige and Shamir consider the notion of witness
indistinguishability [14, 15], which is preserved under concurrent composition.

2f(n) = Q(h(n)) if there exist constants c1,c2 > 0 so that for all sufficiently large n, f(n) > ¢1 - h(n)/(log h(n))°2.



1.4.2 Alternative simulation techniques

Loosely speaking, the only advantage that a black-box simulator may have over the honest prover is
the ability to “rewind” the interaction and explore different execution paths before proceeding with
the simulation (as its access to the verifier’s strategy is restricted to the examination of input/output
behavior). As we show in our proof, such a mode of operation (i.e., the necessity to rewind every
session) is a major contributor to the hardness of simulating many concurrent sessions. It is thus
natural to think that a simulator that deviates from this paradigm (i.e., is non black-box, in the
sense that is does not have to rewind the adversary in order to obtain a faithful simulation of the
conversation), would essentially bypass the main problem that arises while trying to simulate many
concurrent sessions.

Hada and Tanaka [22] have considered some weaker variants of zero-knowledge, and exhibited a
three-round protocol for NP (whereas only BPP has three-round block-box zero-knowledge [18]).
Their protocol was an example for a zero-knowledge protocol not proven secure via black-box
simulation. Alas, their analysis was based in an essential way on a strong and highly non-standard
hardness assumption.

In a recent breakthrough result, Barak [2] constructs a constant-round protocol for all languages
in N'P whose zero-knowledge property is proved using a non black-box simulator. Such a method
of simulation enables him to bypass our impossiblity result (as well as [18, 26, 29]), and to perform
cryptographic tasks otherwise considered inachievable. In particular, for every (predetermined)
polynomial p(-), there exists a version of Barak’s protocol that preserves its zero-knowledge property
even when it is executed p(n) times concurrently (where n denotes the size of the common input).
As we show in our work, this task is unachievable via black-box simulation (unless NP C BPP).

1.4.3 Open problems

At first glance, it seems that Barak’s protocol completely resolves the question of whether constant-
round concurrent zero-knowledge protocol exist. Taking a closer look, however, one notices that
the (polynomial) number of concurrent sessions relative to which the protocol should be secure is
determined before the protocol is specified. Moreover, it turns out that the messages in the protocol
are required to be longer than the number of concurrent sessions. Thus, from both a theoretical and
a practical point of view, Barak’s protocol is still not satisfactory. What we would like to have is a
single protocol that preserves its zero-knowledge property even when it is executed concurrently for
any (not predetermined) polynomial number of times. Such a property is indeed satisfied by the
protocols of [28, 25] (alas these protocols are not constant-round). This leaves open the question of
whether constant-round concurrent zero-knowledge protocol indeed exist for all languages in N'P.

2 Preliminaries

2.1 Probabilistic Notation

Denote by 2 <& X the process of uniformly choosing an element z in a set X. If B(-) is an

event depending on the choice of x <~ X, then Pr,_ x[B(x)] (alternatively, Pr,[B(x)]) denotes the
probability that B(z) holds when z is chosen with probability 1/|X|. Namely,

Pr,x [B(z)] =Y ﬁ - X(B(z))



where y is an indicator function so that y(B) = 1 if event B holds, and equals zero otherwise. This
notation extends in the natural way for events B(-,...,-) that depend on k variables z1,z9,..., 2
that are uniformly chosen in k (possibly different) sets Xi, Xs,...,X,. That is, we denote by
Pry, ao..2 [ B(21,22,...,2)] the probability that B(zi,zs,...,z;) holds when z1,x9,..., 2} are
chosen with probability 1/(|X1| - |Xa| -+ | Xk]|)-

2.2 Interactive proofs

We use the standard definitions of interactive proofs (interactive Turing machines) [21, 16] and
arguments (a.k.a computationally-sound proofs) [5]. Given a pair of interactive Turing machines, P
and V', we denote by (P, V)(z) the random variable representing the (local) output of V when inter-
acting with machine P on common input z, when the random input to each machine is uniformly
and independently chosen. We consider interactive proof systems in which the soundness error
is negligible. The term negligible is used for denoting functions that are (asymptotically) smaller
than one over any polynomial. More precisely, a function v(-) from non-negative integers to reals
is called negligible if for every constant ¢ > 0 and all sufficiently large n, it holds that v(n) < n™¢.

Definition 2.1 (Interactive Proof System) A pair of interactive machines (P, V') is called an
interactive proof system for a language L if machine V 1is polynomial-time and the following two
conditions hold with respect to some negligible function v(-):

e Completeness: For every x € L,

Pr{(P,V)(z) =1] > 1 = v(|z])

e Soundness: For every x € L, and every interactive machine B,

Pr{(B,V)(z) = 1] < v(lz)

Definition 2.1 can be relaxed to require only soundness error that is bounded away from 1 — v(|z|).
This is so, since the soundness error can always be made negligible by sufficiently many parallel
repetitions of the protocol (as such may occur anyhow in the concurrent model). However, we
do not know whether this condition can be relaxed in the case of computationally sound proofs
(i.e., when the soundness condition is required to hold only for machines B that are implementable
by poly-size circuits). In particular, in this case parallel repetitions do not necessarily reduce the
soundness error (cf. [3]).

2.3 Concurrent zero-knowledge

Let (P,V) be an interactive proof for a language L, and consider a concurrent adversary (verifier)
V* that, given input x € L, interacts with an unbounded number of independent copies of P (all
on common input z). The concurrent adversary V* is allowed to interact with the various copies
of P concurrently, without any restrictions over the scheduling of the messages in the different
interactions with P (in particular, V* has control over the scheduling of the messages in these
interactions). The transcript of a concurrent interaction consists of the common input z, followed
by the sequence of prover and verifier messages exchanged during the interaction. We denote by
view!.(x) a random variable describing the content of the random tape of V* and the transcript
of the concurrent interaction between P and V* (that is, all messages that V* sends and receives
during the concurrent interactions with P, on common input x).



Remark: The actual definition of concurrent zero-knowledge requires that the concurrent adver-
sary V* explicitly specifies to which session the next scheduled message belongs. However, in the
proof of Theorem 1.1 we consider a “weaker” concurrent adversary V*, that is only running a fixed
scheduling of sessions (and so does not determine the schedule dynamically). In particular, there
will be no need to use a formalism for specifying to which session the next scheduled message
belongs.

Definition 2.2 (Concurrent Zero-Knowledge) Let (P,V') be an interactive proof system for a
language L. We say that (P, V) is concurrent zero-knowledge, if for every polynomial-time concur-
rent adversary V* there exists a probabilistic polynomial-time algorithm Sy~ such that the ensembles
{view{«(x)}ger and {Sv«(z)}zer are computationally indistinguishable.

2.4 Black-box concurrent zero-knowledge

Loosely speaking, the definition of black-box zero-knowledge requires that there exists a “universal”
simulator, S, so that for every x € L and every probabilistic polynomial-time adversary V*, the
simulator S produces a distribution that is indistinguishable from view?!.(x) while using V* as an
oracle (i.e., in a “black-box” manner). We assume concurrent adversaries V* are modeled by poly-
sized circuits (capturing non-uniform, deterministic verifiers viewed as an oracle, cf. [18, 16, 26]).

Before we proceed with the formal definition, we will have to overcome a technical difficulty
arising from an inherent difference between the concurrent setting and “stand-alone” setting. In
“stand-alone” zero-knowledge the length of the output of the simulator depends only on the protocol
and the size of the common input x. It is thus reasonable to require that the simulator runs in
time that depends only on the size of z, regardless of the running time of its black-box. However,
in black-box concurrent zero-knowledge the output of the simulator is an entire schedule, and its
length depends on the running time of the concurrent adversary. Therefore, if we naively require
that the running time of the simulator is a fixed polynomial in the size of =, then we end up with an
unsatisfiable definition. (As for any simulator S there is an adversary V* that generates a transcript
that is longer than the running time of S.)

One way to solve the above problem is to have for each fixed polynomial ¢(-), a simulator Sy
that “only” simulates all ¢(-)-sized circuits V*. Clearly, the running time of the simulator now
depends on the running time of V* (which is an upper bound on the size of the schedule), and the
above problem does not occur anymore. Another (more restrictive) way to overcome the above
problem would be to consider a simulator S, that "only” simulates all adversaries V* which run
at most ¢(|x|) sessions during their execution (we stress that ¢(-) is chosen after the protocol is
determined). Such simulators should run in worst-case time that is a fixed polynomial in ¢(|z|) and
in the size of the common input z. (Note that by letting S, "know” ¢(-) in advance we actually
strengthen the lower bound.) In the sequel we choose to adopt the latter formalization. We stress
that both formalizations are general enough to include all known black-box zero-knowledge proofs.

Definition 2.3 (Black-Box Concurrent Zero-Knowledge) Let (P,V') be an interactive proof
system for a language L. We say that (P, V') is black-box concurrent zero-knowledge, if for ev-
ery polynomial q(-), there erists a probabilistic polynomial-time® algorithm Sq, so that for every
concurrent adversary circuit V* that runs at most q(|z|) concurrent sessions, Sq(x) runs in time
polynomial in q(|z|) and |x|, and satisfies that the ensembles {view(.(x)}zcr, and {Sq(z)}zer are
computationally indistinguishable.

3See below for a discussion on expected vs. strict probabilistic polynomial-time.



2.5 Additional conventions

Deviation gap and expected polynomial-time simulators: The deviation gap of a simulator
S for a proof-system (P, V') is defined, somewhat informally, as follows. Consider a distinguisher
D that is required to decide whether its input consists of view].(z) or to the transcript that was
produced by S. The deviation gap of D is the difference between the probability that D outputs
1 given an output of S, and the probability that D outputs 1 given view].(z). The deviation
gap of S is the deviation gap of the best polynomial time distinguisher D. In our definitions of
concurrent zero-knowledge (Definitions 2.2 and 2.3) the deviation gap of the simulator is required
to be negligible in |z|.

For our lower bound, we allow simulators that run in strict (worst case) polynomial time, and
have deviation gap at most 1/4. As for expected polynomial time simulators, one can use a standard
argument to show that any simulator running in expected polynomial time, and having deviation
gap at most 1/8 can be transformed into a simulator that runs in strict (worst case) polynomial
time, and has deviation gap at most 1/4. In particular, our lower bound (on simulators that run in
strict polynomial time, and have deviation gap at most 1/4) extends to a lower bound on simulators
running in expected polynomial time (and have deviation gap as large as 1/8).

Query conventions: By k-round protocols we mean protocols in which 2k + 2 messages are
exchanged subject to the following conventions. The first message is a fixed initiation message by
the verifier, denoted vy, which is answered by the prover’s first message denoted p;. The following
verifier and prover messages are denoted vg,ps2,..., Vi1, Pk+1, Where viyq is an ACCEPT/REJECT
message indicating whether the verifier has accepted its input, and the last message (i.e., pg+1) is
a fixed acknowledgment message sent by the prover.* Clearly, any protocol in which 2k messages
are exchanged can be modified to fit this form (by adding at most two messages).

We impose the following technical restrictions on the simulator (but claim that each of these
restrictions can be easily satisfied): As in (cf. [18]), the queries of the simulator are prefixes of
possible execution transcripts (in the concurrent setting). Such a prefix is a sequence of alternating
prover and verifier messages (which may belong to different sessions as determined by the fixed
schedule) that ends with a prover message. The answer to the queries made by the simulator
consists of a single verifier message (which belongs to the next scheduled session). We assume that
the simulator never repeats the same query twice. In addition, we assume that before making a
query ¢ = (b1, aq,...,bs, at), where the a’s are prover messages, the simulator has made queries to
all relevant prefixes (i.e., (b1,a1,...,b;,a;), for every i < t), and has obtained the b;’s as answers.
Finally, we assume that before producing output (b1, a1, ..., br,ar), the simulator makes the query

(bl,al, .. .,bT,aT).

3 Proof outline

This section contains an outline of the proof of Theorem 1.1. The actual proof will be given in
Sections 4 and 5. To facilitate reading, we partition the outline into two parts: The first part reviews
the general framework. (This part mainly follows previous works, namely [17, 26, 29].) The second
part concentrates on the actual schedule and the specifics of our lower bound argument.

“The prs1 message is an artificial message included in order to “streamline” the description of the adversarial
schedule (the schedule will be defined in Section 4.1.1).

5 For sake of simplicity, we choose to omit the input = from the transcript’s representation (as it is implicit in the
description of the verifier anyway).



3.1 The high-level framework

Consider a k-round Concurrent Zero Knowledge proof system (P, V) for language L, and let S be
a black-box simulator for (P, V). We use S to construct a BPP decision procedure for L. For this
purpose, we construct a family {V}} of “cheating verifiers”. To decide on an input x, run S with a
cheating verifier V;, that was chosen at random from the constructed family, and decide that x € L
iff S outputs an accepting transcript of Vj.

The general structure of the family {V}} is roughly as follows. A member V}, in the family is
identified via a hash function h taken from a hash-function family H having “much randomness”
(or high independence). Specifically, the independence of H will be larger than the running time
of S. This guarantees that, for our purposes, a function drawn randomly from H behaves like a
random function. We define some fixed concurrent schedule of a number of sessions between Vj,
and the prover. In each session, V}, runs the code of the honest verifier V on input x and random
input h(a), where a is the current history of the (multi-session) interaction at the point where the
session starts. V}, accepts if all the copies of V' accept.

The proof of validity of the decision procedure is structured as follows. Say that S succeeds if
it outputs an accepting transcript of Vj,. It is first claimed that if £ € L then a valid simulator S
must succeed with high probability. Roughly speaking, this is so because each session behaves like
the original proof system (P, V'), and (P, V) accepts = with high probability. Demonstrating that
the simulator almost never succeeds when = ¢ L is much more involved. Given S we construct a
“cheating prover” P* that makes the honest verifier V' accept = with probability that is polynomially
related to the success probability of S. The soundness of (P, V) now implies that in this case S
succeeds only with negligible probability. See details below.

3.1.1 Session-prefixes and useful session-prefixes

In order to complete the high-level description of the proof, we must first define the following
notions that play a central role in the analysis. Consider the conversation between V, and a prover.
A session-prefix a is a prefix of this conversation that ends at the point where some new session
starts (including the first verifier message in that session). (Recall that V’s random input for that
new session is set to h(a).) Next, consider the conversation between S and Vj, in some run of
S. (Such a conversation may contain many interleaved and incomplete conversations of V3, with a
prover.) Roughly speaking, a message sent by S to the simulated V}, is said to have session prefix a
if it relates to the session where the verifier randomness is h(a). A session-prefix a is called useful
in a run of S if:

1. Tt was accepted (i.e., V}, sent an ACCEPT message for session-prefix a).
2. V}, has sent exactly k£ + 1 messages for session-prefix a.

Loosely speaking, Condition 2 implies that S did not rewind the relevant session-prefix, where
rewind session-prefix a is an informal term meaning that S rewinds V}, to a point where V}, provides
a second continuation for session-prefix a. By rewinding session-prefix a, the simulator is able to
obtain more than £+ 1 verifier messages for session-prefix a. This is contrast to an actual execution
of the protocol (P, V) in which V sends exactly k 4+ 1 messages.

3.1.2 The construction of the cheating prover

Using the above terms, we sketch the construction of the cheating prover P*. It first randomly
chooses a function h < H and an index (of a session-prefix) i. It then emulates an interaction



between S and Vj, with the exception that P* uses the messages sent by S that have the *"

session-prefix as the messages that P* sends to the actual verifier it interacts with; similarly, it uses
the messages received from the actual verifier V' instead of V}’s messages in the i*" session-prefix.
The strategy of the cheating prover is depicted in Figure 1 below.

S Vi

Emulated interaction
between S and V},

(Multiple sessions)

P V

Actual interaction
between P* and V

(Single session)

Figure 1: Describes the strategy of the cheating prover P*. The box on the left hand side represents
the (multiple session) emulation of the interaction between S and V}, (executed ”internally” by P*).
The box on the right hand side represents the actual execution of a single session between P* and V.

3.1.3 The success probability of the cheating prover

We next claim that if the session-prefix chosen by P* is useful, then (P*,V)(x) accepts. The key
point is that whenever P* chooses an useful session-prefix, the following two conditions (corre-
sponding to the two conditions in the definition of a useful session-prefix) are satisfied:

1. The session corresponding to the i*h session-prefix is accepted by V;, (and so by V).

2. P* manages to reach the end of the (P*, V) interaction without ”getting into trouble”.

Loosely speaking Item (1) is implied by Condition (1) in the definition of a useful session-prefix.
As for Ttem (2), this just follows from the fact that S does not rewind the i'" session-prefix (as
implied by Condition (2) in the definition of a useful session-prefix). In particular, P* (playing the
role of V3,) will not have to send the j* verifier message with the i*" session-prefix more than once
to S (since the number of messages sent by V}, for that session-prefix is precisely &k 4 1).

Since the number of session-prefixes in an execution of S is bounded by a polynomial, it follows
that if the conversation between S and V} contains a useful session-prefix with non-negligible
probability, then (P*,V')(x) accepts with non-negligible probability.

3.2 The schedule and additional ideas

Using the above framework, the crux of the lower bound is to come up with a schedule and V},’s
that allow demonstrating that whenever S succeeds, the conversation between S and V}, contains a
useful session-prefix (as we have argued above, it is in fact sufficient that the conversation between
S and V}, contains a useful session-prefix with non-negligible probability). This is done next.

5The problem is that P* does not know V’s random coins, and so it cannot compute the verifier’s answers by

himself. Thus, whenever P* is required to send the j*" verifier message in the protocol more than once to S it might

get into trouble (since it gets the j* verifier message only once from V).



3.2.1 The 2-round case

Our starting point is the schedule used in [26] to demonstrate the impossibility of black-box con-
current zero-knowledge with protocols in which 4 messages are exchanged (i.e., vq,p1,v2,p2). The
schedule is recursive and consists of n concurrent sessions (n is polynomially related to the security
parameter). Given parameter m < n, the scheduling on m sessions (denoted R,,) proceeds as
follows (see Figure 2 for a graphical description):

1. If m = 1, the relevant session exchanges all of its messages (i.e., vi,p1, V2, p2)-
2. Otherwise (i.e., if m > 1):

Message exchange: The first session (out of m sessions) exchanges 2 messages (i.e., vi,p1);

Recursive call: The schedule is applied recursively on the remaining m — 1 sessions;

Message exchange: The first session (out of m sessions) exchanges 2 messages (i.e., v2,p2).
At the end of each session V}, continues in the interaction if and only if the transcript of the session
that has just terminated would have been accepted by the prescribed verifier V. This means that

in order to proceed beyond the ending point of the /*! session, the simulator must make the honest
verifier accept the s*™" session for all s > /.

(a) (b)
1 2 m 1 2 m
= =
no= - M
=
=
=
<:§ Rmfl
=
=
= , =
B> [N

Figure 2: The ”telescopic” schedule used by [26] to demonstrate impossibility of black-box concur-
rent zero-knowledge in 2 rounds. Columns correspond to n individual sessions and rows correspond
to the time progression. (a) Depicts the schedule explicitly. (b) Depicts the schedule in a recursive
manner (R,, denotes the recursive schedule for m sessions).

Suppose now that S suceeds in simulating the above V; but the conversation between S and
Vi, does not contain a useful session-prefix. Since V}, proceeds beyond the ending point of a session
only if this session is accepted, then the only reason for which the corresponding session-prefix can
be non-useful is because S has rewound that session-prefix. Put in other words, a session-prefix
becomes non-useful if and only if S resends the first prover message in the protocol (i.e., p1).” This
shuld cause V3, to resend the second verifier message (i.e., v3), thus violating Condition (2) in the
definition of a useful session-prefix (see Section 3.1.1).

"Notice that the first prover message in the protocol (i-e., p1) is the only place in which rewinding the interaction
may cause a session-prefix to be non-useful. The reason for this is that the first verifier message in the protocol (i.e.,
v1) is part of the session-prefix. Rewinding past this message (i.e., v1) would modify the session-prefix itself.

10



The key observation is that whenever the first prover message in the (" session is modified,
then so is the session-prefix of the s session for all s > £. Thus, whenever S resends the first
prover message in the ¢! session, it must do so also in the s*" session for all s > ¢ (since otherwise
the ”fresh” session-prefix of the s session, that is induced by resending the above message, will
be useful). But this means that the work W (m), invested in the simulation of a schedule with
m levels, must satisfy W(m) > 2 - W(m — 1) for all m. Thus, either the conversation between
Vi, and S contains a useful session-prefix (in which case we are done), or the simulation requires
exponential-time (since W (m) > 2- W (m — 1) solves to W (n) > 2" 1).

3.2.2 The k-round case — first attempt

A first attempt to generalize this schedule to the case of £ rounds may proceed as follows. Given
parameter m < n (denoting the number of sessions in R,,) do:

1. If m = 1, the relevant session exchanges all of its messages (i.e., V1,P1,. -+, Vik+1, Phkt1)-
2. Otherwise, for j =1,...,k+ 1:

Message exchange: The first session (out of m) exchanges two messages (i.e., vj,p;);

Recursive call: If j < k + 1, the scheduling is applied recursively on LmT_lJ new sessions;

(This is done using the next | ™| remaining sessions out of 1,...,m.)

As before, at the end of each session V}, continues in the interaction if and only if the transcript of
the session that has just terminated would have been accepted by the prescribed verifier V. The
schedule is depicted in Figure 3.

Vi
P1

W=

Rm-1
k

U

U

Rm-1
k

U

Vi
P

U

Rm=-1
k

Vi41l =
PRl =

Figure 3: First attempt to generalize the recursive schedule (R,, with m sessions) for k-round pro-
tocols. Columns correspond to m individual sessions and rows correspond to the time progression.

11



The crucial problem of the above schedule is that one can come up with a k-round protocol and
a corresponding simulator that manages to succesfully simulate V}, and cause all session-prefixes
in its conversation with V}, to be non-useful. Specifically, there exist protocols (cf. [28]) in which
the simulator is required to successfully rewind an honestly behaving verifier exactly once for every
session. Whereas in the case of 2-rounds this could have had devastating consequences (since, in
the case of the previous schedule, it would have implied W (m) > (k+1)-W(m—1) =2-W(m —1),
which solves to W (n) > 2"~1), in the general case (i.e., when k + 1 > 2) any rewinding of the
schedule that we have suggested would have forced the simulator to re-invest simulation ”work”
only for 2~ sessions. Note that such a simulator satisfies W (m) = (k + 1) - W (22), which solves
to kOUogkn) — pOM)  In particular, by investing polynomial amount of work the simulator is able
to make all session-prefixes not useful while succesfully simulating all sessions.

3.2.3 The k-round case — second attempt

One method to circumvent this difficulty was used in [29]. However, that method extends the
lower bound only up to 3 rounds (more precisely, 7 messages). Here we use a different method.
What we do is let the cheating verifier abort (i.e., refuse to answer) every message in the schedule
with some predetermined probability (independently of other messages). To do this, we first add
another, binary hash function, g, to the specification of V}. This hash function is taken from a
family G with sufficient independence, so that it looks like a random binary function. Now, before
generating the next message in some session, V3 first applies g to some predetermined part of the
conversation so far. If g returns 0 then V, ;, aborts the session by sending an ABORT message. If g
returns 1 then V{5 is run as usual.

The rationale behind the use of aborts can be explained as follows. Recall that a session-prefix
a stops being useful only when V, ; sends more than k messages whose session-prefix is a. This
means that a stops being useful only if S rewinds the session-prefix a and in addition g returns 1
in at least two of the continuations of a. This means that S is expected to rewind session-prefix
a several times before it stops being useful. Since each rewinding of @ involves extra work of S
on higher-level sessions, this may force S to invest considerably more work before a session stops
being useful.

A bit more specifically, let p denote the probability, taken over the choice of g, that ¢ returns 1
on a given input. In each attempt, the session is not aborted with probability p. Thus S is expected
to rewind a session prefix 1/p times before it becomes non-useful. This gives hope that, in order
to make sure that no session-prefix is useful, S must do work that satisfies a condition of the sort:

W(m) > Q(1/p) - W (2L) (1)

This would mean that the work required to successfully simulate n sessions and make all session-
prefixes non-useful is at least Q(p~!°8:™). Consequently, when the expression p~'°8+™ is super-
polynomial there is hope that the conversation between S and V}, contains a useful session-prefix
with non-negligible probability.

3.2.4 The k-round case — final version

However, demonstrating Eq. (1) brings up the following difficulty. Once the verifier starts aborting
sessions, the probability that a session is ever completed may become too small. As a consequence,
it is not clear anymore that the simulator must invest simulation ”work” for all sessions in the
schedule. It may very well be the case that the simulator will go about the simulation task while

12



"avoiding” part of the simulation ”work” in some recursive invocations (as some of these invocations
may be aborted anyway during the simulation). In other words, there is no guarantee that the
recursive "work” invested by the simulator behaves like Eq. (1).

To overcome this problem, we replace each session in the above schedule (for k¥ rounds) with a
“block” of, say, n sessions (see Figure 4 in Page 15). We now have n? sessions in a schedule. (This
choice of parameters is arbitrary, and is made for convenience of presentation.) Vj j, accepts a block
of n sessions if at least 1/2 of the non-aborted sessions in this block were accepted and not too
many of the sessions in this block were aborted. Once a block is rejected, V; 5 halts. At the end
of the execution, V,j accepts if all blocks were accepted. The above modification guarantees us
that, by a careful setting of the parameters, the simulator’s recursive ”"work” must satisfy Eq. (1),
at least with overwhelming probability.

3.2.5 Setting the value of p

Once Eq. (1) is established, it remains to set the value of p. Clearly, the smaller p is chosen to
be, the larger p~!°8x" is. However, p cannot be too small, or else the probability of a session to
be ever completed will be too small, and Condition (1) in the definition of a useful session-prefix
(Section 3.1.1) will not be satisfied. Specifically, a k-round protocol is completed with probability
p¥. We thus have to make sure that p¥ is not negligible (and furthermore that p* - n > 1).

In the proof we set p = n~/2k. This will guarantee that a session is completed with probability
p*¥ = n~1/2 (thus Condition (1) has hope to be satisfied). Furthermore, since p~ 18" is super-
polynomial whenever k£ = o(log n/loglog n), there is hope that Condition (2) in the definition of a
useful session-prefix (Section 3.1.1) will be satisfied for k = o(logn/loglogn).

3.3 The actual analysis

Demonstrating that there exist many accepted session-prefixes is straightforward. Demonstrating
that one of these session-prefixes is useful requires arguing on the dependency between the expected
work done by the simulator and its success probability. This is a tricky business, since the choices
made by the simulator (and in particular the amount of effort spent on making each session non-
useful) may depend on past events.

We go about this task by pinpointing a special (combinatorial) property that holds for any
successful run of the simulator, unless the simulator runs in super-polynomial time (Lemma 5.9).
Essentially, this property states that there exists a block of sessions such that none of the session-
prefixes in this block were rewound too many times. Using this property, we show (in Lemma 5.7)
that the probability (over the choices of V, j, and the simulator) that a run of the simulator contains
no useful session-prefix is negligible.

4 The Actual Proof (of Theorem 1.1)

Assuming towards the contradiction that a black-box simulator, denoted S, contradicting Theo-
rem 1.1 exists, we will describe a probabilistic polynomial-time decision procedure for L, based on
S. The first step towards describing the decision procedure for L involves the construction of an
adversary verifier in the concurrent model. This is done next.

4.1 The concurrent adversarial verifier

The description of the adversarial strategy proceeds in several steps. We start by describing the
underlying fixed schedule of messages. Once the schedule is presented, we describe the adversary’s
strategy regarding the contents of the verifier messages.

13



4.1.1 The schedule

For each = € {0,1}", we consider the following concurrent scheduling of n? sessions, all run on
common input .® The scheduling is defined recursively, where the scheduling of m < n? sessions
(denoted R,,) proceeds as follows:”

1. If m < m, sessions 1,...,m are executed sequentially until they are all completed;
2. Otherwise, for j =1,...,k+ 1:

Message exchange: Each of the first n sessions exchanges two messages (i.e., vj,p;);
(These first n sessions out of {1,...,m} will be referred to as the main sessions of R,,.)

Recursive call: If j < k + 1, the scheduling is applied recursively on [ "] new sessions;

(This is done using the next | ™" ] remaining sessions out of 1,...,m.)

The schedule is depicted in Figure 4. We stress that the verifier typically postpones its answer
(i.e., v;) to the last prover’s message (i.e., pj_1) till after a recursive sub-schedule is executed, and
that in the j'" iteration of Step 2, || new sessions are initiated (with the exception of the
first iteration, in which the first n (main) sessions are initiated as well). The order in which the
messages of various sessions are exchanged (in the first part of Step 2) is fixed but immaterial.
Say that we let the first session proceed, then the second and so on. That is, we have the order
vgl),pgl), . ,vg-n),pg-n), where V§-2) (resp., pg-z)) denotes the verifier’s (resp., prover’s) j'" message in
the ith session.

The set of n sessions that are explicitly executed during the message exchange phase of the
recursive invocation (i.e., the main sessions) is called a recursive block. (Notice that each recursive
block corresponds to exactly one recursive invocation of the schedule.) Taking a closer look at the
schedule we observe that every session in the schedule is explicitly executed in exactly one recursive
invocation (that is, belongs to exactly one recursive block). Since the total number of sessions in
the schedule is n?, and since the message exchange phase in each recursive invocation involves the
explicit execution of n sessions (in other words, the size of each recursive block is n), we have that
the total number of recursive blocks in the schedule equals n. Since each recursive invocation of the
schedule involves the invocation of k£ additional sub-schedules, the recursion actually corresponds

to a k-ary tree with n nodes. The depth of the recursion is thus |log,((k — 1)n 4+ 1)], and the
(k=Lpnt1
7 :

number of “leaves” in the recursion (i.e., sub-schedules of size at most n) is at least |

Identifying sessions according to their recursive block: To simplify the exposition of the
proof, it will be convenient to associate every session appearing in the schedule with a pair of
indices (¢,4) € {1,...,n} x {1,...,n}, rather than with a single index s € {1,...,n%}. The
value of £ = {(s) € {1,...,n} will represent the index of the recursive block to which session s
belongs (according to some canonical enumeration of the n invocations in the recursive schedule,
say according to the order in which they are invoked), whereas the value of i = i(s) € {1,...,n}
will represent the index of session s within the n sessions that belong to the ¢ recursive block (in
other words, session (£,i) is the i'" main session of the £*! recursive invocation in the schedule).
Typically, when we explicitly refer to messages of session (¢,7), the index of the corresponding

®Recall that each session consists of 2k + 2 messages, where k def k(n) = o(log n/ loglogn).

°Tn general, we may want to define a recursive scheduling for sessions %1,...,%,» and denote it by R;,,....:,. (see
Section A in the Appendix for a more formal description of the schedule). We choose to simplify the exposition by
renaming these sessions as 1,...,m and denote the scheduling by R.,.

14



recursive block (i.e., £) is easily deducible from the context. In such cases, we will sometimes omit

the index £ from the “natural” notation vg-z’i) (resp. pg-g’i)), and stick to the notation vg-i) (resp. pg-i)).
Note that the values of (£,7) and the session index s are completely interchangeable (in particular,

¢ =sdivn and i = s mod n).

Definition 4.1 (Identifiers of next message) The schedule defines a mapping from partial ex-
ecution transcripts ending with a prover message to the identifiers of the next verifier message;
that is, the session and round number to which the next verifier message belongs. (Recall that
such partial execution transcripts correspond to queries of a black-box simulator and so the map-
ping defines the identifier of the answer:) For such a query § = (by,a1,...,b,a), we denote by
Ten(Q) = (£,1) € {1,...,n} x {1,...,n} the session to which the next verifier message belongs, and
by Tmsg(q) =7 € {1,...,k + 1} its index within the verifier’s messages in this session.

We stress that the identifiers of the next message are uniquely determined by the number of messages
appearing in the query (and are not affected by the contents of these messages).

1 2 n n+1 m
vy =
P1 =
<~
=
<~
=
Rm—n
13
vy =
P2 =
=
=
=
=
Vi1 =
Pj—1 =
<~
=
<~
=
Rm—n
3
v =
Pj =
<~
=
<~
=
Vi <~
PL =
<~
=
=
=
Rm=n
=
k4l &
R4l =
+ =
=
<~
=

Figure 4: The recursive schedule R,, for m sessions. Columns correspond to m individual sessions
and rows correspond to the time progression.

15



4.1.2 Towards constructing an adversarial verifier

Once the identifiers of the next verifier message are deduced from the query’s length, one has to
specify a strategy according to which the contents of the next verifier message will be determined.
Loosely speaking, our adversary verifier has two options: It will either send the answer that would
have been sent by an honest verifier (given the messages in the query that are relevant to the current
session), or it will choose to deviate from the honest verifier strategy and abort the interaction in
the current session (this will be done by answering with a special ABORT message). Since in a
non-trivial zero-knowledge proof system the honest verifier is always probabilistic (cf. [20]), and
since the “abort behaviour” of the adversary verifier should be “unpredictable” for the simulator,
we have that both options require a source of randomness (either for computing the contents
of the honest verifier answer or for deciding whether to abort the conversation). As is already
customary in works of this sort [18, 26, 29], we let the source of randomness be a hash function
with sufficiently high independence (which is “hard-wired” into the verifier’s description), and
consider the execution of a black-box simulator that is given access to such a random verifier.
(Recall that the simulator’s queries correspond to partial execution transcripts and thus contain
the whole history of the interaction so far.)

Determining the randomness for a session: Focusing (first) on the randomness required to
compute the honest verifier’s answers, we ask what should the input of the above hash function
be. A naive solution would be to let the randomness for a session depend on the session’s index.
That is, to obtain randomness for session ({,i) = ms,(q) apply the hash function on the value
(¢,7). This solution will indeed imply that every two sessions have independent randomness (as
the hash function will have different inputs). However, the solution seems to fail to capture the
difficulty arising in the simulation (of multiple concurrent sessions). What we would like to have is
a situation in which whenever the simulator rewinds a session (that is, feeds the adversary verifier
with a different query of the same length), it causes the randomness of some other session (say, one
level down in the recursive schedule) to be completely modified. To achieve this, we must cause
the randomness of a session to depend also on the history of the entire interaction. Changing even
a single message in this history would immediately result in an unrelated instance of the current
session, and would thus force the simulator to redo the simulation work on this session all over again.

So where in the schedule should the randomness of session (¢,i) be determined? On the one
hand, we would like to determine the randomness of a session as late as possible (in order to
maximize the effect of changes in the history of the interaction on the randomness of the session).
On the other hand, we cannot afford to determine the randomness after the session’s initiating
message is scheduled (since the protocol’s specification may require that the verifier’s randomness
is completely determined before the first verifier message is sent). For technical reasons, the point in
which we choose to determine the randomness of session (¢,4) is the point in which recursive block
number / is invoked. That is, to obtain the randomness of session (£,i) = 75, (q) we feed the hash
function with the prefix of query g that ends just before the first message in block number ¢ (this
prefix is called the block-prefix of query § and is defined below). In order to achieve independence
with other sessions in block number ¢, we will also feed the hash function with the value of 1.
This (together with the above choice) guarantees us the following properties: (1) The input to the
hash function (and thus the randomness for session (£,7)) does not change once the interaction in
the session begins (that is, once the first verifier message is sent). (2) For every pair of different
sessions, the input to the hash function is different (and thus the randomness for each session is
independent). (3) Even a single modification in the prefix of the interaction up to the first message
in block number £, induces fresh randomness for all sessions in block number /.

16



Definition 4.2 (Block-prefix) The block-prefix of a query q satisfying msn(q) = (£,i), is the
prefiz of G that is answered with the first verifier message of session (£,1) (that is, the first
main session in block number (). More formally, bp(q) = (bi,a1,...,by,a,) is the block-prefiz
of 7= (b1,a1,...,b,a) if mn(bp(q)) = (€,1) and Tmsg(bp(q)) = 1. The block-prefiz will be said to
correspond to recursive block number £.10 (Note that i may be any index in {1,...,n}, and that a;
need not belong to session (£,1).)

Determining whether and when to abort sessions: Whereas the randomness that is used
to compute the honest verifier’'s answers in each session is determined before a session begins, the
randomness that is used in order to decide whether to abort a session is chosen independently every
time the execution of the schedule reaches the next verifier message in this session. As before, the
required randomness is obtained by applying a hash function on the suitable prefix of the execution
transcript. This time, however, the length of the prefix increases each time the execution of the
session reaches the next verifier message (rather than being fixed for the whole execution of the
session). This way, the decision of whether to abort a session also depends on the contents of
messages that were exchanged after the initiation of the session has occurred. Specifically, in order
to decide whether to abort session (£,i) = ms,(7) at the j'B message (where j = Tmsg(7)), we feed
the hash function with the prefix (of query ) that ends with the (j—1)%* prover message in the n'h
main session of block number /. (As before, the hash function is also fed with the value of i (in
order to achieve independence from other sessions in the block).) This prefix is called the iteration-
prefix of query § and is defined next (see Figure 5 for a graphical description of the block-prefix
and iteration-prefix of a query).

Definition 4.3 (Iteration-prefix) The iteration-prefix of a query G satisfying wsn(q) = (¢,7) and
Tmsg(7) = J > 1, is the prefiz of  that ends with the (j—1)* prover message in session ({,n) (that is,
the n'™ main session in block number £). More formally, ip(q) = (by,ay,...,bs,as) is the iteration-
prefiz of § = (bi,a1,...,bt,a¢) if as is of the form pg-i)l (where pgn_)l denotes the (j—1)%* prover
message in the n'™ main session of block number €). This iteration-prefiz is said to correspond to
the block-prefix of . (Again, note that 7 may be any index in {1,...,n}, and that a; need not
belong to session (£,7). Also, note that the iteration-prefix is defined only for mms(q) > 1.)

We stress that two queries §;, G, may have the same iteration-prefix even if they do not correspond
to the same session. This could happen whenever bp(q,) = bp(qy) and Tmsg(F1) = Tmsg(q2) (which
is possible even if 75, (q;) # 7sn(To))-

Motivating Definitions 4.2 and 4.3: The choices made in Definitions 4.2 and 4.3 are designed
to capture the difficulties encountered whenever many sessions are to be simulated concurrently.
As was previously mentioned, we would like to create a situation in which every attempt of the
simulator to rewind a specific session will result in loss of work done for other sessions (and so will
cause the simulator to do the same amount of work all over again). In order to force the simulator
to repeat each such rewinding attempt many times, we make each rewinding attempt fail with
some predetermined probability (by letting the verifier send an ABORT message instead of a legal
answer).!!

0Tn the special case that £ =1 (that is, we are in the first block of the schedule), we define bp(g) =.L.
"Recall that all of the above is required in order to make the simulator’s work accumulate to too much, and
eventually cause its running time to be super-polynomial.

17



n n+1

=

=

Rm—n
k

=

=

=4b)

Ram—n
k

v P
P =

Figure 5: Determining the prefixes of query g (in this example, query g ends with a p(l)

J
2

and is to be answered by v,”’, represented by the marked arrow): (a) indicates the block-prefix
of g (i.e., messages up to this point are used by V,; to determine the randomness to be used for

(2)
J

used by V5 to determine whether or not message v§-2) will be set to ABORT).

message

computing message v.”’). (b) indicates the iteration-prefix of g (i.e., messages up to this point are

To see that Definitions 4.2 and 4.3 indeed lead to the fulfillment of the above requirements, we
consider the following example. Suppose that at some point during the simulation, the adversary
verifier aborts session (£,7) at the j*" message (while answering query 7). Further suppose that (for
some unspecified reason) the simulator wants to to get a “second chance” in receiving a legal answer
to the j'" message in session (¢,7) (hoping that it will not receive the ABORT message again). Recall
that the decision of whether to abort a session depends on the outcome of a hash function when
applied to the iteration-prefix ip(q), of query g. In particular, to obtain a “second chance”, the
black-box simulator has no choice but to change at least one prover message in the above iteration-
prefix (in other words, the simulator must rewind the interaction to some message occurring in
iteration-prefix ip(q)). At first glance it may seem that the effect of changes in the iteration-prefix
of query g is confined to the messages that belong to session (¢,7) = ms,(q) (or at most, to messages
that belong to other sessions in block number /). However, taking a closer look at the schedule, we
observe that every iteration-prefix (and in particular ip(g)) can also be viewed as the block-prefix of
a recursive block one level down in the recursive construction. Viewed this way, it is clear that the
effect of changes in ip(q) is not confined only to messages that correspond to recursive block number
£, but rather extends also to sessions at lower levels in the recursive schedule. By changing even a
single message in iteration-prefix ip(q), the simulator is actually modifying the block-prefix of all
recursive blocks in a sub-schedule one level down in the recursive construction. This means that
the randomness for all sessions in these blocks is completely modified (recall that the randomness
of a session is determined by applying a hash function on the corresponding block-prefix), and that
all the simulation work done for these sessions is lost. In particular, by changing even a single
message in iteration-prefix ip(g), the simulator will find himself doing the simulation work for these

18



lower-level sessions all over again.

Having established the effect of changes in iteration-prefix ip(g) on sessions at lower levels in the
recursive schedule, we now turn to examine the actual effect on session (£,7) = mgy(q) itself. One
possible consequence of changes in iteration-prefix ip(q) is that they may also effect the contents
of the block-prefix bp(q) of query g (notice that, by definition, the block-prefix bp(g) of query g
is contained in the iteration-prefix ip(g) of query §). Whenever this happens, the randomness
used for session (/,7) is completely modified, and all simulation work done for this session will be
lost. A more interesting consequence of a change in the contents of iteration-prefix ip(q), is that
it will result in a completely independent decision of whether session (/,7) is to be aborted at the
j* message (the decision of whether to abort is taken whenever the simulator makes a query g
satisfying 7en (7) = (¢,7), and Tmsg(q) = j). In other words, each time the simulator attempts to get
a “second chance” in receiving a legal answer to the j' message in session (£,4) (by rewinding the
interaction to a message that belongs to iteration-prefix ip(g)), it faces the risk of being answered
with an ABORT message independently of all previous rewinding attempts.

4.1.3 The actual verifier strategy V,

We consider what happens when a simulator S (for the above schedule) is given oracle access to a
verifier strategy Vj ; defined as follows (depending on hash functions g, h and the input z). Recall
that we may assume that S runs in strict polynomial time: we denote such time bound by tg(-).
Let G denote a small family of ¢g(n)-wise independent hash functions mapping poly(n)-bit long
sequences into a single bit of output, so that for every a we have Pry.glg(a) = 1] = n~l/2k Let H
denote a small family of tg(n)-wise independent hash functions mapping poly(n)-bit long sequences
to py(n)-bit sequences, so that for every o we have Pry_g[h(a) = 1] = 27°v(®) (where py(n) is
the number of random bits used by an honest verifier V on an input x € {0,1}").'2 We describe
a family {V} »}sec nem of adversarial verifier strategies (where z is implicit in V). On query
q= (b1,a1,...,a.-1,by,a¢), the verifier acts as follows:

1. First, Vg p, checks if the execution transcript given by the query is legal (i.e., corresponds to a
possible execution prefix), and halts with a special ERROR message if the query is not legal.'3

2. Next, Vjj determines the block-prefix, bp(q) = (b1,a1,...,by,ay), of query g. It also deter-
mines the identifiers of the next-message (£,i) = msn(q) and j = Tmeg(7), the iteration-prefix
ip(q) = (b1, aq,..., b,g,pg-ri)l), and the j—1 prover messages of session i appearing in query g

(which we denote by pgi), ... ,pg-izl)-

(Motivating discussion: The next message is the j*" verifier message in the i*" session of block £.
The value of the block-prefix, bp(g), is used in order to determine the randomness of session (¢,7),
whereas the value of the iteration-prefix, ip(g), is used in order to determine whether session (¢,1)
is about to be aborted at this point (i.e., j'" message) in the schedule (by answering with a special
ABORT message).)

3. If j =1, then V, ;, answers with the verifier’s fixed initiation message for session i (i.e., vgi)).

12We stress that functions in such families can be described by strings of polynomial length in a way that enables
polynomial time evaluation (cf. [24, 9, 10, 1]).

13Tn particular, V,  checks whether the query is of the prescribed format (as described in Section 2.5, and as
determined by the schedule), and that the contents of its messages is consistent with V; ;’s prior answers. (That is,
for every proper prefix ¢ = (b1,a1,...,bu,ay) of query § = (b1, a1,...,bt,as), the verifier checks whether the value
of bu4+1 (as it appears in q) is indeed equal to the value of V; 1 (3').)

19



4. If j > 1, then V; , determines b; ; = g(4,ip(q)) (i-e., a bit deciding whether to abort session ¢):

(a) If b;; = 0, then Vj } sets vg-i) = ABORT (indicating that V ; aborts session 4).

(b) If b; ; = 1, then V, j, determines r; = h(, bp(q)) (as coins to be used by V'), and computes
the message vg-z) = V(x,r; pgz), - ,pgzll) that would have been sent by the honest verifier

on common input x, random-pad r;, and prover’s messages pgi), e 7P§‘i21-
(c) Finally, Vj 5, answers with vg-i).
Dealing with ABORT messages: Note that, once V, ; has aborted a session, the interaction in
this session essentially stops, and there is no need to continue exchanging messages in this session.
However, for simplicity of exposition we assume that the verifier and prover stick to the fixed
schedule of Section 4.1.1 and exchange ABORT messages whenever an aborted session is scheduled.
Specifically, if the j*" verifier message in session i is ABORT then all subsequent prover and verifier

messages in that session will also equal ABORT.

On the arguments to g and h: The hash function h, which determines the random input for
V in a session, is applied both on i (the identifier of the relevant session within the current block)
and on the entire block-prefix of the query §. This means that even though all sessions in a specific
block have the same block-prefix, for every pair of two different sessions, the corresponding random
inputs of V' will be independent of each other (as long as the number of applications of A does not
exceed tg(n), which is indeed the case in our application). The hash function g, which determines
whether and when the verifier aborts sessions, is applied both on 7 and on the entire iteration-prefix
of the query g. As in the case of h, the decision whether to abort a session is independent from
the same decision for other sessions (again, as long as ¢ is not applied more than tg(n) times).
However, there is a significant difference between the inputs of h and g: Whereas the input of h
is fized once i and the block-prefix are fixed (and is uneffected by mesages that belong to that
session), the input of g varies depending on previous messages sent in that session. In particular,
whereas the randomness of a session is completely determined once the session begins, the decision
of whether to abort a session is taken independently each time that the schedule reaches the next
verifier message of this session.

On the number of different prefixes that occur in interactions with V, ;: Since the num-
ber of recursive blocks in the schedule is equal to n, and since there is a one-to-one correspondence
between recursive blocks and block-prefixes, we have that the number of different block-prefixes
that occur during an interaction between an honest prover P and the verifier V5 is always equal
to n. Since the number of iterations in the message exchange phase of a recursive invocation of
the schedule equals k£ + 1, and since there is a one-to-one correspondence between such iterations
and iteration-prefixes'* we have that the number of different iteration-prefixes that occur during
an interaction between and honest prover P and the verifier V3, is always equal to k-n (that is, &
different iteration-prefixes for each one of the n recursive invocations of the schedule). In contrast,
the number of different block-prefixes (resp., iteration-prefixes), that occur during an execution
of a black-box simulator S that is given oracle access to V; 5, may be considerably larger than n
(resp., k- n). The reason for this is that there is nothing that prevents the simulator from feeding

The only exception is the first iteration in the message exchange phase. Since only queries g that satisfy Tmsg (§) > 1
have an iteration-prefix, the first iteration will never have a corresponding iteration-prefix.

20



Vg n with different queries of the same length (this corresponds to the so called rewinding of an
interaction). Still, the number of different prefixes in an execution of S is always upper bounded
by the running time of S; that is, tg(n).

On the probability that a session is never aborted: A typical interaction between an
honest prover P and the verifier V ;, will contain sessions whose execution has been aborted prior
to completion. Recall that at each point in the schedule, the decision of whether or not to abort the
next scheduled session depends on the outcome of g. Since the function g returns 1 with probability
n~1/?k a specific session is never aborted with probability (n='/2¥)¥ = n=1/2, Using the fact that
whenever a session is not aborted, V; , operates as the honest verifier, we infer that the probability
that a specific session is eventually accepted by V5, is at least 1/2 times the probability that the
very same session is never aborted (where 1/2 is an arbitrary lower bound on the completeness
probability of the protocol). In other words, the probability that a session is accepted by Vj, is

at least "_21 2 In particular, for every set of m sessions, the expected number of sessions that are
eventually accepted by V j, (when interacting with the honest prover P) is at least n - L;/Q = %/2,

and with overwhelming high probability at least %/2 sessions are accepted by V5.

A slight modification of the verifier strategy: To facilitate the analysis, we slightly modify
the verifier strategy V, ; so that it does not allow the number of accepted sessions in the history
of the interaction to deviate much from its “expected behavior”. Loosely speaking, given a prefix
of the execution transcript (ending with a prover message), the verifier will check whether the

recursive block that has just been completed contains at least %/2 accepted sessions. (To this end,
it will be sufficient to inspect the history of the interaction only when the execution of the schedule
reaches the end of a recursive block. That is, whenever the schedule reaches the last prover message
in the last session of a recursive block (i.e., some pg:_)l message).) The modified verifier strategy
(which we continue to denote by Vj 1), is obtained by adding to the original strategy an additional
Step 1’ (to be executed after Step 1 of V ):
1’. If a; is of the form p,(;:_)l (i.e., in case query § = (b1, aq,..., b, a;) ends with the last prover
message of the n'® main session of a recursive block), Vg.n checks whether the transcript

_ (n) . . . nl/2 . .
7= (b1,a1,..., bt,pk_H) contains the accepting conversations of at least *;— main sessions
in the block that has just been completed. In case it does not, V| ; halts with a special
DEVIATION message (indicating that the number of accepted sessions in the block that has
just been completed deviates from its expected value).

Motivating discussion: Since the expected number of accepted sessions in a specific block is
at least LQN, the probability that the block contains less than %/2 accepted sessions is negligible.
Still, the above modification is not superfluous (even though it refers to events that occur only with
negligible probability): It allows us to assume that every recursive block that is completed during
the simulation (including those that do not appear in the simulator’s output) contains at least
nl/2

%~ accepted sessions. In particular, whenever the simulator feeds V; ; with a partial execution

transcript (i.e., a query), we are guaranteed that for every completed block in this transcript, the
simulator has indeed “invested work” to simulate the at least %/2 accepted sessions in the block.

A slight modification of the simulator: Before presenting the decision procedure, we slightly
modify the simulator so that it never makes a query that is answered with either the ERROR or

21



DEVIATION messages by the verifier Vj ;. Note that the corresponding condition can be easily
checked by the simulator (which can easily produce this special message by itself),!” and that
the modification does not effect the simulator’s output. From this point on, when we talk of the
simulator (which we continue to denote by S) we mean the modified one.

4.2 The decision procedure for L

We are now ready to describe a probabilistic polynomial-time decision procedure for L, based on
the black-box simulator S and the verifier strategies V, ;. On input € {0,1}", the procedure
operates as follows:

1. Uniformly select hash functions ¢ & @ and h < H.

2. Invoke S on input z providing it black-box access to V,j (as defined above). That is, the
procedure emulates the execution of the oracle machine S on input z along with emulating
the answers of V, j,, where g and h are as determined in Step 1.

3. Accept if and only if S outputs a legal transcript (as determined by Steps 1 and 1’ of ngh).16
By our hypothesis, the above procedure runs in probabilistic polynomial-time. We next analyze its
performance.

Lemma 4.4 (performance on YES-instances): For all but finitely many x € L, the above procedure
accepts © with probability at least 2/3.

Proof Sketch: Let z € L, g & G, h < H, and consider the honest prover P. We show below
that, except for negligible probability (where the probability is taken over the random choices of g,
h, and P’s coin tosses), when V ;, interacts with P, all recursive blocks in the resulting transcript

contain the accepting conversations of at least %/2 main sessions. Since for every g and h the
simulator SVo% (z) must generate a transcript whose deviation gap from (P, V, ;)(z) is at most 1/4,

it follows that SYo(z) has deviation gap at most 1/4 from (P,V,,)(x) also when g <~ G and

h & H. Consequently, when S is run by the decision procedure for L, the transcript SV (z) will
not be legal with probability at most 1/3. Details follow.

Let 7 denote the random variable describing the transcript of the interaction between the honest
prover P and V, j,, where the probability is taken over the choices of g, h, and P. Let s € {1,...,n?}.
We first calculate the probability that the st session in 7 is completed and accepted (i.e., Vy,n sends

the message v,(:_i)_l = ACCEPT), conditioned on the event that V; ; did not abandon the interaction

beforehand (i.e., V5, did not send the DEVIATION message before).!” For uniformly selected g & @,
the probability that V; does not abort the session in each of the k rounds, given that it has not

5We stress that, as opposed to the ERROR and DEVIATION messages, the simulator cannot predict whether its query
is about to be answered with the ABORT message.

'6Recall that we are assuming that the simulator never makes a query that is ruled out by Steps 1 and 1’ of
Vy.n. Since before producing output (b1,a1,...,br,ar) the simulator makes the query (b1,a1,...,br,ar), cheking
the legality of the transcript in Step 3 is not really necessary (as, in case that the modified simulator indeed reaches
the output stage “safely”, we are guaranteed that it will produce a legal output). In particular, we are always
guaranteed that the simulator either produces execution transcripts in which every recursive block contains at least
n1/2/4 sessions that were accepted by Vj », or it does not produce any output at all.

"Note that, since we are dealing with the honest prover P, there is no need to consider the ERROR message at all
(since in an interaction with the honest prover P, the adversary verifier V;,, will never output ERROR anyway).

22



already aborted, is n~'/**. Thus, conditioned on the event that V,; did not output DEVIATION
beforehand, the session is completed (without being aborted) with probability (n*1/2k)k =n"12
The key observation is that if A is uniformly chosen from H then, conditioned on the event that
Vg,n did not output DEVIATION beforehand and the current session is not aborted, the conversation
between Vj; and P is distributed identically to the conversation between the honest verifier V'
and P on input x. By the completeness requirement for zero-knowledge protocols, we have that
V accepts in such an interaction with probability at least 1/2 (this probability is actually higher,
but 1/2 is more than enough for our purposes). Consequently, for uniformly selected g and h,
conditioned on the event that Vj j; did not output DEVIATION beforehand, the probability that a

. . . —1/2
session is accepted by Vj j is at least *——.

We calculate the probability that 7 contains a block such that less than # of its sessions are
accepted. Say that a block B in a transcript has been completed if all the messages of sessions
in B have been sent during the interaction. Say that B is admissible if the number of accepted
sessions that belong to block B in the transcript is at least %/2. Enumerating blocks in the order
in which they are completed (that is, when we refer to the /*h block in 7, we mean the /" block
that is completed in 7), we denote by 7, the event that all the blocks up to and including the ¢*!
block are admissible in 7.

For i € {1,...,n} define a boolean indicator af to be 1 if and only if the i*" session in the

block is accepted by V5. We have seen that, conditioned on the event ~,_;, each af is 1
¢

3

gth
w.p. at least "_21/2. As a consequence, for every ¢, the expectation of > 7" | «
of accepted main sessions in block number /) is at least %/2 Since, conditioned on ~yy_1, the af’s
are independent of each other, we can apply the Chernoff bound, and infer that Pr[vy|y,—1] >
1 — =9,

(i.e., the number

Furthermore, since no session belongs to more than one block, we have: Pr[y,] >
Pr[vi|ve—1] - Pr[yi-1]. Tt follows (by induction on the number of completed blocks in a transcript),
that all blocks in 7 are admissible with probability at least (1 — e_Q(”l/Q))” >1—n-e~2""") The
lemma follows. [

Lemma 4.5 (performance on NO-instances): For all but finitely many x & L, the above procedure
rejects x with probability at least 2/3.

We can actually prove that for every positive polynomial p(-) and for all but finitely many z ¢ L,
the above procedure accepts x with probability at most 1/p(]z|). Assuming towards contradiction
that this is not the case, we will construct a (probabilistic polynomial-time) strategy for a cheating
prover that fools the honest verifier V' with success probability at least 1/poly(n) in contradiction
to the soundness (and even computational-soundness) of the proof system.

5 Proof of Lemma 4.5 (performance on NO-instances)

Let us fix an # € {0,1}"\ L as above.!® Denote by AC = AC,, the set of triplets (o, g,h) so that on
input z, internal coins o and oracle access to V p, the simulator outputs a legal transcript (which
we denote by S(‘T/g’h(x)). Recall that our contradiction assumption is that Pr, 4 [(0,9,h) € AC] >
1/p(n), for some fixed positive polynomial p(-). Before proceeding with the proof of Lemma 4.5,
we formalize what we mean by referring to the “execution of the simulator”.

18 Actually, we need to consider infinitely many such 2’s.

23



Definition 5.1 (Execution of simulator) Let z,0 € {0,1}*, g € G and h € H. The execution
of simulator S, denoted EXEC,(0,g,h), is the sequence of queries made by S, given input x, random
coins o, and oracle access to Vg p(x).

Since the simulator has the ability to “rewind” the verifier V, ; and explore V; ;’s output on various
execution prefixes (i.e., queries) of the same length, the number of distinct block-prefixes that appear
in EXEC.(0, g, h) may be strictly larger than n (recall that the schedule consists of n invocations
to recursive blocks, and that in an interaction between the honest prover P and V,,; there is a
one-to-one correspondence between recursive blocks and block-prefixes). As a consequence, the /!
distinct block-prefix appearing in EXEC, (0, g, h) does not necessarily correspond to the ¢t recursive
block in the schedule. Nevertheless, given EXEC,(c,g,h) and £, one can easily determine for the
¢*h distinct block-prefix in the execution of the simulator the index of its corresponding block in
the schedule (say, by extracting the ¢*" distinct block-prefix in EXEC,(0,g,h), and then analyzing
its length).

In the sequel, given a specific block-prefix bp, we let £(?) € {1,...,n} denote the index of
its corresponding block in the schedule (as determined by bp’s length). Note that two different
block-prefixes bp; and bp, in EXEC,(0, g, h) may satisfy £(%P1) = ¢(tP2) (a5 they may correspond to
two different instances of the same recursive block). In particular, session (£(%?1), i) may have more
than a single occurrence during the execution of the simulator (whereas in an interaction of the
honest prover P with V, ;, each session index will occur exactly once). This means that whenever
we refer to an instance of session (£,4) in the simulation, we will also have to explicitly specify to
which block-prefix this instance corresponds. _

In order to avoid cumbersome statements, we will abuse the notation () and also use it in
order to specify to which instance the recursive block £®P) corresponds. That is, whenever we refer
to recursive block number () we will actually mean: “the specific instance of recursive block
number ¢ (= ¢®P)) that corresponds to block-prefix bp in EXEC,(c,g,h)”. Viewed this way, for
(1) — (bps) gessions (£(P1),7) and (£(P2) ) actually correspond to two different instances of the
same session in the schedule.

5.1 The cheating prover

The cheating prover (denoted P*) starts by uniformly selecting a triplet (o, g,h) while hoping
that (o,g,h) € AC. It next selects uniformly a pair (§,17) € {1,...,ts(n)} x {1,...,n}, where
the simulator’s running time, tg(n), acts as a bound on the number of (different block-prefixes
induced by the) queries made by S on input z € {0,1}"™. The prover next emulates an execution of

S:g’h(r) () (where ("), which is essentially equivalent to h, will be defined below), while interacting
with V(x,r) (that is, the honest verifier, running on input z and using coins r). The prover handles
the simulator’s queries as well as the communication with the verifier as follows: Suppose that the
simulator makes query ¢ = (by,aq,...,bs,a;), where the a’s are prover messages.

1. Operating as V; 5, the cheating prover determines the block-prefix bp(q) = (b1, a1,...,by,a).

It also determines (¢,7) = Tsn(Q), J = Tmsg(q), the iteration-prefix ip(q) = (b1, a1, ..., b(s,pyi)l),
and the j—1 prover messages pgi), ... ,pg-izl appearing in the query g (as done by V, 5, in Step 2).

(Note that by the modification of S there is no need to perform Steps 1 and 1’ of V)

2. If j = 1, the cheating prover answers the simulator with the verifier’s fixed initiation message
for session @ (as done by V4 in Step 3).

24



3. If j > 1, the cheating prover determines b; ; = g(7,ip(q)) (as done by V, j in Step 4).

4. If bp(q) is the ¢'M distinct block-prefix resulting from the simulator’s queries so far and if, in
addition, ¢ equals 1, then the cheating prover operates as follows:

(a) If b; ; = 0, then the cheating prover answers the simulator with ABORT.

Motivating discussion for substeps b and c: The cheating prover has now reached a point
in the schedule in which it is supposed to feed the simulator with vl

J
pg?l to the honest verifier V(z,7), and only then feeds the simulator with the verifier’s answer

. To do so, it first forwards

vg-i) (as if it were the answer given by V, ;). We stress the following two points: (1) The
()

cheating prover cannot forward more than one p;”; message to V (since P* and V engage in an

actual execution of the protocol (P, V}). (2) The cheating prover will wait and forward pgl_)

the verifier only when vg-i) is the next scheduled message.

, to

(b) If b; ; =1, and the cheating prover has only sent j—2 messages to the actual verifier, the
cheating-prover forwards p(-zzl to the verifier, and feeds the simulator with the verifier’s

j
(,i))_19

response (i.e., which is of the form v;

(We comment that by our conventions regarding the simulator, it cannot be the case that the
cheating prover has sent less than j—2 prover messages to the actual verifier. The prefixes of
the current query dictate j—2 sequences of prover messages with distinct lengths, so that none
of these sequences was answered with ABORT. In particular, the last message of each one of these
sequences was already forwarded to the verifier.)

c) If b; ; = 1, and the cheating prover has already sent j—1 messages (or more) to the actual
J ) g
verifier then it retrieves the (j—1)%* answer it has received and feeds it to the simulator.

(We comment that this makes sense provided that the simulator never makes two queries with
the same block-prefix and the same number of prover messages, but with a different sequence of
such messages. However, for 7 > 2 it may be the case that a previous query regarding the same
(4)

block-prefix had a different p; ", message. This is the case in which the cheating prover may fail

to conduct Step 4c (see further discussion below).)

5. If either bp(q) is NOT the ¢*! distinct block-prefix resulting from the queries so far, or if i is
NOT equal to 5, the prover emulates Vj ;, in the obvious manner (i.e., as in Step 4 of V 3):

(a) If b; ; = 0, then the cheating prover answers the simulator with ABORT.

(b) If b; ; = 1, then the cheating prover determines r; = h(i,bp(q)), and then answers the

simulator with V(x,r;; pgi), - ,pg-izl), where all notations are as above.

On the efficiency of the cheating prover: Notice that the strategy of the cheating prover
can be implemented in polynomial-time (that is, given that the simulator’s running time, tg(-), is
polynomial as well). Thus, Lemma 4.5 (and so Theorem 1.1) will also hold if (P, V') is an argument

system (since, in the case of argument systems, the existence of an efficient P* leads to contradiction
of the computational soundness of (P, V')).

9Note that in the special case that j = 1 (i.e., when the verifier’s response is the fixed initiation message vgi)), the
J(-z_)l to the honest verifier (since no such message exists). Still, since vgl) is
a fixed initiation message, the cheating prover can produce vgi) without actually having to interact with the honest

verifier (as it indeed does in Step 2 of the cheating prover strategy).

cheating prover cannot really forward p

25



The cheating prover may ”do nonsense” in Step 4c: The cheating prover is hoping to
convince an honest verifier by focusing on the 5" session in recursive block number K(bpﬁ), where
bpe denotes the ¢t distinct block-prefix in the simulator’s execution. Prover messages in session

(E(Ef), n) are received from the (multi-session) simulator and are forwarded to the (single-session)
verifier. The honest verifier’s answers are then fed back to the simulator as if they were answers
given by V, ;) (defined below). For the cheating prover to succeed in convincing the honest verifier

the following two conditions must be satisfied: (1) Session (¢£(°’¢), 5) is eventually accepted by Vo ho-
(2) The cheating prover never ”does nonsense” in Step 4c¢ during its execution. Let us clarify the
meaning of this "nonsense”.

One main problem that the cheating prover is facing while conducting Step 4c¢ emerges from the
following fact: Whereas the black-box simulator is allowed to “rewind” V| ;) (impersonated by the
cheating prover) and attempt different execution prefixes before proceeding with the interaction
of a session, the prover cannot do so while interacting with the actual verifier. In particular, the
cheating prover may reach Step 4c with a pg@l message that is different from the P§‘@1 message

that was previously forwarded to the honest verifier (in Step 4b). Given that the verifier’s answer

(m

to the current p;”; message is most likely to be different than the answer which was given to the

5-71)1 message, by answering (in Step 4c) in the same way as before, the prover action
”makes no sense”.20

We stress that, at this point in its execution, the cheating prover might as well have stopped
with some predetermined ”failure” message (rather than ”doing nonsense”). However, for simplicity
of presentation, it is more convenient for us to let the cheating prover ”do nonsense”.

The punchline of the analysis is that with noticeable probability (over choices of (o, g, h)), there

“previous” p

exists a choice of (£,7) so that the above “bad” event will not occur for session (E(EE), n). That is,
using the fact that the success of a “rewinding” also depends on the output of g (which determines
whether and when sessions are aborted) we show that, with non-negligible probability, Step 4c is

never reached with two different p(") messages. Specifically, for every j € {2,...,k+1}, once a

j—1
pgn_)l message is forwarded to the verifier (in Step 4b), all subsequent pg-n_)l
to the forwarded message or are answered with ABORT (here we assume that session (ﬁ(bpf),n) is
(m)
j—1

messages are either equal

eventually accepted by V, ), and every p;’) message is forwarded to the verifier at least once).

Defining h(") (mentioned above): Let (0,g,h) and (£,7) be the initial choices made by the
cheating prover, let %5 be the ¢ block-prefix appearing in EXEC, (0, g, h), and suppose that the
honest verifier uses coins r. Then, the function h(" = R(79m&M is defined to be uniformly
distributed among the functions 2’ which satisfy the following conditions: The value of A’ when
applied on (n,bp,) equals 7, whereas for (1,¢') # (1,€) the value of h' when applied on (7', bpr)
equals the value of h on this prefix. (The set of such functions A’ is not empty due to the hypothesis
that the functions are selected in a family of tg(n)-wise independent hash functions.) We note that
replacing h by h(") does not effect Step 5 of the cheating prover, and that the cheating prover does
not know A(. In particular, whenever the honest verifier V uses coins r, one may think of the

20We stress that the cheating prover does not know the random coins of the honest verifier, and so it cannot compute
the verifier’s answers by himself. In addition, since P* and V are engaging in an actual execution of the specified
protocol (P, V) (in which every message is sent exactly once), the cheating prover cannot forward the “recent” pj(-n_)1

message to the honest verifier in order to obtain the corresponding answer (because it has already forwarded the
(m)

previous p; -, message to the honest verifier).

26



cheating prover as if it is answering the simulator’s queries with the answers that would have been
given by V.

Claim 5.2 For every value of 0,9,& and n, if h and v are uniformly distributed then so is h(").

Proof Sketch: Fix some simulator coins o € {0,1}*, g € G, block-prefix index £ € {1,...,ts(n)},
and session index n € {1,...,n}. The key for proving Claim 5.2 is to view the process of picking a
function h € H as consisting of two stages. The first stage is an iterative process in which up to
ts(n) different arguments are adversarially chosen, and for each such argument the value of & on this
argument is uniformly selected in its range. In the second stage, a function A is chosen uniformly
from all A’s in H under the constraints that are introduced in the first stage. The iterative process
in which the arguments are chosen (that is, the first stage above) corresponds the simulator’s choice
of the various block-prefixes bp (along with the indices i), on which & is applied.

At first glance, it seems obvious that the function h("), which is uniformly distributed amongst
all functions that are defined to be equal to h on all inputs (except for the input (7, %5) on which it
equals r) is uniformly distributed in H. Taking a closer look, however, one realizes that a rigorous
proof for the above claim is more complex than one may initially think, since it is not even clear
that an h that is defined by the above process actually belongs to the family H.

The main difficulty in proving the above lies in the fact that the simulator’s queries may “adap-
tively“ depend on previous answers it has received (which, in turn, may depend on previous out-
comes of h). The key obervation used in order to overcome this difficulty is that for every family
of tg(n)-wise independent functions and for every sequence of at most tg(n) arguments (and in
particular, for an adaptively chosen sequence), the values of a uniformly chosen function when
applied to the arguments in the sequence are uniformly and independently distributed. Thus, as
long as the values assigned to the function in the first stage of the above process are uniformly and
independently distributed (which is indeed the case, even if we constraint one output to be equal
to ), the process will yield a uniformly distributed function from H. W

5.2 The success probability of the cheating prover

We start by introducing two important notions that will play a central role in the analysis of the
success probability of the cheating prover.

5.2.1 Grouping queries according to their iteration-prefixes

In the sequel, it will be convenient to group the queries of the simulator into different classes based
on different iteration-prefixes. (Recall that the iteration-prefix of a query g (satisfying 75, (q) = (¢, %)
and Tmsg(q) =7 >1) is the prefix of g that ends with the (j—1)* prover message in session (£,n).).
Grouping by iteration-prefixes particularly makes sense in the case that two queries are of the
same length (see discussion below). Nevertheless, by Definition 4.3, two queries may have the same
iteration-prefix even if they are of different lengths (see below).

Definition 5.3 (ip-different queries) Two queries, G, and G, (of possibly different lengths), are
said to be ip-different, if and only if they have different iteration-prefizes (that is, ip(q,) #ip(qs)).

By Definition 4.3, if two queries, g, and @, satisfy ip(q;) = ip(q,), then the following two conditions
must hold: (1) men(G;) = (4,1), Tsn(Ta) = (¢,12) and; (2) Tmsg(Ty) = Tmsg(To). However, it is not
necessarily true that i1 = i9. In particular, it may very well be the case that g1, ge have different
lengths (i.e., i1 # i) but are not ip-different (note that if iy = is then ¢; and g9 are of equal

27



length). Still, even if two queries are of the same length and have the same iteration-prefix, it is
not necessarily true that they are equal, as they may be different at some message which occurs
after their iteration-prefixes.

Motivating Definition 5.3: Recall that a necessary condition for the success of the cheating

(m)

prover is that for every j, once a p;; message has been forwarded to the verifier (in Step 4b), all

subsequent P§‘@1 messages (that are not answered with ABORT) are equal to the forwarded message.

In order to satisfy the above condition it is sufficient to require that the cheating prover never
reaches Steps 4b and 4c with two ip-different queries of equal length. The reason for this is that if
two queries of the same length have the same iteration-prefix, then they contain the same sequence
of prover messages for the corresponding session (since all such messages are contained in the

(m (m

iteration-prefix), and so they agree on their p;—; message. In particular, once a p;”; message has

been forwarded to the verifier (in Step 4b), all subsequent queries that reach Step 4c and are of

the same lenght will have the same pg@l
iteration-prefix).

In light of the above discussion, it is only natural to require that the number of ip-different
queries that reach Step 4c¢ of the cheating prover is exactly one (as, in such a case, the above
necessary condition is indeed satified).?! Jumping ahead, we comment that the smaller is the
number of ip-different queries that correspond to block-prefix %5, the smaller is the probability
that more than one ip-different query reaches Step 4c. The reason for this lies in the fact that

the number of ip-different queries that correspond to block-prefix %5 is equal to the number of

messages as the first such query (since they have the same

different iteration-prefixes that correspond to Eg- In particular, the smaller is the number of such
iteration-prefixes, the smaller is the probability that ¢ will evaluate to 1 on more than a single
iteration-prefix (thus reaching Step 4c¢ with more than one ip-different query).

5.2.2 Useful block-prefixes

The probability that the cheating prover makes the honest verifier accept will be lower bounded by
the probability that the ¢'" distinct block-prefix in EXEC,(c, g, h) is n-useful (in the sense hinted
above and defined next):

Definition 5.4 (Useful block-prefix) A specific block-prefiz bp = (bi,a1,...,by,ay), appearing
in EXECy(0,g,h), is called i-useful if it satisfies the following two conditions:

1. For every j €{2,..,k+1}, the number of ip-different queries  in EXECy(a, g, h) that correspond
to block-prefiz bp and satisfy me (q)=(£P), 1), Tmsg (@) =7, and g(i,ip(q)) =1, is ezactly one.

2. The (only) query G in EXECy(0,g,h) that corresponds to block-prefiz bp and that satisfies
Ton(q) = (L), 1), Tmsg(q) = k+1, and g(i,ip(q)) = 1, is answered with ACCEPT by V, j,.

If there exists an i € {1,...,n}, so that a block-prefix is i-useful, then this block-prefix is called
useful.

Condition 1 in Definition 5.4 states that for every fixed value of j there exists exactly one iteration-
prefix, ip, that corresponds to queries of the block-prefix bp and the the j*" message so that g(i,ip)
evaluates to 1. Condition 2 asserts that the last verifier message in the i*" main session of recursive
block number ¢ = ¢(?) is equal to ACCEPT. It follows that if the cheating prover happens to select

Z'Tn order to ensure the cheating prover’s success, the above requirement should be augmented by the condition

that session (Z(gf), n) is accepted by V_ ;).

28



(0,9, h,€,m) so that block-prefix bp, (i.e., the £&™ distinct block-prefix in EXEC,(a,g, (")) is n-
useful, then it convinces V' (z,7); the reason being that (by Condition 2) the last message in session
(1P¢) ) is answered with ACCEPT,?? and that (by Condition 1) the emulation does not get into
trouble in Step 4c of the cheating prover (to see this, notice that each prover message in session
(¢(%¢) 1) will end up reaching Step 4c only once).

Let (P*,V)(z) = (P*(0,9,h,&,n),V(r))(x) denote the random variable representing the (local)
output of the honest verifier V' when interacting with the cheating prover P* on common input
x, where o, g, h,&,n are the initial random choices made by the cheating prover P*, and r is the
randomness used by the honest verifier V. Adopting this notation, we will say that the cheating
prover P* = P*(z,0, g, h,£,n) has convinced the honest verifier V.= V(x,r) if (P*,V)(x) = ACCEPT.
With these notations, we are ready to formalize the above discussion.

Claim 5.5 If the cheating prover happens to select (o,g,h,&,n) so that the & distinct block-
prefiz in EXEC, (0, g, b)) is n-useful, then the cheating prover convinces V(x,r) (i.e., (P*,V)(z)=
ACCEPT).

Proof: Let us fix z € {0,1}", 0 € {0,1}*, g € G, h € H, r € {1,...,pv(n)}, n € {1,...,n},
and € € {1,...,tg(n)}. We show that if the £* distinct block-prefix in EXEC, (0, g, (")) is p-useful,
then the cheating prover P*(z,0,g,h,&,n) convinces the honest verifier V(x,r).

By definition of the cheating-prover, the prover messages that are actually forwarded to the hon-
est verifier (in Step 4b) correspond to session (é(bpﬁ), n). Specifically, messages that are forwarded by
the cheating prover are of the form pg-n_)l, and correspond to queries g, that satisfy s, (7) = (é(bpﬁ), n),
Tmsg(7) = j and g(n,ip(7)) = 1. Since the ¢ distinct block-prefix in EXEC, (0, g, h(")) is n-useful,
we have that for every j € {2,...,k+1}, there is exactly one query g that satisfies the above condi-

tions. Thus, for every j € {2,...,k+1}, the cheating prover never reaches Step 4c with two different

pg@l messages. Here we use the fact that if two queries of the same length are not ip-different (i.e.,

have the same iteration-prefix) then the answers given by V, n(r) to these queries are identical (see
discussion above). This in particular means that P* is answering the simulator’s queries with the
answers that would have been given by Vo) itself. (Put in other words, whenever the ¢ distinct
block-prefix in EXEC, (0, g, h(’")) is p-useful, the emulation does not ”get into trouble” in Step 4c of
the cheating prover.)

At this point, we have that the cheating prover never fails to perform Step 4c¢, and so the
interaction that it is conducting with V(z,7) reaches “safely” the (k+1)%* verifier message in the
protocol. To complete the proof we have to show that at the end of the interaction with the cheating-
prover, V(z,r) outputs ACCEPT. This is true since, by Condition 2 of Definition 5.4, the query g,
that corresponds to block-prefix %é, satisfies gy (q) = (ﬂ(l’pf),n), Tmsg(q) = j and g(n,ip(q)) = 1,
is answered with ACCEPT. Here we use the fact that V(z,r) behaves exactly as Vg7h(r) behaves on
queries that correspond to the £ distinct block-prefix in EXEC, (o, g, (). W

5.2.3 Reduction to rareness of legal transcripts without useful block-prefixes

The following lemma (Lemma 5.6) establishes the connection between the success probability of the
simulator and the success probability of the cheating-prover. Loosely speaking, the lemma asserts
that if S outputs a legal transcript with non-negligible probability, then the cheating prover will

th

*2Notice that V(z,r) behaves exactly as Vg n(r behaves on queries that correspond to the {™ distinct iteration-

prefix in EXEC, (0, g, h(").

29



succeed in convincing the honest verifier with non-negligible probability. Since this is in contradic-
tion to the computational soundness of the proof system, we have that Lemma 5.6 actually implies
the correctness of Lemma 4.5 (recall that the contradiction hypothesis of Lemma 4.5 is that the
probability that the simulator outputs a legal transcript is non-negligible).

Lemma 5.6 Suppose that Pr, 4 1[(0,g,h) € AC] > 1/p(n) for some fized polynomial p(-). Then the

probability (taken over o,g,h,&,m,7), that (P*,V)(x) = ACCEPT is at least m

Proof: Define a Boolean indicator useful¢ ,(c, g, h) to be true if and only if the ¢ distinct block-
prefix in EXEC,(0, g, h) is n-useful. Using Claim 5.5, we have:

Pro g hens [(P*, V)(x) = ACCEPT] > Pro g pg {“serIE,n(‘Lg’ h(r))] (2)

where the second probability refers to an interaction between S and V, ;). Since for every value

of o,¢,n and &, when h and r are uniformly selected the function A is uniformly distributed (see
Claim 5.2), we infer that:

Prognenr [usefulgm(a,g,h(r))] = Pro g,y [usefulg (0, g, 1)) (3)

On the other hand, since ¢ and 7 are distributed independently of (o, g, k), we have:

ts(n) n
Progneqlusefuley(o,g. )] = D Y Prognenqlusefulai(o,g,h) & (€ =d &n=1)
d=1 =1
ts(n) n
= Y>> Prognlusefuly;(o,g,h)] - Prey [ = d & n =]
d=1 =1
ts(n) n 1
— Pry g n lusefuly;(o,9,h)] - ———
2 ; o | ] ts(n)-n
1
> Prygp(3d,is.t. usefuly;(o,g,h)] - ts(n)-n (4)

where tg(n) is the bound used by the cheating prover (for the number of distinct block-prefixes in
EXECy(0, g, h)). Combining Eq. (2), (3), (4) we get:

1

Proghens [(P*,V)(x) = ACCEPT| > Pr,,p[3d,is.t. usefuly;(o,g,h)] - Par—
s(n)-n

()

Recall that by our hypothesis, Pr[(o,g,h) € AC] > 1/p(n) for some fixed polynomial p(-). We can
thus rewrite and lower bound the value of Pr, 1, [3d, i s.t. usefulg;(o, g, k)] in the following way:

Pr[EId,i s.t. usefulg ;(o, g, h)]
= 1- Pr[‘v’d,i —wsefulg (0, g, h)]
= 1- Pr[(Vd,i ~usefuly (o, g, b)) & (o, g, h)gZAC)]— Pr[(Vd,i ~usefuly (o, g, b)) & ((0, g, h)e Ac)]
> 1- Pr[(o,g, h) ¢ AC] - Pr[(‘v’d,i —usefulg (o, 9,h)) & (0,9,h) € AC]
> 1/p(n) = Pr[(Vd, i ~usefuly;(c,g,h)) & (7,9,h) € AC]

30



where all the above probabilities are taken over (o,g,h). It follows that in order to show that
Pro g héenr [(P*,V)(x) = ACCEPT| > m, it will be sufficient to prove that for every fixed
polynomial p/(-) it holds that:

Pro g n [(Vd, i —usefuly,;(o,9,h)) & (0,9,h) € AC] < 1/p'(n)

Thus, Lemma 5.6 is satisfied provided that Pr, ;5 [Vd, i —usefulg;(o,g,h) & (0,9, h) € AC] is negli-
gible. Consequently, Lemma 5.6 will follow by establishing Lemma 5.7, stated next.

Lemma 5.7 The probability (taken over o,g,h), that for all pairs (d,i) usefulg;(o,g,h) does not
hold and that (o,g,h) € AC, is negligible. That is, the probability that EXEC;(o,g,h) does not
contain a useful block-prefiz and S outputs a legal transcript is negligible.

This completes the proof of Lemma 5.6. The rest of this section is devoted to proving Lemma 5.7.

5.3 Proof of Lemma 5.7 (existence of useful block-prefixes in legal transcripts)

The proof of Lemma 5.7 will proceed as follows. We first define a special kind of block-prefixes,
called potentially-useful block-prefixes. Loosely speaking, these are block-prefixes in which the sim-
ulator does not make too many “rewinding” attempts (each “rewinding” corresponds to a different
iteration-prefix). Intuitively, the larger the number of “rewindings” is, the smaller is the probability
that a specific block-prefix is useful. A block-prefix with a small number of “rewindings” is thus
more likely to cause its block-prefix to be useful. Thus our basic approach will be to show that:

1. In every “successful” execution (i.e., producing a legal transcript), the simulator generates a
potentially-useful block-prefix. This is proved by demonstrating, based on the structure of
the schedule, that if no potentially-useful block-prefix exists, then the simulation must take
super-polynomial time.

2. Any potentially-useful block-prefix is in fact useful with considerable probability. The argu-
ment that demonstrates this claim proceeds basically as follows. Consider a specific block-
prefix bp, let £ = ¢(?) and focus on a specific instance of session (£,7) (that is, the specific
instance of session (£,4) that corresponds to block-prefix bp). Suppose that block-prefix bp
is potentially-useful and that the above instance of session (¢,4) happens to be accepted by
Vg.n- This means that there exist k queries with block-prefix bp that consist of the “main
thread” that leads to acceptance (i.e., all queries that were not answered with ABORT). Recall
that the decision to abort a session (/,7) is made by applying the function g to 7 and the
iteration-prefix of the corresponding query. Thus, if there are only few different iteration-
prefixes that correspond to block-prefix bp (which, as we said, is potentially-useful), then
there is considerable probability that all the queries having block-prefix bp, but which do
not belong to that “main thread”, will be answered with ABORT (that is, g will evaluate to 0
on the corresponding input). If this lucky event occurs, then block-prefix bp will indeed be
useful (recall that for a block-prefix to be useful we require that there exists a corresponding
session that is accepted by V; ; and satisfies that for every j € {2,...,k+1} there is a single
iteration-prefix that makes g evaluate to 1 at the j*" message of this session).

Returning to the actual proof, we start by introducing the necessary definition (of a potentially-
useful block-prefix). Recall that, for any ¢ € G and h € H, the running time of the simulator S
with oracle access to V3 is bounded by tg(n). Let ¢ be a constant such that tg(n) < n¢ for all
sufficiently large n.

31



Definition 5.8 (Potentially-useful block-prefix) A specific block-prefiz bp = (by,ay,.., by, a),
appearing in EXEC. (o, g, h), is called potentially-useful if it satisfies the following two conditions:

1. The number of ip-different queries that correspond to block-prefiz bp is at most k¢+1.

2. The execution of the simulator reaches the end of the block that corresponds to block-prefiz bp.
That is, EXEC, (0, g, h) contains a query g, that ends with the (k+1)%* prover message in the
n main session of recursive block number (%) (i.e., some pgﬁbf)’n) message).

We stress that the bound k°*! in Condition 1 above refers to the same constant ¢ > 0 that is used

in the time bound tg(n) < n° Using Definition 5.3 (of ip-different queries), we have that a bound

of k1 on the number of ip-different queries that correspond to block-prefix bp induces an upper
bound on the total number of iteration-prefixes that correspond to block-prefix bp. Note that this

is in contrast to the definition of a useful block-prefix (Definition 5.4), in which we only have a

bound on the number of ip-different queries of a specific length (i.e., the number of ip-different

queries that correspond to specific message in a specific session).

(®p)
Turning to Condition 2 of Definition 5.8 we recall that the query g ends with a péﬂf m) message

(i.e., the last prover message of recursive block number é(bp)). Technically speaking, this means that
g does not actually correspond to block-prefix bp (since, by definition of the recursive schedule, the
answer to query ¢ is a message that does not belong to recursive block number E(bp)). Nevertheless,
since before making query g, the simulator has made queries to all prefixes of g, we are guaranteed
that for every i € {1,...,n} and j € {1,...,k+1}, the simulator has made a query g, ; that is
a prefix of g, corresponds to block-prefix bp, and satisfies 7o, (7) = (£),7) and Tmee(q) =j. (In
other words, all messages of all sessions in recursive block number £(*?) have occurred during the
execution of the simulator.) Furthermore, since the (modified) simulator does not make a query
that is answered with a DEVIATION message (in Step 1’ of V; ;) and it does make the query g , we
are guaranteed that the partial execution transcript induced by the query g contains the accepting
conversations of at least %/2 sessions in recursive block number ¢(?), (The latter observation will
be used only at a later stage (while proving Lemma 5.7).)

It is worth noting that whereas the definition of a useful block-prefix refers to the contents
of iteration-prefixes (induced by the queries) that are sent by the simulator, the definition of a
potentially-useful block-prefix refers only to their quantity (neither to their contents nor to the
effect of the application of g on them).23 It is thus natural that statements referring to potentially-
useful block-prefixes tend to have a combinatorial flavor. The following lemma is no exception. It
asserts that every “successful” execution of the simulator must contain a potentially-useful block-
prefix (or, otherwise, the simulator will run in super-polynomial time).

Lemma 5.9 For any (0,9,h) € AC, EXEC,(0,g,h) contains a potentially-useful block-prefix.

5.3.1 Proof of Lemma 5.9 (existence of potentially-useful block-prefixes)

The proof of Lemma 5.9 is by contradiction. We assume the existence of a triplet (o,g,h) € AC
so that every block-prefix in EXEC, (0, g,h) is not potentially-useful, and show that this implies
that SY»(x) made strictly more than n¢ queries (which contradicts the explicit hypothesis that the
running time of S is bounded by n¢).

23In particular, whereas the definition of a useful block-prefix refers to the outcome of g on iteration-prefixes that
correspond to the relevant block-prefix, the definition of a potentially-useful block-prefix refers only to the number of
ip-different queries that correspond to the block-prefix (ignoring the outcomes of g on the relevant iteration-prefixes).

32



The query—and—answer tree: Throughout the proof of Lemma 5.9, we will fix an arbitrary
(0,9,h) € AC as above, and study the corresponding EXEC, (0, g,h). A key vehicle in this study is
the notion of a query—and-answer tree introduced in [26] (and also used in [29]).2* This is a rooted
tree (corresponding to EXEC, (0, g, h)) in which vertices are labeled with verifier messages and edges
are labeled with prover’s messages. The root is labeled with the fixed verifier message initializing
the first session, and has outgoing edges corresponding to the prover’s messages initializing this
session. In general, paths down the tree (i.e., from the root to some vertices) correspond to queries.
The query associated with such a path is obtained by concatenating the labeling of the vertices and
edges along the path in the order traversed. We stress that each vertex in the query—and-answer
tree corresponds to a query actually made by the simulator.

The index of the verifier (resp., prover) message labeling a specific vertex (resp., edge) in the
tree is completely determined by the level in which the vertex (resp., edge) lies. That is, all vertices
(resp., edges) in the w'® level of the tree are labeled with the w'® verifier (resp., prover) message
in the schedule (out of a total of n?-(k+1) scheduled messages). For example, if w = n?-(k+1)
all vertices (resp., edges) at the w't level (which is the lowest possible level in the tree) are labeled
with vggr’ln) (resp., pggr’ln)). The difference between “sibling” vertices in the same level of the tree lies
in the difference in the labels of their incoming edges (as induced by the simulator’s “rewindings”).
Specifically, whenever the simulator “rewinds” the interaction to the w'™ verifier message in the
schedule (i.e., makes a new query that is answered with the w'® verifier message), the corresponding
vertex in the tree (which lies at the w'® level) will have multiple descendants one level down in the
tree (i.e., at the (w+1)% level). The edges to each one of these descendants will be labeled with a
different prover message.?> We stress that the difference between these prover messages lies in the
contents of the corresponding message (and not in its index).

By the above discussion, the outdegree of every vertex in the query—and—answer tree corresponds
to the number of “rewindings” that the simulator has made to the relevant point in the schedule
(the order in which the outgoing edges appear in the tree does not necessarily correspond to the
order in which the “rewindings” were actually performed by the simulator). Vertices in which the
simulator does not perform a “rewinding” will thus have a single outgoing edge. In particular, in
case that the simulator follows the prescribed prover strategy P (sending each scheduled message
exactly once), all vertices in the tree will have outdegree one, and the tree will actually consist of
a single path of total length n? - (k41) (ending with an edge that is labeled with a p,(ci’ln) message).

Recall that, by our conventions regarding the simulator, before making a query g the simulator
has made queries to all prefixes of §. Since every query corresponds to a path down the tree,
we have that every particular path down the query—and—answer tree is developed from the root
downwards (that is, within a specific path, a level w < W' vertex is always visited before a level
W' vertex). However, we cannot say anything about the order in which different paths in the tree
are developed (for example, we cannot assume that the simulator has made all queries that end at
a level w vertex before making any other query that ends at a level w’ > w vertex, or that it has
visited all vertices of level w in some specific order). To summarize, the only guarantee that we
have about the order in which the query—and—answer tree is developed is implied by the convention
that before making a specific query, the simulator has made queries to all relevant prefixes.

Satisfied path: A path from one node in the tree to some of its descendants is said to satisfy
session 7 if the path contains edges (resp., vertices) for each of the messages sent by the prover

**The query-and-answer tree should not be confused with the tree that is induced by the recursive schedule.
25In particular, the shape of the query—and—answer tree is completely determined by the contents of prover messages
in EXEC; (0, g, h) (whereas the contents of verifier answers given by V; . have no effect on the shape of the tree).

33



(resp., verifier) in session . A path is called satisfied if it satisfies all sessions for which the verifier’s
first message appears along the path. One important example for a satisfied path is the path that
starts at the root of the query—and—answer tree and ends with an edge that is labeled with a p,(ci’ln)
message. This path contains all n? - (k+1) messages in the schedule (and so satisfies all n? sessions
in the schedule). We stress that the contents of messages (occurring as labels) along a path are
completely irrelevant to the question of whether the path is satisfied or not. In particular, a path
may be satisfied even if some (or even all) of the vertices along it are labeled with ABORT.

Recall that, by our conventions, the simulator never makes a query that is answered with the
DEVIATION message. We are thus guaranteed that, for every completed block along a path in
the tree, at least %/2 sessions are accepted by V5. In particular, the vertices corresponding to
messages of these accepted sessions cannot be labeled with ABORT.

Good sub-tree: Consider an arbitrary sub-tree (of the query—and-answer tree) that satisfies the
following two conditions:

1. The sub-tree is rooted at a vertex corresponding to the first message of some session so that
this session is the first main session of some recursive invocation of the schedule.

2. Each path in the sub-tree is truncated at the last message of the relevant recursive invocation.

The full tree (i.e., the tree rooted at the vertex labeled with the first message in the schedule)
is indeed such a tree, but we will need to consider sub-trees which correspond to m sessions in
the recursive schedule construction (i.e., correspond to R,,). We call such a sub-tree m-good if it
contains a satisfied path starting at the root of the sub-tree. Since (o, g, h) € AC, we have that the
simulator has indeed produced a “legal” transcript as output. It follows that the full tree contains a
path from the root to a leaf that contains vertices (resp., edges) for each of the messages sent by the

verifier (resp., prover) in all n? sessions of the schedule (as otherwise the transcript Syt (z) would
have not been legal). In other words, the full tree contains a satisfied path and is thus n?-good.

Note that, by the definition of the recursive schedule, two m-good sub-trees are always disjoint.
On the other hand, if m’ < m, it may be the case that an m/-good sub-tree is contained in another
m~good sub-tree. As a matter of fact, since an m-good sub-tree contains all messages of all sessions
in a recursive block corresponding to R,,, then it must contain at least k disjoint —=-good sub-
trees (i.e., that correspond to k the recursive invocations of R% made by R,,).

The next lemma (which can be viewed as the crux of the proof) states that, if the contradiction
m—

hypothesis of Lemma 5.9 is satisfied, then the number of disjoint " "-good sub-trees that are
contained in an m-good sub-tree is actually considerably larger than k.

Lemma 5.10 Suppose that every block-prefix that appears in EXECz(o,g,h) is not potentially-
useful. Then for every m > n, every m-good sub-tree contains at least k1 disjoint Tt -good

sub-trees.

Denote by W(m) the size of an m-good sub-tree. (That is, W (m) actually represents the work
performed by the simulator on m concurrent sessions in our fixed scheduling.) It follows (from
Lemma 5.10) that any m-good sub-tree must satisfy:

1 fm<n
> =~
W(m) - { kc+1 . W (m;n) 1fm >n (6)

Since for all but finitely many n, Eq. (6) solves to W (n?) > n® (see Section B in the Appendix),
and since every vertex in the query—and-answer tree corresponds to a query actually made by the

34



simulator, it follows that the hypothesis that the simulator runs in time that is bounded by n® (and
hence the full n2-good tree must have been of size at most n¢) is contradicted. Thus, Lemma 5.9
will actually follow from Lemma 5.10.

Proof (of Lemma 5.10): Let 7 be an arbitrary m-good sub-tree of the query—and—answer tree.
Considering the m sessions corresponding to an m-good sub-tree, we focus on the n main sessions
of this level of the recursive construction. Let Br denote the recursive block to which the indices
of these n sessions belong. A T-query is a query g whose corresponding path down the query—and-
answer tree ends with a node that belongs to T' (recall that every query g appearing in EXEC, (0, g, h)
corresponds to a path down the full tree), and that satisfies ms,(q) € Br.26 We first claim that all
T-queries G in EXEC,(0, g, h) have the same block-prefix. This block-prefix corresponds to the path
from the root of the full tree to the root of T, and is denoted by bp;-.

Fact 5.11 All T-queries in EXEC, (0, g, h) have the same block-prefiz (denoted bpy).

Proof: Assume, towards contradiction, that there exist two different T-queries §;,q, so that
bp(q;) # bp(qs). In particular, bp(g,) and bp(g,) must differ in a message that precedes the first
message of the first main session in Bp. (Note that if two block-prefixes are equal in all messages
preceding the first message of the first session of the relevant block then, by definition, they are
equal.?”) This means that the paths that correspond to g, and G, split from each other before they
reach the root of T' (remember that T is rooted at a node corresponding to the first main session of
recursive block Br). But this contradicts the fact that both paths that correspond to these queries
end with a node in 7', and the fact follows. O

Using the hypothesis that no block-prefix in EXEC,(0, g, h) is potentially-useful, we prove:

Claim 5.12 Let T be an m-good sub-tree. Then the number of ip-different queries that correspond
to block-prefiz bpy is at least k°t!.

Proof: Since all block-prefixes that appear in EXEC.(c,g,h) are not potentially-useful (by the
hypothesis of Lemma 5.10), this holds as a special case for block-prefix bp;. Let £ = ((P1) he the
index of the recursive block that corresponds to block-prefix bpy in EXEC,(0,g,h). Since block-
prefix bp; is not potentially-useful, at least one of the two conditions of Definition 5.8 is violated.
In other words, one of the following two conditions is satisfied:

1. The number of ip-different queries that correspond to block-prefix bpy is at least k°T!.

2. The execution of the simulator does not reach the end of the block that corresponds to

(¢n)

block-prefix bpy (i.e., there is no query in EXEC,(c, g, ) that ends with a Pj;, message that

corresponds to block-prefix bpy).

Now, since T is an m-good sub-tree, then it must contain a satisfied path. Such a path starts at
the root of T" and satisfies all sessions whose first verifier message appears along the path. The key
observation is that every satisfied path that starts at the root of sub-tree 7' must satisfy all the

Z6Note that queries g that satisfy 7sn(q) € Br do not necessarily correspond to a path that ends with a node in T
(as EXECy (0, g, h) may contain a different sub-tree T" that satisfies Br = Byv). Also note that there exist queries g,
whose corresponding path ends with a node that belongs to T, but satisfy ms.(g) & Br. This is so, since T may also
contain vertices that correspond to messages in sessions which are not main sessions of Br (in particular, all sessions
that belong to the lower level recursive blocks that are invoked by block Br).

*"Recall that the index of the relevant block is determined by the length of the corresponding block-prefix

35



main sessions in By (to see this, notice that the first message of all main sessions in By will always
appear along such a path), and so it contains all messages of all main session in recursive block
Br. In particular, the sub-tree T' contains a path that starts at the root of T and ends with an
edge that is labeled with the last prover message in session number (£,n) (i.e., a pgﬁ?) message).
In other words, the execution of the simulator does reach the end of the block that corresponds to
block-prefix bpy (since, for the above path to exist, the simulator must have made a query that
ends with a p,(f_ﬂ) message that corresponds to block-prefix bpy), and so Condition 2 above does
not apply. Thus, the only reason that may cause block-prefix bp; not to be potentially-useful is
Condition 1. We conclude that the number of ip-different queries that correspond to block-prefix

bpy is at least k°t!, as required. O

The following claim establishes the connection between the number of ip-different queries that
correspond to block-prefix bp, and the number of et contained in T. Loosely
speaking, this is achieved based on the following three observations: (1) Two queries are said to
be ip-different if and only if they have different iteration-prefixes. (2) Every iteration-prefix is a
block-prefix of some sub-schedule one level down in the recursive construction (consisting of M=
sessions). (3) Every such distinct block-prefix yields a distinct ™=

Claim 5.13 Let T be an m-good sub-tree. Then for every pair of ip- diﬁerent queries that correspond
to block-prefiz bpy, the sub-tree T contains two disjoint e

Once Claim 5.13 is proved, we can use it in conjunction with Claim 5.12 to infer that T contains
at least kT disjoint -

Proof: Before we proceed with the proof of Claim 5.13, we introduce the notion of an iteration-suffix
of a query §. This is the suffix of § that starts at the ending point of the query’s iteration-prefix.
A key feature satisfied by an iteration-suffix of a query is that it contains all the messages of all
sessions belonging to some invocation of the schedule one level down in the recursive construction
(this follows directly from the structure of our fixed schedule).

Definition 5.14 (Iteration-suffix) The iteration-suffix of a query G (satisfying j = Tmsg(q) > 1),
denoted 1s(q), is the suffix of G that begins at the ending point of the iteration-prefiz of query q.
That is, for § = (b1, a1,...,as by) if ip(q) = (b1, a1,...,bs_1,as) then is(q) = (as, bsy1,-- - ,az, bs).?8

Let g be a query, and let (£,7) = msn(7Q), J = Tmsg(q). Let P(q) denote the path corresponding to
query ¢ in the query-and-answer tree. Let P;,(g) denote the sub-path of P(g) that corresponds
to the iteration-prefix ip(q) of g, and let P;s(q) denote the sub-path of P(g) that corresponds to
the iteration-suffix is(g) of g. That is, the sub-path P;,(q) starts at the root of the full tree, and
ends at a p( T{) message, whereas the sub-path P;s(g) starts at a p( Ti) message and ends at a witd

message (1n particular, path P(g) can be obtained by concatenating P;,(q) with P;s(7)*).

Fact 5.15 For every query ¢ € EXEC.(0, g, h), the sub-path Pis(q) is satisfied. Moreover:

1. The sub-path P;s(q) satisfies all ™= sessions of a recursive invocation one level down in the
recursive construction (i.e., corresponding t0 R ).
k

2. If G corresponds to block-prefiz bpr, then the sub-path Pis(q) is contained in T.

28This means that as is of the form p(71 , where (€,7) =msn(q) and j=mmsg(q).
2To be precise, one should delete from the resulting concatenation one of the two consecutive edges which are
labeled with as = p]7 (one edge is the last in P;;,(g) and the other edge is the first in P;s(7)).

36



Proof: Let (£,i) =7 (q) and j=7Tms(7). By nature of our fixed scheduling, the vertex in which

sub-path P;,(q) begins precedes the first message of all (nested) sessions in the (j—1)%' recursive

invocation made by recursive block number ¢ (i.e., an instance of R m—n which is invoked by R,,).
Tk

(£:)

Since query ¢ is answered with a v;

(£2)

message, we have that the sub-path P;,(q) eventually reaches

(¢n)

a vertex labeled with v;”. In particular, the sub-path P;s(q) (starting at a p; ;" edge and ending

)

at a v, vertex) contains the first and last messages of each of the above (nested) sessions, and
so contains edges (resp., vertices) for each prover (resp., verifier) message in these sessions. But
this means (by definition) that all these (nested) sessions are satisfied by P;5(g). Since the above
(nested) sessions are the only sessions whose first message appears along the sub-path P;s(q), we
have that P;,(g) is satisfied. To see that whenever § corresponds to block-prefix bpy the sub-path
Pis(q) is contained in the sub-tree T', we observe that both its starting point (i.e., a pggﬂ)
(€,%)

and its ending point (i.e., a v;

edge)

vertex) are contained in 7. O
Fact 5.16 Let q;,qy be two ip-different queries. Then Pis(q,) and Pis(qy) are disjoint.

Proof: Let G, and g, be two ip-different queries, let (£1,i1) = 7sn(qy), ({2,i2) = 7sn(qs), and let
J1 = Tmsg(T1), J2 = Tmsg(To). Recall that queries §; and @, are said to be ip-different if and only
if they have different iteration-prefixes. Since §; and g, are assumed to be ip-different, then so are
iteration-prefixes ip(q;) and ip(gy). In particular, the paths P;,(q;) and P;y(q,) are different. We
distinguish between the following two cases:

1. Path P;,(q;) splits from P;,(7,): In such a case, the ending points of paths P;,(g;) and
Pip(qo) must belong to different sub-trees of the query-and-answer tree. Since the starting
point of an iteration-suffix is the ending point of the corresponding iteration-prefix, we must
have that paths P;s(g;) and P;s(gy) are disjoint.

2. Path P;,(q,) is a prefix of path P;,(g,): That is, both P;,(q;) and P;,(7y) reach a wlm)

Ji—1
vertex, while path P;,(gy) continues down the tree and reaches a v( 2n ) vertex. The key

observation in this case is that either ¢; is strictly smaller than /s, or ]1 is strictly smaller
than j». The reason for this is that in case both ¢; = f5 and j; = j2 hold, iteration-prefix
ip(g,) must be equal to iteration-prefix ip(g,),?* in contradiction to our hypothesis. Since

(é1,n) (171)

J1 1
vertex, we have that the ending point of path P;s(q,) precedes the starting

path Pis(q,) starts at a p; 7y vertex and ends with a v; vertex, and since path P;s(qs)

m)

starts with a p] 1

£1,i1)

point of path P;is(7,) (this is so since if j1 < ja, the p; """’ message will always precede/equal

the p§2 1) message). In particular, paths P;s(q;) and P;s(q,) are disjoint.

It follows that for every two ip-different queries, §; and @,, sub-paths P;s(q;) and Pis(q,) are
disjoint, as required. O

Back to the proof of Claim 5.13, let §; and g, be two ip-different queries that correspond to block-
prefix bp, (as guaranteed by the hypothesis of Claim 5.13), and let P;,(g,) and P;,(g,) be as above.
Consider the two sub-trees, T and T5, of T' that are rooted at the starting point of sub-paths
Pis(qy) and Pis(qs) respectively (note that by, Fact 5.15, T} and T are indeed sub-trees of T'). B

definition of our recursive schedule, T and T3 correspond to ™ sessions one level down in the

30That is, unless bp(g,) # bp(q,). But in such a case, paths P;p(q,) and P;p(g,) must split from each other (since
they differ in some message that belongs to their block-prefix), and we are back to Case 1.

37



recursive construction (i.e., to an instance of R m-» ). Using Fact 5.15 we infer that sub-path P;s(q;)
k

(resp., Pis(gy)) contains all messages of all sessions in T; (resp., T3), and so the sub-tree T} (resp.,
Ty), is ™*-good. In addition, since sub-paths P;s(7;) and Pis(q,) are disjoint (by Fact 5.16) and

since, by definition of an "—*-good tree, two different *—"*-good trees are always disjoint, then T
and T (which, being rooted at different vertices, must be different) are also disjoint. It follows
that for every pair of different queries that correspond to block-prefix bps, the sub-tree T' contains

m—

two disjoint “="-good sub-trees. [l

We are finally ready to establish Lemma 5.10 (using Claims 5.12 and 5.13). By Claim 5.12, we
have that the number of different queries that correspond to block-prefix bpy is at least k1.
Since (by Claim 5.13), for every pair of different queries that correspond to block-prefix bp, the
sub-tree T' contains two disjoint *"-good sub-trees, we infer that T contains a total of at least
ket! disjoint m--good sub-trees (corresponding to the (at least) ket1 different queries mentioned

above). Lemma 5.10 follows. [

5.3.2 Back to the Proof of Lemma 5.7 (existence of useful block-prefixes)

Once the correctness of Lemma 5.9 is established, we may proceed with the proof of Lemma 5.7.
Let 2 € {0,1}". We bound from above the probability, taken over the choices of o € {0,1}*,9 & G
and h & H, that (0,g,h) € AC and that for all d € {1,...,t5(n)} and all i € {1,...,n}, the d*
distinct block-prefix in EXEC, (0, g, h) is not i-useful. Specifically, we would like to show that:

Progn | (Vd,i —usefulg;(o,g,h)) & ((0,g,h) € AC) (7)

is negligible. Define a Boolean indicator pot—use,(, g, h) to be true if and only if the d*h distinct
block-prefix in EXEC, (0, g, h) is potentially-useful. As proved in Lemma 5.9, for any (o, g,h) € AC
there exists an index d € {1,...,t5(n)}, so that the d*" block-prefix in EXEC, (0, g, h) is potentially-
useful. In other words, for every (o,g,h) € AC, pot—use;(o,g,h) holds for some value of d.
Thus, Eq. (7) is upper bounded by:

ts(n)
Progn [ \/ pot—usey(o,g,h) & (Vie{l,...,n} —|usefu|d7,~(a,g,h))] (8)
d=1

Consider a specificd € {1,...,ts(n)} so that pot—use,(c, g, h) is satisfied (i.e., the d'" block prefix in
EXEC,(0, g, h) is potentially-useful). By Condition 2 in the definition of a potentially-useful block-
prefix (Definition 5.8), the execution of the simulator reaches the end of the corresponding block in

the schedule. In other words, there exists a query § € EXECz(0,g,h) that ends with the (k + 1)

b main session of recursive block number é(%d), where bp,; denotes the

prover message in the n'
d"™ distinct block-prefix in EXEC, (0, g, h), and ((ra) denotes the index of the recursive block that
corresponds to block-prefix bp, in EXEC,(0, g, h). Since, by our convention and the modification of
the simulator, S never generates a query that is answered with a DEVIATION message, we have that
the partial execution transcript induced by query g must contain the accepting conversations of at
least %/2 main sessions in block number ¢(%Pa) (as otherwise query g would have been answered

with the DEVIATION message in Step 17 of V3.

38



Let E(Ed) = q(%d)(a,g,h) denote the first query in EXEC,(o,g,h) that is as above (i.e., that
ends with the (k + 1)** prover message in the n'" main session of recursive block number é(%d),
where bp, denotes the d'" block-prefix appearing in EXEC, (0, g, 1)).?! Define an additional Boolean
indicator acceptd7i(a,g, h) to be true if and only if query q(%d) contains an accepting conversation
for session (K(Ed),i) (that is, no prover message in session (K(Ed),i) is answered with ABORT, and
the last verifier message of this session equals ACCEPT).32 Tt follows that for every d € {1,...,tg(n)}

that satisfies pot—use;(c, g, h) (as above), there exists a set S C {1,...,n} of size %/2 such that
accepty ;(a, g, h) holds for every i € S. Thus, Eq. (8) is upper bounded by:

tS(TL

Progn \/ \/ (pot—used(a,g,h) & (Vi € S, —usefulg,(o,9,h) & acceptd7i(a,g, h))) (9)

Using the union bound, we upper bound Eq. (9) by:

ts(n)

Z Z Prygn [pot—used(a,g, h) & (Vi € S, —usefulg;(o,9,h) & acceptd7i(a,g,h))] (10)

The last expression is upper bounded using the following lemma, that bounds the probability that a
specific set of different sessions corresponding to the same (in index) potentially-useful block-prefix
are accepted (at the first time that the recursive block to which they belong is completed), but still
do not turn it into a useful block-prefix. In fact, we prove something stronger:

Lemma 5.17 For every o € {0,1}*, every h € H, every d € {1,...,ts(n)}, and every set of
indices S C {1,...,n}, so that |S| > k:

M=

S
Pr, [pot—used(a,g,h) & (‘v’i € S, —usefuly;(o,9,h) & acceptdﬂ-(a,g,h)ﬂ < (n_( +ﬁ))‘ |
Proof: Let z € {0,1}". Fix some o € {0,1}*, h€ H,d € {1,...,ts(n)} and aset S C{1,...,n}.
Denote by bpy = bpy(g) the d*™ distinct block-prefix in EXEC, (0, h, g), and by £(%?4) the index of its

corresponding recursive block in the schedule. We bound the probability, taken over the choice of
g & G, that for all i € S block-prefix bp, is not i-useful, even though it is potentially-useful and

for all ¢ € S the query q(bpd) contains an accepting conversation for session (K(bpd), i).

31Since the simulator is allowed to feed V., with different queries of the same length, we have that the execution
of the simulator may reach the end of the corresponding block more than once (and thus, EXEC. (0o, g, h) may contain

more than a single query that ends with the (k+1)** prover message in the n'" main session of block number Z(bpd)).
Since each time that the simulator reaches the end of the corresponding block, the above set of accepted sessions may
be different, we are not able to pinpoint a specific set of accepted sessions without explicitly specifying to which one
of the above queries we are referring. We solve this problem by explicitly referring to the first query that satisfies the
above conditions (note that, in our case, such a query is always guaranteed to exist).

32Note that the second condition implies the first one. Namely, if the last verifier message of session (Z(Ed),i)
equals ACCEPT, then no prover message in this session could have been answered with ABORT.

39



A technical problem resolved: In order to prove Lemma 5.17 we need to focus on the d*®
distinct block-prefix in EXEC,(0, h, g) (denoted by bp,;) and analyze the behaviour of a uniformly
chosen g when applied to the various iteration-prefixes that correspond to bp,. However, trying to
do so we encounter a technical problem. This problem is caused by the fact that the contents of
block-prefix bp, depends on ¢.33 In particular, it does not make sense to analyze the behaviour of a
uniformly chosen g on iteration-prefixes that correspond to an “undetermined” block-prefix (since
it is not possible to determine the iteration-prefixes that correspond to bp, when bp, itself is not
determined). To overcome the above problem, we rely on the following observations:

1. Whenever o, h and d are fixed, the contents of block-prefix bp, is completely determined by
the output of g on inputs that have occurred before bp,; has been reached (i.e., has appeared
as a block-prefix of some query) for the first time.

2. All iteration-prefixes that correspond to block-prefix bp, occur after bp, has been reached for
the first time.

It is thus possible to carry out the analysis by considering the output of ¢ only on inputs that have
occurred after bp, has been determined. That is, fixing o, h and d we distinguish between: (a) the
outputs of g that have occurred before the d'™ distinct block-prefix in EXEC, (0, g,h) (i.e., bp,) has
been reached, and (b) the outputs of g that have occurred after bp,; has been reached. For every
possible outcome of (a) we will analyze the (probabilistic) behaviour of g only over the outcomes
of (b). (Recall that once (a)’s outcome has been determined, the identities (but not the contents)
of all relevant prefixes are well defined.) Since for every possible outcome of (a) the analysis will
hold, it will in particular hold over all choices of g.

More formally, consider the following (alternative) way of describing a uniformly chosen g € G
(at least as far as EXEC.;(0,g,h) is concerned). Let g1,g2 be two tg(n)-wise independent hash
functions uniformly chosen from G and let o, h,d be as above. We define gl91:92) = g(o:hdig1,92) ¢4
be uniformly distributed among the functions ¢’ that satisfy the following conditions: the value of
g’ when applied to an input a that has occurred before bp, has been reached (in EXEC,(0,g,h)) is
equal to g1 (a), whereas the value of ¢’ when applied to an input « that has occurred after bp, has
been reached is equal to ga(«).

Similarly to the proof of Claim 5.2 it can be shown that for every o, h,d as above, if g; and g9
are uniformly distributed then so is ¢(9192), In particular:

Pr, [pot—used(a,g, h) & (Vi € S, —wsefulg;(o,9,h) & acceptdvi(a,g,h))]
= Pry g [pot—used(a,g(g“g?),h) & (Vi €S, ﬁusefuldvi(a,g(ghg?), h) & acceptdyi(a,g(gl’”),h))]

By fixing g1 and then analyzing the behaviour of a uniformly chosen go on the relevant iteration-
prefixes the above technical problem is resolved. This is due to the following two reasons: (1) For
every choice of o, h,d and for every fixed value of g1, the block-prefix bp, is completely determined
(and the corresponding iteration-prefixes are well defined). (2) Once bp, has been reached, the
outcome of g(gl’gQ) when applied to the relevant iteration-prefixes is completely determined by the

33(Clearly, the contents of queries that appear in EXEC, (0, g, h) may depend on the choice of the hash function g.
(This is because the simulator may dynamically adapt its queries depending on the outcome of g on iteration-prefixes
of past queries.) As a consequence, the contents of bp; = bp,(g) may vary together with the choice of g.

40



choice of go. Thus, all we need to show in order to prove Lemma 5.17 is that for every choice of g1,
the value of:

Pry [ot-usea g, ¢ (4 € 5, sl o5 ) 1) & acceptr g )] (1)
is upper bounded by (n~(1/2+1/4k))|S],

Back to the actual proof of Lemma 5.17: Consider the block-prefix bp,, as determined by the
choices of o, h,d and g, and focus on the iteration-prefixes that correspond to bp, in EXEC, (0, g, h).
We next analyze the implications of bp, being not i-useful, even though it is potentially-useful and
for all i € S query g(*P¢) contains an accepting conversation for session (£(Pd) 7).

Claim 5.18 Let 0 € {0,1}*, g € G, he H, d € {1,...,ts(n)} and S C {1,...,n}. Suppose that
the indicator (pot—used(a,g, h) & (Vi € S, —usefulq (o, g, h) & accept, ;(o, g, h))) is true. Then:

1. The number of different iteration-prefives that correspond to block-prefiz bp, is at most k°+!.

2. For every j € {2,...,k+1}, there exists an iteration-prefix Ej (corresponding to block-
prefiz bp,), so that for every i € S we have g(i,%]-) =1.
() (

3. For every i € S, there exist an (additional) iteration-prefiz ip corresponding to block-

prefiz bp,), so that for every j€{2,... k + 1}, we have E(i) # %j, and g(i,%(i)) =1.

In accordance with the discussion above, Claim 5.18 will be invoked with g = g(91:92).

Proof: Loosely speaking, Item (1) follows directly from the hypothesis that block-prefix bp, is
potentially-useful. In order to prove Item (2) we also use the hypothesis that for all i € S query
7a) contains an accepting conversation for session (¢(*?4) ), and in order to to prove Item (3)
we additionally use the hypothesis that for all i € S block-prefix bp, is not i-useful. Details follow.

Proof of Item 1: The hypothesis that block-prefix bp, is potentially-useful (i.e., pot—use,(c, g, h)
holds), implies that the number of iteration-prefixes that correspond to block-prefix bp, is at
most k°t! (as otherwise, the number of ip-different queries that correspond to bp; would have
been greater than k¢t1).

Proof of Item 2: Let i € S and recall that accept,;(c,g,h) holds. In particular, we have that
query g(opa) (i.e., the first query in EXEC, (0, g, h) that ends with the (k + 1)%* prover message
in the n'" main session of recursive block number K(Ed)) contains an accepting conversation for
session (E(Ed), i). That is, no prover message in session (K(Ed), i) is answered with ABORT, and
the last verifier message of this session equals ACCEPT. Since by our conventions regarding
the simulator, before making query 7(®?4) the simulator has made queries to all relevant
prefixes, then it must be the case that all prefixes of query g(®?¢) have previously occurred as
queries in EXEC(0, g, h). In particular, for every i € S and for every j € {2,...,k + 1}, the
execution of the simulator must contain a query g, ; that is a prefix of E(Ed) and that satisfies
bp(3; ;) = bpas Wsn(ai,j):(e(bpdli)’ Tmsg(T; ;) =J, and g(i,ip(q; ;)) = 1. (If g(i,ip(T; ;) would
have been equal to 0, query g®?¢) would have contained a prover message in session (K(bpd), i)
that is answered with ABORT, in contradiction to the fact that accept,;(o,g,h) holds.) Since

41



for every j € {2,...,k+1} and for every 71,42 € S we have that ip(g;, ;) = ip(q;, ;) (as queries
g, ; are all prefixes of g, and [ip(g;, ;)| = |ip(q;, ;)|), we can set ip; = ip(g; ;). Tt follows that
for every j € {2,...,k + 1}, iteration-prefix E]- corresponds to block-prefix bp, (as queries

g; ; all have block-prefix bp,), and for every i € S we have that g(i,ﬁj) =1.

Proof of Item 3: Let i € S and recall that in addition to the fact that accept,;(c, g, ) holds, we
have that usefulg ;(c, g, ) does not hold. Notice that the only reason for which usefulg;(o, g, h)
can be false (i.e., the d"" block-prefix is not i-useful), is that Condition 1 in Definition 5.4
is violated by EXEC;(c,g,h). (Recall that accepty;(c,g,h) holds, and so Condition 2 in
Definition 5.4 is indeed satisfied by query @, ;1 (as defined above): This query corresponds
to block-prefix bpy, satisfies e (T; py1) = (P2, 0), Tinse(@ipyr) = K+ 1, 9(i,ip(Ts pr1)) = 1,
and is answered with ACCEPT.)

For Condition 1 in Definition 5.4 to be violated, there must exists a j € {2,..., k+1}, with two
ip-different queries, g; and G, that correspond to block-prefix bp,, satisfy men(qy) = Ten (o) =
(e(bpd)ai)a 7Trﬂsg(ﬁl) = 7I'msg(EQ) = j, and g(i,ip(q,)) = g(i,ip(qy)) = 1. Since, by definition,
two queries are considered ip-different only if they differ in their iteration-prefixes, we have
that there exist two different iteration-prefixes ip(q,) and ip(g,) (of the same length) that
correspond to block-prefix bp, and satisfy ¢(i,ip(g;)) = g(4,ip(g5)) = 1. Since iteration-
prefixes ip,,...,ip,,; (from Item 2 above) are all of distinct length, and since the only
iteration-prefix in ip,,...,ip;,; that can be equal to either ip(gq,) or ip(qy) is %j (note that
this is the only iteration-prefix having the same length as ip(g,) and ip(q,)), then it must
be the case that at least one of ip(q,),ip(q,) is different from all of ip,,...,ipyy; (recall
that ip(q;) and ip(gy) are different, which means that they cannot be both equal to ip;). In
particular, for every i € S (that satisfies usefuly;(o,g,h) & accepty;(o,g,h)), there exists at

least one (extra) iteration-prefix, E(i) € {ip(q,),ip(gy)}, that corresponds to block-prefix bp,,
differs from ip; for every j € {2,...,k + 1}, and satisfies gg(i,ﬁ(z)) =1.

This completes the proof of Claim 5.18. [

Recall that the hash function gy is chosen at random from a tg(n)-wise independent family. Since
for every pair of different iteration-prefixes the function gs will have different inputs, then go will
have independent outputs when applied to different iteration-prefixes (since no more than tg(n)
queries are made by the simulator). Similarly, for every pair of different 4,7’ € S, go will have
different input, and thus independent output. Put in other words, all outcomes of go that are
relevant to block-prefix bp, are independent of each other. Since a uniformly chosen go will output
1 with probability n~1/2¥| we may view every application of gy on iteration-prefixes that correspond
to bp, as an independently executed experiment that succeeds with probability n~1/2k 34

Using Claim 5.18.1 (i.e., Item 1 of Claim 5.18), the applications of gy which are relevant to
sessions {(£("?4) i)}, can be viewed as a sequence of at most k! experiments (corresponding to
at most k°T! different iteration-prefixes). Each of these experiments consists of |S| independent
sub-experiments (corresponding to the different i € S), and each sub-experiment succeeds with
probability n~Y/2%. Claim 5.18.2 now implies that at least k of the above experiments will fully
succeed (that is, all of their sub-experiments will succeed), while Claim 5.18.3 implies that for every

34We may describe the process of picking g» £ @ as the process of independently letting the output of g» be equal
to 1 with probability n='/2* (each time a new input is introduced). Note that we will be doing so only for inputs that
occur after block-prefix Ed has been determined (as, in the above case, all inputs for g» are iteration-prefixes that
correspond to block-prefix b_pd, and such iteration-prefixes will occur only after %d has already been determined).

42



i € S there exists an additional successful sub-experiment (that is, a sub-experiment of one of the
k¢t —k remaining experiments). Using the fact that the probability that a sub-experiment succeeds
is n='/2% we infer that the probability that an experiment fully succeeds is equal to (n~/2¥)I51, In
particular, the probability in Eq. (11) is upper bounded by the probability that the following two
events occur (these events correspond to Claims 5.18.2 and 5.18.3 respectively):

Event 1: In a sequence of (at most k') experiments, each succeeding with probability (n="/2*)I5],

there exist k successful experiments. (The success probability corresponds to the probability
that for every i € S, we have g3(i,ip;) =1 (see Claim 5.18.2).)

Event 2: For every one out of |S| sequences of the remaining (at most k1 —k) sub-experiments,
each succeeding with probability n="2% there exists at least one successful experiment. (In this
(1)

case, the success probability corresponds to the probability that iteration-prefix ip'"’ satisfies

m(i,%(i)):l (see Claim 5.18.3).)

For i € |S| and j € [k°*!], let us denote the success of the i*" sub-experiment in the j*" experiment
by xi;. By the above discussion for every ¢,j, the probability that x; ; holds is n~1/2k (indepen-
dently of other y;;’s). We now have that, for Event 1 above to suceed, there must exists a set
of k experiments, K C [k°*!] so that for all (i,j) € S x K, the event y;; holds. For Event 2 to
suceed, it must be the case that, for every i € S, there exist one additional experiment (i.e., some
j € [kt \ K) so that x; ; holds. It follows that Eq. (11) is upper bounded by:

> Pr [Vj €eK,VieS$ st. Xm] -Pr {w €8, 3 € kT\K st. xi,

KClhetl]
[K|=k

_ (kc+1> i ﬁ)ﬂ)k_ <1_ (1_n—ﬁ)kc+1k>5|
(kc+1) ((n ﬁ)m)k‘ (kcﬂ,n_%)w\ 12)
= (kc+1)k+|s‘ (n i)lﬂs‘ﬂs\
e \EHIS 1 aNISE 1y IS
(k ) ( 4Ic) (n (3 4k))
< (n_(%"'ﬂ))‘sl (13)

where Eq. (12) holds whenever k“T' —k = o(n'/?*) (which is satisfied if k = 0(102)1%))7 and Eq. (13)

holds whenever (k¢t1)k+S1. (n=1/4)ISI < 1 (which is satisfied if both |S| > k and k = o(log)ﬁ)gn)).
This means that Eq. (11) is upper bounded by (n=(1/2+1/4k))IS| "and the proof of Lemma 5.17 is

complete. W

Using Lemma 5.17, we upper bound Eq. (10) by

nl/2 %/2 nl/2
4
4 nl/2
. e 4

n1/2

< tg(n)-271

(14)

43



where Inequality 14 holds whenever 8 - e < n!/4 (which holds for £ <

logn

mglog—e)). This completes

the proof of Lemma 5.7 (since poly(n) - 2-%""*) is negligible).

Acknowledgements

We are indebted to Oded Goldreich for his devoted help and technical contribution to this project.

References

[1]

2]

N. Alon, L. Babai, and A. Itai A Fast and Simple Randomized Parallel Algorithm for the
Maximal Independent Set Problem. Journal of ALgorithms, 7, pages 567-583, 1986.

B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages
106-115, 2001.

M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error in
Computationally Sound Protocols? In 38th FOCS, pages 374-383, 1997.

M. Bellare, S. Micali, and R. Ostrovsky. Perfect zero-knowledge in constant rounds. In
22nd STOC, pages 482—493, 1990.

G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS,
Vol. 37, No. 2, pages 156189, 1988.

G. Brassard, C. Crépeau and M. Yung. Constant-Round Perfect Zero-Knowledge Com-
putationally Convincing Protocols. Theoret. Comput. Sci. , Vol. 84, pp. 23-52, 1991.

R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In
32nd STOC, pages 235-244 ,2000.

R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge
Requires Q(logn) Rounds. In 33rd STOC, pages 570-579, 2001.

M.N. Wegman, and J.L. Carter. New Hash Functions and Their Use in Authentication
and Set Equality. JCSS 22, 1981, pages 265-279.

B. Chor, and O. Goldreich On the power of Two-Point Based Sampling. Jour. of Com-
plexity, Vol. 5, 1989, pages 96-106.

I. Damgard. Eficient Concurrent Zero-Knowledge in the Auxiliary String Model. In
EuroCrypt2000, LNCS 1807, pages 418-430, 2000.

C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages
409-418, 1998.

C. Dwork, and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing
Constraints. In Crypto98, Springer LNCS 1462 , pages 442-457, 1998.

U. Feige. Alternative Models For Zero-Knowledge Interactive Proofs. Ph.D. thesis, Weiz-
mann Institute of Science, 1990.

44



[15]

[16]

[17]

[18]

[19]

[20]

[24]

[25]

[26]

[27]

[28]

[29]

U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In
22nd STOC, pages 416426, 1990.

O. Goldreich. Foundations of Cryptography - Basic Tools. Cambridge University Press,
2001.

O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages 167-189, 1996.

O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.
SIAM J. Computing, Vol. 25, No. 1, pages 169-192, 1996.

O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity
or All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pp.
691-729, 1991.

O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems.
Jour. of Cryptology, Vol. 7, No. 1, pages 1-32, 1994.

S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM J. Comput., Vol. 18, No. 1, pp. 186208, 1989.

S. Hada and T. Tanaka. On the Existence of 3-Round Zero-Knowledge Protocols. In
Crypto98, Springer LNCS 1462, pages 408-423, 1998.

J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom
Generator from any One-Way Function. SIAM Jour. on Computing, Vol. 28 (4), pages
1364-1396, 1999.

A. Joffe. On a set of Almost Deterministic k-Independent Random Variables. The annals
of Probability, 1974, Vol. 2, No. 1, pages 161-162.

J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-logarithmic
Rounds. In 33rd STOC, pages 560-569, 2001.

J. Kilian, E. Petrank, and C. Rackoff. Lower Bounds for Zero-Knowledge on the Internet.
In 39th FOCS, pages 484-492, 1998.

M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology, Vol. 4, pages
151-158, 1991.

R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.
In EuroCrypt99, Springer LNCS 1592, pages 415-431, 1999.

A. Rosen. A note on the round-complexity of Concurrent Zero-Knowledge. In Crypto2000,
Springer LNCS 1880, pages 451-468, 2000.

45



Appendix

A Alternative Description of the Recursive Schedule

The schedule consists of n? sessions (each session consists of k+1 prover messages and k+ 1 verifier
messages). It is defined recursively, where for each m < n?, the schedule for sessions i1,...,inm
(denoted R;, ;) proceeds as follows:

1. If m < n, execute sessions 41, ..., %, sequentially until they are all completed;
2. Otherwise, For j =1,...,k+ 1:

(a) For £=1,...,n
()

i. Send the j' verifier message in session i, (i.e., v; );

(ie)

ii. Send the j*® prover message in session i, (i.e., P; );

. def ' m—n |y.
U (G—1)-t+1) 50 0rE (npg t) (where ¢ = | E )i

(Sessions U(nt-(j—1)-t41)s - - - » (n+j.¢) are the next ¢ remaining sessions out of 7y, ... yim-)

(b) If j < k + 1, invoke a recursive copy of R;

B Solving the Recursion

Claim B.1 Suppose that Eq. (6) holds. Then for all sufficiently large n, W (n?) > n¢.
Proof: By applying Eq. (6) iteratively log,(n — 1) times, we get:

W(n?) >

(
> (kc+1>10gkn DN
(n—

> n° (15)

where Eq. (15) holds for all sufficiently large n. O

46



