
Black-Box Concurrent Zero-Knowledge Requires

(almost) Logarithmically Many Rounds

�

Ran Canetti

y

Joe Kilian

z

Erez Petrank

x

Alon Rosen

{

July 3, 2002

Abstract

We show that any concurrent zero-knowledge protocol for a non-trivial language (i.e., for a

language outside BPP), whose security is proven via black-box simulation, must use at least

~

(log n) rounds of interaction. This result achieves a substantial improvement over previous

lower bounds, and is the �rst bound to rule out the possibility of constant-round concurrent

zero-knowledge when proven via black-box simulation. Furthermore, the bound is polynomially

related to the number of rounds in the best known concurrent zero-knowledge protocol for

languages in NP (which is established via black-box simulation).

1 Introduction

Zero-knowledge proof systems, introduced by Goldwasser, Micali and Racko� [21] are e�cient

interactive proofs that have the remarkable property of yielding nothing beyond the validity of

the assertion being proved. The generality of zero-knowledge proofs has been demonstrated by

Goldreich, Micali and Wigderson [19], who showed that every NP-statement can be proved in zero-

knowledge provided that one-way functions exist [23, 27]. Since then, zero-knowledge proofs have

turned out to be an extremely useful tool in the design of various cryptographic protocols.

The original setting in which zero-knowledge proofs were investigated consisted of a single

prover and veri�er that execute only one instance of the protocol at a time. A more realistic

setting, especially in the age of the Internet, is one that allows the concurrent execution of zero-

knowledge protocols. In the concurrent setting (see Feige [14], and more extensive treatment by

Dwork, Naor and Sahai [12]), many protocols (sessions) are executed at the same time, involving

many veri�ers which may be talking with the same (or many) provers simultaneously (the so-called

parallel composition considered in [18, 15, 17, 6, 4] is merely a special case). This setting presents

the new risk of a coordinated attack in which an adversary controls many veri�ers, interleaving the

executions of the protocols and choosing veri�ers' messages based on other partial executions of

�

An extended abstract has appeared in the thirty third annual ACM Symposium on The Theory of Computing [8].

y

IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA. E-mail:

canetti@watson.ibm.com.

z

Yianilos Labs. Yianilos Labs 707 State Rd., Rt. 206, Suite 212, Princeton, NJ 08540, USA. E-mail:

joe@pnylab.com.

x

Dept. of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel. E-mail:

erez@cs.technion.ac.il.

{

Dept. of Computer Science and Applied Math., Weizmann Institute of Science, Rehovot 76100, Israel. E-mail:

alon@wisdom.weizmann.ac.il. Part of this work was done while visiting the IBM T.J. Watson Research Center.

1

the protocol. Since it seems unrealistic (and certainly undesirable) for honest provers to coordinate

their actions so that zero-knowledge is preserved, we must assume that in each prover-veri�er pair

the prover acts independently.

Loosely speaking, a zero-knowledge proof is said to be concurrent zero-knowledge if it remains

zero-knowledge even when executed in the concurrent setting. Recall that in order to demonstrate

that a certain protocol is zero-knowledge it is required to demonstrate that the view of every

probabilistic polynomial-time adversary interacting with the prover can be simulated by a prob-

abilistic polynomial-time machine (a.k.a. the simulator). In the concurrent setting, the veri�ers'

view may include multiple sessions running at the same time. Furthermore, the veri�ers may have

control over the scheduling of the messages in these sessions (i.e., the order in which the interleaved

execution of these sessions should be conducted). As a consequence, the simulator's task in the

concurrent setting becomes considerably more complicated. In particular, standard techniques,

based on \rewinding the adversary", run into trouble.

1.1 Previous Work

Constructing a \round-e�cient" concurrent zero-knowledge protocol for all languages in NP , or

even nontrivial languages (outside of BPP) seems to be a challenging task. Intuition on the di�-

culty of this problem is given in [12], where it was argued that for a speci�c 4-round zero-knowledge

protocol and a speci�c recursive scheduling of n sessions, the straightforward adaptation of the simu-

lator to the concurrent setting requires time exponential in n. The �rst lower bound demonstrating

the di�culty of concurrent zero-knowledge was given by Kilian, Petrank and Racko� [26] who

showed, building on the techniques of Goldreich and Krawczyk [18], that for every language outside

BPP there is no 4-round protocol whose concurrent execution is simulatable in polynomial-time

by a black-box simulator. (A black-box simulator is a simulator that has only black-box access

to the adversarial veri�er. Essentially all previously known proofs of security of zero-knowledge

protocols use black-box simulators. An exception is the protocol of [22], which uses a non-standard

assumption of a "non black-box" nature.) This lower bound was later improved by Rosen to seven

rounds [29].

Indeed, even ignoring issues of round e�ciency, it was not clear whether there exists a con-

current zero-knowledge protocol for nontrivial languages, without modifying the underlying model.

Richardson and Kilian [28] exhibited a family of concurrent zero-knowledge protocols (parameter-

ized by the number of rounds) for all languages in NP . Their original analysis showed how to

simulate in polynomial-time n

O(1)

concurrent sessions only when the number of rounds in the pro-

tocol is at least n

�

(for some arbitrary � > 0). This result has recently been substantially improved

by Kilian and Petrank [25], who show that the Richardson-Kilian protocol remains concurrent

zero-knowledge even if it has O(g(n) � log

2

n) rounds, where g(�) is any non-constant function (e.g.,

g(n) = log log n).

We note that previously there was a considerable gap between the known upper and lower

bounds on the round-complexity of concurrent zero-knowledge (i.e., [25, 29]): the best known proto-

col has

~

O(log

2

n) rounds whereas the lower bound necessitates 7 rounds (via black-box simulation).

1

In particular, the question consisting of whether constant-round concurrent zero-knowledge proto-

cols exist has been open.

1

f(n) =

~

O(h(n)) if there exist constants c

1

; c

2

> 0 so that for all su�ciently large n, f(n) � c

1

� (log h(n))

c

2

�h(n)).

2

1.2 Our Result

We substantially narrow the above gap by presenting a lower bound on the number of rounds

required by concurrent zero-knowledge. We show that in the context of black-box concurrent zero-

knowledge,

~

(log n) rounds of interaction are essential for non-trivial proof systems.

2

This bound

is the �rst to rule out the possibility of constant-round concurrent zero-knowledge, when proven

via black-box simulation. Furthermore, the bound is polynomially related to the number of rounds

in the best known concurrent zero-knowledge protocol for languages outside BPP ([25]). Our main

result is stated in the following theorem.

Theorem 1.1 Let r : N ! N be a function so that r(n) = o(

log n

log log n

). Suppose that hP; V i is an

r(�)-round proof system for a language L (i.e., on input x, the number of messages exchanged is at

most r(jxj)), and that concurrent executions of P can be simulated in polynomial-time using black-

box simulation. Then L 2 BPP. The theorem holds even if the proof system is only computationally-

sound (with negligible soundness error) and the simulation is only computationally-indistinguishable

(from the actual executions).

1.3 Techniques

The proof of Theorem 1.1 builds on the works of Goldreich and Krawczyk [18], Kilian, Petrank and

Racko� [26], and Rosen [29]. On a very high level, the proof proceeds by constructing a speci�c

concurrent schedule of sessions, and demonstrating that a black-box simulator cannot successfully

generate a simulated accepting transcript for this schedule unless it \rewinds" the veri�er many

times. The work spent on these rewindings will be super-polynomial unless the number of rounds

used by the protocol obeys the bound, or L 2 BPP . While the general outline of the proof remains

roughly the same as in [18, 26, 29], the actual schedule of sessions, and its analysis, are new. One

main idea that, together with other ideas, enables the proof of the bound is to have the veri�er

abort sessions depending on the history of the interaction. A more detailed outline, presenting both

the general structure and the new ideas in the proof, appears in Section 3.

Remark: The concurrent schedule in our proof is �xed and known to everybody. As a consequence,

Theorem 1.1 is actually stronger than stated. It will hold even if the simulator knows the schedule

in advance (in particular, it knows the number of concurrent sessions), and even if the schedule of

the messages does not change dynamically (as a function of the history of the interaction).

1.4 Conclusions and Open Problems

1.4.1 Alternative models

The lower bound presented here draws severe limitations on the ability of black-box simulators

to cope with the standard concurrent zero-knowledge setting, and provides motivation to consider

relaxations of and augmentations to the standard model. Indeed, several works have managed

to \bypass" the di�culty in constructing concurrent zero-knowledge protocols by modifying the

standard model in a number of ways. Dwork, Naor and Sahai augment the communication model

with assumptions on the maximum delay of messages and skews of local clocks of parties [12, 13].

Damg�ard uses a common random string [11], and Canetti et.al. use a public registry �le [7].

A di�erent approach would be to try and achieve security properties that are weaker than

zero-knowledge but are still useful. For example, Feige and Shamir consider the notion of witness

indistinguishability [14, 15], which is preserved under concurrent composition.

2

f(n) =

~

(h(n)) if there exist constants c

1

; c

2

> 0 so that for all su�ciently large n, f(n) � c

1

� h(n)=(log h(n))

c

2

.

3

1.4.2 Alternative simulation techniques

Loosely speaking, the only advantage that a black-box simulator may have over the honest prover is

the ability to \rewind" the interaction and explore di�erent execution paths before proceeding with

the simulation (as its access to the veri�er's strategy is restricted to the examination of input/output

behavior). As we show in our proof, such a mode of operation (i.e., the necessity to rewind every

session) is a major contributor to the hardness of simulating many concurrent sessions. It is thus

natural to think that a simulator that deviates from this paradigm (i.e., is non black-box, in the

sense that is does not have to rewind the adversary in order to obtain a faithful simulation of the

conversation), would essentially bypass the main problem that arises while trying to simulate many

concurrent sessions.

Hada and Tanaka [22] have considered some weaker variants of zero-knowledge, and exhibited a

three-round protocol for NP (whereas only BPP has three-round block-box zero-knowledge [18]).

Their protocol was an example for a zero-knowledge protocol not proven secure via black-box

simulation. Alas, their analysis was based in an essential way on a strong and highly non-standard

hardness assumption.

In a recent breakthrough result, Barak [2] constructs a constant-round protocol for all languages

in NP whose zero-knowledge property is proved using a non black-box simulator. Such a method

of simulation enables him to bypass our impossiblity result (as well as [18, 26, 29]), and to perform

cryptographic tasks otherwise considered inachievable. In particular, for every (predetermined)

polynomial p(�), there exists a version of Barak's protocol that preserves its zero-knowledge property

even when it is executed p(n) times concurrently (where n denotes the size of the common input).

As we show in our work, this task is unachievable via black-box simulation (unless NP � BPP).

1.4.3 Open problems

At �rst glance, it seems that Barak's protocol completely resolves the question of whether constant-

round concurrent zero-knowledge protocol exist. Taking a closer look, however, one notices that

the (polynomial) number of concurrent sessions relative to which the protocol should be secure is

determined before the protocol is speci�ed. Moreover, it turns out that the messages in the protocol

are required to be longer than the number of concurrent sessions. Thus, from both a theoretical and

a practical point of view, Barak's protocol is still not satisfactory. What we would like to have is a

single protocol that preserves its zero-knowledge property even when it is executed concurrently for

any (not predetermined) polynomial number of times. Such a property is indeed satis�ed by the

protocols of [28, 25] (alas these protocols are not constant-round). This leaves open the question of

whether constant-round concurrent zero-knowledge protocol indeed exist for all languages in NP .

2 Preliminaries

2.1 Probabilistic Notation

Denote by x

r

 X the process of uniformly choosing an element x in a set X. If B(�) is an

event depending on the choice of x

r

 X, then Pr

x X

[B(x)] (alternatively, Pr

x

[B(x)]) denotes the

probability that B(x) holds when x is chosen with probability 1=jXj. Namely,

Pr

x X

[B(x)] =

X

x

1

jXj

� �(B(x))

4

where � is an indicator function so that �(B) = 1 if event B holds, and equals zero otherwise. This

notation extends in the natural way for events B(�; : : : ; �) that depend on k variables x

1

; x

2

; : : : ; x

k

that are uniformly chosen in k (possibly di�erent) sets X

1

;X

2

; : : : ;X

k

. That is, we denote by

Pr

x

1

;x

2

;:::;x

k

[B(x

1

; x

2

; : : : ; x

k

)] the probability that B(x

1

; x

2

; : : : ; x

k

) holds when x

1

; x

2

; : : : ; x

k

are

chosen with probability 1=(jX

1

j � jX

2

j � � � jX

k

j).

2.2 Interactive proofs

We use the standard de�nitions of interactive proofs (interactive Turing machines) [21, 16] and

arguments (a.k.a computationally-sound proofs) [5]. Given a pair of interactive Turing machines, P

and V , we denote by hP; V i(x) the random variable representing the (local) output of V when inter-

acting with machine P on common input x, when the random input to each machine is uniformly

and independently chosen. We consider interactive proof systems in which the soundness error

is negligible. The term negligible is used for denoting functions that are (asymptotically) smaller

than one over any polynomial. More precisely, a function �(�) from non-negative integers to reals

is called negligible if for every constant c > 0 and all su�ciently large n, it holds that �(n) < n

�c

.

De�nition 2.1 (Interactive Proof System) A pair of interactive machines hP; V i is called an

interactive proof system for a language L if machine V is polynomial-time and the following two

conditions hold with respect to some negligible function �(�):

� Completeness: For every x 2 L,

Pr [hP; V i(x) = 1] � 1� �(jxj)

� Soundness: For every x 62 L, and every interactive machine B,

Pr [hB;V i(x) = 1] � �(jxj)

De�nition 2.1 can be relaxed to require only soundness error that is bounded away from 1� �(jxj).

This is so, since the soundness error can always be made negligible by su�ciently many parallel

repetitions of the protocol (as such may occur anyhow in the concurrent model). However, we

do not know whether this condition can be relaxed in the case of computationally sound proofs

(i.e., when the soundness condition is required to hold only for machines B that are implementable

by poly-size circuits). In particular, in this case parallel repetitions do not necessarily reduce the

soundness error (cf. [3]).

2.3 Concurrent zero-knowledge

Let hP; V i be an interactive proof for a language L, and consider a concurrent adversary (veri�er)

V

�

that, given input x2L, interacts with an unbounded number of independent copies of P (all

on common input x). The concurrent adversary V

�

is allowed to interact with the various copies

of P concurrently, without any restrictions over the scheduling of the messages in the di�erent

interactions with P (in particular, V

�

has control over the scheduling of the messages in these

interactions). The transcript of a concurrent interaction consists of the common input x, followed

by the sequence of prover and veri�er messages exchanged during the interaction. We denote by

view

P

V

�

(x) a random variable describing the content of the random tape of V

�

and the transcript

of the concurrent interaction between P and V

�

(that is, all messages that V

�

sends and receives

during the concurrent interactions with P , on common input x).

5

Remark: The actual de�nition of concurrent zero-knowledge requires that the concurrent adver-

sary V

�

explicitly speci�es to which session the next scheduled message belongs. However, in the

proof of Theorem 1.1 we consider a \weaker" concurrent adversary V

�

, that is only running a �xed

scheduling of sessions (and so does not determine the schedule dynamically). In particular, there

will be no need to use a formalism for specifying to which session the next scheduled message

belongs.

De�nition 2.2 (Concurrent Zero-Knowledge) Let hP; V i be an interactive proof system for a

language L. We say that hP; V i is concurrent zero-knowledge, if for every polynomial-time concur-

rent adversary V

�

there exists a probabilistic polynomial-time algorithm S

V

�

such that the ensembles

fview

P

V

�

(x)g

x2L

and fS

V

�

(x)g

x2L

are computationally indistinguishable.

2.4 Black-box concurrent zero-knowledge

Loosely speaking, the de�nition of black-box zero-knowledge requires that there exists a \universal"

simulator, S, so that for every x 2 L and every probabilistic polynomial-time adversary V

�

, the

simulator S produces a distribution that is indistinguishable from view

P

V

�

(x) while using V

�

as an

oracle (i.e., in a \black-box" manner). We assume concurrent adversaries V

�

are modeled by poly-

sized circuits (capturing non-uniform, deterministic veri�ers viewed as an oracle, cf. [18, 16, 26]).

Before we proceed with the formal de�nition, we will have to overcome a technical di�culty

arising from an inherent di�erence between the concurrent setting and \stand-alone" setting. In

\stand-alone" zero-knowledge the length of the output of the simulator depends only on the protocol

and the size of the common input x. It is thus reasonable to require that the simulator runs in

time that depends only on the size of x, regardless of the running time of its black-box. However,

in black-box concurrent zero-knowledge the output of the simulator is an entire schedule, and its

length depends on the running time of the concurrent adversary. Therefore, if we naively require

that the running time of the simulator is a �xed polynomial in the size of x, then we end up with an

unsatis�able de�nition. (As for any simulator S there is an adversary V

�

that generates a transcript

that is longer than the running time of S.)

One way to solve the above problem is to have for each �xed polynomial q(�), a simulator S

q

that \only" simulates all q(�)-sized circuits V

�

. Clearly, the running time of the simulator now

depends on the running time of V

�

(which is an upper bound on the size of the schedule), and the

above problem does not occur anymore. Another (more restrictive) way to overcome the above

problem would be to consider a simulator S

q

that "only" simulates all adversaries V

�

which run

at most q(jxj) sessions during their execution (we stress that q(�) is chosen after the protocol is

determined). Such simulators should run in worst-case time that is a �xed polynomial in q(jxj) and

in the size of the common input x. (Note that by letting S

q

"know" q(�) in advance we actually

strengthen the lower bound.) In the sequel we choose to adopt the latter formalization. We stress

that both formalizations are general enough to include all known black-box zero-knowledge proofs.

De�nition 2.3 (Black-Box Concurrent Zero-Knowledge) Let hP; V i be an interactive proof

system for a language L. We say that hP; V i is black-box concurrent zero-knowledge, if for ev-

ery polynomial q(�), there exists a probabilistic polynomial-time

3

algorithm S

q

, so that for every

concurrent adversary circuit V

�

that runs at most q(jxj) concurrent sessions, S

q

(x) runs in time

polynomial in q(jxj) and jxj, and satis�es that the ensembles fview

P

V

�

(x)g

x2L

and fS

q

(x)g

x2L

are

computationally indistinguishable.

3

See below for a discussion on expected vs. strict probabilistic polynomial-time.

6

2.5 Additional conventions

Deviation gap and expected polynomial-time simulators: The deviation gap of a simulator

S for a proof-system hP; V i is de�ned, somewhat informally, as follows. Consider a distinguisher

D that is required to decide whether its input consists of view

P

V

�

(x) or to the transcript that was

produced by S. The deviation gap of D is the di�erence between the probability that D outputs

1 given an output of S, and the probability that D outputs 1 given view

P

V

�

(x). The deviation

gap of S is the deviation gap of the best polynomial time distinguisher D. In our de�nitions of

concurrent zero-knowledge (De�nitions 2.2 and 2.3) the deviation gap of the simulator is required

to be negligible in jxj.

For our lower bound, we allow simulators that run in strict (worst case) polynomial time, and

have deviation gap at most 1=4. As for expected polynomial time simulators, one can use a standard

argument to show that any simulator running in expected polynomial time, and having deviation

gap at most 1=8 can be transformed into a simulator that runs in strict (worst case) polynomial

time, and has deviation gap at most 1=4. In particular, our lower bound (on simulators that run in

strict polynomial time, and have deviation gap at most 1=4) extends to a lower bound on simulators

running in expected polynomial time (and have deviation gap as large as 1=8).

Query conventions: By k-round protocols we mean protocols in which 2k + 2 messages are

exchanged subject to the following conventions. The �rst message is a �xed initiation message by

the veri�er, denoted v

1

, which is answered by the prover's �rst message denoted p

1

. The following

veri�er and prover messages are denoted v

2

; p

2

; : : : ; v

k+1

; p

k+1

, where v

k+1

is an ACCEPT/REJECT

message indicating whether the veri�er has accepted its input, and the last message (i.e., p

k+1

) is

a �xed acknowledgment message sent by the prover.

4

Clearly, any protocol in which 2k messages

are exchanged can be modi�ed to �t this form (by adding at most two messages).

We impose the following technical restrictions on the simulator (but claim that each of these

restrictions can be easily satis�ed): As in (cf. [18]), the queries of the simulator are pre�xes of

possible execution transcripts (in the concurrent setting).

5

Such a pre�x is a sequence of alternating

prover and veri�er messages (which may belong to di�erent sessions as determined by the �xed

schedule) that ends with a prover message. The answer to the queries made by the simulator

consists of a single veri�er message (which belongs to the next scheduled session). We assume that

the simulator never repeats the same query twice. In addition, we assume that before making a

query q = (b

1

; a

1

; : : : ; b

t

; a

t

), where the a's are prover messages, the simulator has made queries to

all relevant pre�xes (i.e., (b

1

; a

1

; : : : ; b

i

; a

i

), for every i < t), and has obtained the b

i

's as answers.

Finally, we assume that before producing output (b

1

; a

1

; : : : ; b

T

; a

T

), the simulator makes the query

(b

1

; a

1

; : : : ; b

T

; a

T

).

3 Proof outline

This section contains an outline of the proof of Theorem 1.1. The actual proof will be given in

Sections 4 and 5. To facilitate reading, we partition the outline into two parts: The �rst part reviews

the general framework. (This part mainly follows previous works, namely [17, 26, 29].) The second

part concentrates on the actual schedule and the speci�cs of our lower bound argument.

4

The p

k+1

message is an arti�cial message included in order to \streamline" the description of the adversarial

schedule (the schedule will be de�ned in Section 4.1.1).

5

For sake of simplicity, we choose to omit the input x from the transcript's representation (as it is implicit in the

description of the veri�er anyway).

7

3.1 The high-level framework

Consider a k-round Concurrent Zero Knowledge proof system hP; V i for language L, and let S be

a black-box simulator for hP; V i. We use S to construct a BPP decision procedure for L. For this

purpose, we construct a family fV

h

g of \cheating veri�ers". To decide on an input x, run S with a

cheating veri�er V

h

that was chosen at random from the constructed family, and decide that x 2 L

i� S outputs an accepting transcript of V

h

.

The general structure of the family fV

h

g is roughly as follows. A member V

h

in the family is

identi�ed via a hash function h taken from a hash-function family H having \much randomness"

(or high independence). Speci�cally, the independence of H will be larger than the running time

of S. This guarantees that, for our purposes, a function drawn randomly from H behaves like a

random function. We de�ne some �xed concurrent schedule of a number of sessions between V

h

and the prover. In each session, V

h

runs the code of the honest veri�er V on input x and random

input h(a), where a is the current history of the (multi-session) interaction at the point where the

session starts. V

h

accepts if all the copies of V accept.

The proof of validity of the decision procedure is structured as follows. Say that S succeeds if

it outputs an accepting transcript of V

h

. It is �rst claimed that if x 2 L then a valid simulator S

must succeed with high probability. Roughly speaking, this is so because each session behaves like

the original proof system hP; V i, and hP; V i accepts x with high probability. Demonstrating that

the simulator almost never succeeds when x =2 L is much more involved. Given S we construct a

\cheating prover" P

�

that makes the honest veri�er V accept x with probability that is polynomially

related to the success probability of S. The soundness of hP; V i now implies that in this case S

succeeds only with negligible probability. See details below.

3.1.1 Session-pre�xes and useful session-pre�xes

In order to complete the high-level description of the proof, we must �rst de�ne the following

notions that play a central role in the analysis. Consider the conversation between V

h

and a prover.

A session-pre�x a is a pre�x of this conversation that ends at the point where some new session

starts (including the �rst veri�er message in that session). (Recall that V 's random input for that

new session is set to h(a).) Next, consider the conversation between S and V

h

in some run of

S. (Such a conversation may contain many interleaved and incomplete conversations of V

h

with a

prover.) Roughly speaking, a message sent by S to the simulated V

h

is said to have session pre�x a

if it relates to the session where the veri�er randomness is h(a). A session-pre�x a is called useful

in a run of S if:

1. It was accepted (i.e., V

h

sent an ACCEPT message for session-pre�x a).

2. V

h

has sent exactly k + 1 messages for session-pre�x a.

Loosely speaking, Condition 2 implies that S did not rewind the relevant session-pre�x, where

rewind session-pre�x a is an informal term meaning that S rewinds V

h

to a point where V

h

provides

a second continuation for session-pre�x a. By rewinding session-pre�x a, the simulator is able to

obtain more than k+1 veri�er messages for session-pre�x a. This is contrast to an actual execution

of the protocol hP; V i in which V sends exactly k + 1 messages.

3.1.2 The construction of the cheating prover

Using the above terms, we sketch the construction of the cheating prover P

�

. It �rst randomly

chooses a function h

r

 H and an index (of a session-pre�x) i. It then emulates an interaction

8

between S and V

h

, with the exception that P

�

uses the messages sent by S that have the i

th

session-pre�x as the messages that P

�

sends to the actual veri�er it interacts with; similarly, it uses

the messages received from the actual veri�er V instead of V

h

's messages in the i

th

session-pre�x.

The strategy of the cheating prover is depicted in Figure 1 below.

S V

h

Emulated interaction

between S and V

h

(Multiple sessions)

P

�

Actual interaction

between P

�

and V

(Single session)

V

Figure 1: Describes the strategy of the cheating prover P

�

. The box on the left hand side represents

the (multiple session) emulation of the interaction between S and V

h

(executed "internally" by P

�

).

The box on the right hand side represents the actual execution of a single session between P

�

and V .

3.1.3 The success probability of the cheating prover

We next claim that if the session-pre�x chosen by P

�

is useful, then hP

�

; V i(x) accepts. The key

point is that whenever P

�

chooses an useful session-pre�x, the following two conditions (corre-

sponding to the two conditions in the de�nition of a useful session-pre�x) are satis�ed:

1. The session corresponding to the i

th

session-pre�x is accepted by V

h

(and so by V).

2. P

�

manages to reach the end of the hP

�

; V i interaction without "getting into trouble".

6

Loosely speaking Item (1) is implied by Condition (1) in the de�nition of a useful session-pre�x.

As for Item (2), this just follows from the fact that S does not rewind the i

th

session-pre�x (as

implied by Condition (2) in the de�nition of a useful session-pre�x). In particular, P

�

(playing the

role of V

h

) will not have to send the j

th

veri�er message with the i

th

session-pre�x more than once

to S (since the number of messages sent by V

h

for that session-pre�x is precisely k + 1).

Since the number of session-pre�xes in an execution of S is bounded by a polynomial, it follows

that if the conversation between S and V

h

contains a useful session-pre�x with non-negligible

probability, then hP

�

; V i(x) accepts with non-negligible probability.

3.2 The schedule and additional ideas

Using the above framework, the crux of the lower bound is to come up with a schedule and V

h

's

that allow demonstrating that whenever S succeeds, the conversation between S and V

h

contains a

useful session-pre�x (as we have argued above, it is in fact su�cient that the conversation between

S and V

h

contains a useful session-pre�x with non-negligible probability). This is done next.

6

The problem is that P

�

does not know V 's random coins, and so it cannot compute the veri�er's answers by

himself. Thus, whenever P

�

is required to send the j

th

veri�er message in the protocol more than once to S it might

get into trouble (since it gets the j

th

veri�er message only once from V).

9

3.2.1 The 2-round case

Our starting point is the schedule used in [26] to demonstrate the impossibility of black-box con-

current zero-knowledge with protocols in which 4 messages are exchanged (i.e., v

1

; p

1

; v

2

; p

2

). The

schedule is recursive and consists of n concurrent sessions (n is polynomially related to the security

parameter). Given parameter m � n, the scheduling on m sessions (denoted R

m

) proceeds as

follows (see Figure 2 for a graphical description):

1. If m = 1, the relevant session exchanges all of its messages (i.e., v

1

; p

1

; v

2

; p

2

).

2. Otherwise (i.e., if m > 1):

Message exchange: The �rst session (out ofm sessions) exchanges 2 messages (i.e., v

1

; p

1

);

Recursive call: The schedule is applied recursively on the remaining m� 1 sessions;

Message exchange: The �rst session (out ofm sessions) exchanges 2 messages (i.e., v

2

; p

2

).

At the end of each session V

h

continues in the interaction if and only if the transcript of the session

that has just terminated would have been accepted by the prescribed veri�er V . This means that

in order to proceed beyond the ending point of the `

th

session, the simulator must make the honest

veri�er accept the s

th

session for all s > `.

(a) (b)

1 2 m

v

1

p

1

(

)

(

)

.

.

.

(

)

(

)

:

.

.

(

)

v

2

p

2

(

)

1 2 m

v

1

p

1

(

)

R

m�1

v

2

p

2

(

)

Figure 2: The "telescopic" schedule used by [26] to demonstrate impossibility of black-box concur-

rent zero-knowledge in 2 rounds. Columns correspond to n individual sessions and rows correspond

to the time progression. (a) Depicts the schedule explicitly. (b) Depicts the schedule in a recursive

manner (R

m

denotes the recursive schedule for m sessions).

Suppose now that S suceeds in simulating the above V

h

but the conversation between S and

V

h

does not contain a useful session-pre�x. Since V

h

proceeds beyond the ending point of a session

only if this session is accepted, then the only reason for which the corresponding session-pre�x can

be non-useful is because S has rewound that session-pre�x. Put in other words, a session-pre�x

becomes non-useful if and only if S resends the �rst prover message in the protocol (i.e., p

1

).

7

This

shuld cause V

h

to resend the second veri�er message (i.e., v

2

), thus violating Condition (2) in the

de�nition of a useful session-pre�x (see Section 3.1.1).

7

Notice that the �rst prover message in the protocol (i.e., p

1

) is the only place in which rewinding the interaction

may cause a session-pre�x to be non-useful. The reason for this is that the �rst veri�er message in the protocol (i.e.,

v

1

) is part of the session-pre�x. Rewinding past this message (i.e., v

1

) would modify the session-pre�x itself.

10

The key observation is that whenever the �rst prover message in the `

th

session is modi�ed,

then so is the session-pre�x of the s

th

session for all s > `. Thus, whenever S resends the �rst

prover message in the `

th

session, it must do so also in the s

th

session for all s > ` (since otherwise

the "fresh" session-pre�x of the s

th

session, that is induced by resending the above message, will

be useful). But this means that the work W (m), invested in the simulation of a schedule with

m levels, must satisfy W (m) � 2 � W (m � 1) for all m. Thus, either the conversation between

V

h

and S contains a useful session-pre�x (in which case we are done), or the simulation requires

exponential-time (since W (m) � 2 �W (m� 1) solves to W (n) � 2

n�1

).

3.2.2 The k-round case { �rst attempt

A �rst attempt to generalize this schedule to the case of k rounds may proceed as follows. Given

parameter m � n (denoting the number of sessions in R

m

) do:

1. If m = 1, the relevant session exchanges all of its messages (i.e., v

1

; p

1

; : : : ; v

k+1

; p

k+1

).

2. Otherwise, for j = 1; : : : ; k + 1:

Message exchange: The �rst session (out of m) exchanges two messages (i.e., v

j

; p

j

);

Recursive call: If j < k + 1, the scheduling is applied recursively on b

m�1

k

c new sessions;

(This is done using the next b

m�n

k

c remaining sessions out of 1; : : : ;m.)

As before, at the end of each session V

h

continues in the interaction if and only if the transcript of

the session that has just terminated would have been accepted by the prescribed veri�er V . The

schedule is depicted in Figure 3.

1 2 m

v

1

p

1

(

)

R
m�1

k

v

2

p

2

(

)

: :

: :

: :

v

j�1

p

j�1

(

)

R
m�1

k

v

j

p

j

(

)

: :

: :

: :

v

k

p

k

(

)

R
m�1

k

v

k+1

p

k+1

(

)

Figure 3: First attempt to generalize the recursive schedule (R

m

with m sessions) for k-round pro-

tocols. Columns correspond to m individual sessions and rows correspond to the time progression.

11

The crucial problem of the above schedule is that one can come up with a k-round protocol and

a corresponding simulator that manages to succesfully simulate V

h

and cause all session-pre�xes

in its conversation with V

h

to be non-useful. Speci�cally, there exist protocols (cf. [28]) in which

the simulator is required to successfully rewind an honestly behaving veri�er exactly once for every

session. Whereas in the case of 2-rounds this could have had devastating consequences (since, in

the case of the previous schedule, it would have impliedW (m) � (k+1) �W (m�1) = 2 �W (m�1),

which solves to W (n) � 2

n�1

), in the general case (i.e., when k + 1 > 2) any rewinding of the

schedule that we have suggested would have forced the simulator to re-invest simulation "work"

only for

m�1

k

sessions. Note that such a simulator satis�es W (m) = (k+1) �W (

m�1

k

), which solves

to k

O(log

k

n)

= n

O(1)

. In particular, by investing polynomial amount of work the simulator is able

to make all session-pre�xes not useful while succesfully simulating all sessions.

3.2.3 The k-round case { second attempt

One method to circumvent this di�culty was used in [29]. However, that method extends the

lower bound only up to 3 rounds (more precisely, 7 messages). Here we use a di�erent method.

What we do is let the cheating veri�er abort (i.e., refuse to answer) every message in the schedule

with some predetermined probability (independently of other messages). To do this, we �rst add

another, binary hash function, g, to the speci�cation of V

h

. This hash function is taken from a

family G with su�cient independence, so that it looks like a random binary function. Now, before

generating the next message in some session, V

g;h

�rst applies g to some predetermined part of the

conversation so far. If g returns 0 then V

g;h

aborts the session by sending an ABORT message. If g

returns 1 then V

g;h

is run as usual.

The rationale behind the use of aborts can be explained as follows. Recall that a session-pre�x

a stops being useful only when V

g;h

sends more than k messages whose session-pre�x is a. This

means that a stops being useful only if S rewinds the session-pre�x a and in addition g returns 1

in at least two of the continuations of a. This means that S is expected to rewind session-pre�x

a several times before it stops being useful. Since each rewinding of a involves extra work of S

on higher-level sessions, this may force S to invest considerably more work before a session stops

being useful.

A bit more speci�cally, let p denote the probability, taken over the choice of g, that g returns 1

on a given input. In each attempt, the session is not aborted with probability p. Thus S is expected

to rewind a session pre�x 1=p times before it becomes non-useful. This gives hope that, in order

to make sure that no session-pre�x is useful, S must do work that satis�es a condition of the sort:

W (m) �
(1=p) �W

�

m�1

k

�

(1)

This would mean that the work required to successfully simulate n sessions and make all session-

pre�xes non-useful is at least
(p

� log

k

n

). Consequently, when the expression p

� log

k

n

is super-

polynomial there is hope that the conversation between S and V

h

contains a useful session-pre�x

with non-negligible probability.

3.2.4 The k-round case { �nal version

However, demonstrating Eq. (1) brings up the following di�culty. Once the veri�er starts aborting

sessions, the probability that a session is ever completed may become too small. As a consequence,

it is not clear anymore that the simulator must invest simulation "work" for all sessions in the

schedule. It may very well be the case that the simulator will go about the simulation task while

12

"avoiding" part of the simulation "work" in some recursive invocations (as some of these invocations

may be aborted anyway during the simulation). In other words, there is no guarantee that the

recursive "work" invested by the simulator behaves like Eq. (1).

To overcome this problem, we replace each session in the above schedule (for k rounds) with a

\block" of, say, n sessions (see Figure 4 in Page 15). We now have n

2

sessions in a schedule. (This

choice of parameters is arbitrary, and is made for convenience of presentation.) V

g;h

accepts a block

of n sessions if at least 1/2 of the non-aborted sessions in this block were accepted and not too

many of the sessions in this block were aborted. Once a block is rejected, V

g;h

halts. At the end

of the execution, V

g;h

accepts if all blocks were accepted. The above modi�cation guarantees us

that, by a careful setting of the parameters, the simulator's recursive "work" must satisfy Eq. (1),

at least with overwhelming probability.

3.2.5 Setting the value of p

Once Eq. (1) is established, it remains to set the value of p. Clearly, the smaller p is chosen to

be, the larger p

� log

k

n

is. However, p cannot be too small, or else the probability of a session to

be ever completed will be too small, and Condition (1) in the de�nition of a useful session-pre�x

(Section 3.1.1) will not be satis�ed. Speci�cally, a k-round protocol is completed with probability

p

k

. We thus have to make sure that p

k

is not negligible (and furthermore that p

k

� n� 1).

In the proof we set p = n

�1=2k

. This will guarantee that a session is completed with probability

p

k

= n

�1=2

(thus Condition (1) has hope to be satis�ed). Furthermore, since p

� log

k

n

is super-

polynomial whenever k = o(log n= log log n), there is hope that Condition (2) in the de�nition of a

useful session-pre�x (Section 3.1.1) will be satis�ed for k = o(log n= log log n).

3.3 The actual analysis

Demonstrating that there exist many accepted session-pre�xes is straightforward. Demonstrating

that one of these session-pre�xes is useful requires arguing on the dependency between the expected

work done by the simulator and its success probability. This is a tricky business, since the choices

made by the simulator (and in particular the amount of e�ort spent on making each session non-

useful) may depend on past events.

We go about this task by pinpointing a special (combinatorial) property that holds for any

successful run of the simulator, unless the simulator runs in super-polynomial time (Lemma 5.9).

Essentially, this property states that there exists a block of sessions such that none of the session-

pre�xes in this block were rewound too many times. Using this property, we show (in Lemma 5.7)

that the probability (over the choices of V

g;h

and the simulator) that a run of the simulator contains

no useful session-pre�x is negligible.

4 The Actual Proof (of Theorem 1.1)

Assuming towards the contradiction that a black-box simulator, denoted S, contradicting Theo-

rem 1.1 exists, we will describe a probabilistic polynomial-time decision procedure for L, based on

S. The �rst step towards describing the decision procedure for L involves the construction of an

adversary veri�er in the concurrent model. This is done next.

4.1 The concurrent adversarial veri�er

The description of the adversarial strategy proceeds in several steps. We start by describing the

underlying �xed schedule of messages. Once the schedule is presented, we describe the adversary's

strategy regarding the contents of the veri�er messages.

13

4.1.1 The schedule

For each x 2 f0; 1g

n

, we consider the following concurrent scheduling of n

2

sessions, all run on

common input x.

8

The scheduling is de�ned recursively, where the scheduling of m � n

2

sessions

(denoted R

m

) proceeds as follows:

9

1. If m � n, sessions 1; : : : ;m are executed sequentially until they are all completed;

2. Otherwise, for j = 1; : : : ; k + 1:

Message exchange: Each of the �rst n sessions exchanges two messages (i.e., v

j

; p

j

);

(These �rst n sessions out of f1; : : : ;mg will be referred to as the main sessions of R

m

.)

Recursive call: If j < k + 1, the scheduling is applied recursively on b

m�n

k

c new sessions;

(This is done using the next b

m�n

k

c remaining sessions out of 1; : : : ;m.)

The schedule is depicted in Figure 4. We stress that the veri�er typically postpones its answer

(i.e., v

j

) to the last prover's message (i.e., p

j�1

) till after a recursive sub-schedule is executed, and

that in the j

th

iteration of Step 2, b

m�n

k

c new sessions are initiated (with the exception of the

�rst iteration, in which the �rst n (main) sessions are initiated as well). The order in which the

messages of various sessions are exchanged (in the �rst part of Step 2) is �xed but immaterial.

Say that we let the �rst session proceed, then the second and so on. That is, we have the order

v

(1)

j

; p

(1)

j

; : : : ; v

(n)

j

; p

(n)

j

, where v

(i)

j

(resp., p

(i)

j

) denotes the veri�er's (resp., prover's) j

th

message in

the i

th

session.

The set of n sessions that are explicitly executed during the message exchange phase of the

recursive invocation (i.e., the main sessions) is called a recursive block. (Notice that each recursive

block corresponds to exactly one recursive invocation of the schedule.) Taking a closer look at the

schedule we observe that every session in the schedule is explicitly executed in exactly one recursive

invocation (that is, belongs to exactly one recursive block). Since the total number of sessions in

the schedule is n

2

, and since the message exchange phase in each recursive invocation involves the

explicit execution of n sessions (in other words, the size of each recursive block is n), we have that

the total number of recursive blocks in the schedule equals n. Since each recursive invocation of the

schedule involves the invocation of k additional sub-schedules, the recursion actually corresponds

to a k-ary tree with n nodes. The depth of the recursion is thus blog

k

((k � 1)n + 1)c, and the

number of \leaves" in the recursion (i.e., sub-schedules of size at most n) is at least b

(k�1)n+1

k

c.

Identifying sessions according to their recursive block: To simplify the exposition of the

proof, it will be convenient to associate every session appearing in the schedule with a pair of

indices (`; i) 2 f1; : : : ; ng � f1; : : : ; ng, rather than with a single index s 2 f1; : : : ; n

2

g. The

value of ` = `(s) 2 f1; : : : ; ng will represent the index of the recursive block to which session s

belongs (according to some canonical enumeration of the n invocations in the recursive schedule,

say according to the order in which they are invoked), whereas the value of i = i(s) 2 f1; : : : ; ng

will represent the index of session s within the n sessions that belong to the `

th

recursive block (in

other words, session (`; i) is the i

th

main session of the `

th

recursive invocation in the schedule).

Typically, when we explicitly refer to messages of session (`; i), the index of the corresponding

8

Recall that each session consists of 2k + 2 messages, where k

def

= k(n) = o(log n= log log n).

9

In general, we may want to de�ne a recursive scheduling for sessions i

1

; : : : ; i

m

and denote it by R

i

1

;:::;i

m

(see

Section A in the Appendix for a more formal description of the schedule). We choose to simplify the exposition by

renaming these sessions as 1; : : : ;m and denote the scheduling by R

m

.

14

recursive block (i.e., `) is easily deducible from the context. In such cases, we will sometimes omit

the index ` from the \natural" notation v

(`;i)

j

(resp. p

(`;i)

j

), and stick to the notation v

(i)

j

(resp. p

(i)

j

).

Note that the values of (`; i) and the session index s are completely interchangeable (in particular,

` = s div n and i = s mod n).

De�nition 4.1 (Identi�ers of next message) The schedule de�nes a mapping from partial ex-

ecution transcripts ending with a prover message to the identi�ers of the next veri�er message;

that is, the session and round number to which the next veri�er message belongs. (Recall that

such partial execution transcripts correspond to queries of a black-box simulator and so the map-

ping de�nes the identi�er of the answer:) For such a query q = (b

1

; a

1

; : : : ; b

t

; a

t

), we denote by

�

sn

(q) = (`; i) 2 f1; : : : ; ng � f1; : : : ; ng the session to which the next veri�er message belongs, and

by �

msg

(q) = j 2 f1; : : : ; k + 1g its index within the veri�er's messages in this session.

We stress that the identi�ers of the next message are uniquely determined by the number of messages

appearing in the query (and are not a�ected by the contents of these messages).

1 2 n n+ 1 m

v

1

p

1

(

)

(

)

:

.

.

(

)

R

m�n

k

v

2

p

2

(

)

(

)

:

.

.

(

)

: :

: :

: :

v

j�1

p

j�1

(

)

(

)

:

.

.

(

)

R

m�n

k

v

j

p

j

(

)

(

)

:

.

.

(

)

: :

: :

: :

v

k

p

k

(

)

(

)

:

.

.

(

)

R

m�n

k

v

k+1

p

k+1

(

)

(

)

:

.

.

(

)

Figure 4: The recursive schedule R

m

for m sessions. Columns correspond to m individual sessions

and rows correspond to the time progression.

15

4.1.2 Towards constructing an adversarial veri�er

Once the identi�ers of the next veri�er message are deduced from the query's length, one has to

specify a strategy according to which the contents of the next veri�er message will be determined.

Loosely speaking, our adversary veri�er has two options: It will either send the answer that would

have been sent by an honest veri�er (given the messages in the query that are relevant to the current

session), or it will choose to deviate from the honest veri�er strategy and abort the interaction in

the current session (this will be done by answering with a special ABORT message). Since in a

non-trivial zero-knowledge proof system the honest veri�er is always probabilistic (cf. [20]), and

since the \abort behaviour" of the adversary veri�er should be \unpredictable" for the simulator,

we have that both options require a source of randomness (either for computing the contents

of the honest veri�er answer or for deciding whether to abort the conversation). As is already

customary in works of this sort [18, 26, 29], we let the source of randomness be a hash function

with su�ciently high independence (which is \hard-wired" into the veri�er's description), and

consider the execution of a black-box simulator that is given access to such a random veri�er.

(Recall that the simulator's queries correspond to partial execution transcripts and thus contain

the whole history of the interaction so far.)

Determining the randomness for a session: Focusing (�rst) on the randomness required to

compute the honest veri�er's answers, we ask what should the input of the above hash function

be. A naive solution would be to let the randomness for a session depend on the session's index.

That is, to obtain randomness for session (`; i) = �

sn

(q) apply the hash function on the value

(`; i). This solution will indeed imply that every two sessions have independent randomness (as

the hash function will have di�erent inputs). However, the solution seems to fail to capture the

di�culty arising in the simulation (of multiple concurrent sessions). What we would like to have is

a situation in which whenever the simulator rewinds a session (that is, feeds the adversary veri�er

with a di�erent query of the same length), it causes the randomness of some other session (say, one

level down in the recursive schedule) to be completely modi�ed. To achieve this, we must cause

the randomness of a session to depend also on the history of the entire interaction. Changing even

a single message in this history would immediately result in an unrelated instance of the current

session, and would thus force the simulator to redo the simulation work on this session all over again.

So where in the schedule should the randomness of session (`; i) be determined? On the one

hand, we would like to determine the randomness of a session as late as possible (in order to

maximize the e�ect of changes in the history of the interaction on the randomness of the session).

On the other hand, we cannot a�ord to determine the randomness after the session's initiating

message is scheduled (since the protocol's speci�cation may require that the veri�er's randomness

is completely determined before the �rst veri�er message is sent). For technical reasons, the point in

which we choose to determine the randomness of session (`; i) is the point in which recursive block

number ` is invoked. That is, to obtain the randomness of session (`; i) = �

sn

(q) we feed the hash

function with the pre�x of query q that ends just before the �rst message in block number ` (this

pre�x is called the block-pre�x of query q and is de�ned below). In order to achieve independence

with other sessions in block number `, we will also feed the hash function with the value of i.

This (together with the above choice) guarantees us the following properties: (1) The input to the

hash function (and thus the randomness for session (`; i)) does not change once the interaction in

the session begins (that is, once the �rst veri�er message is sent). (2) For every pair of di�erent

sessions, the input to the hash function is di�erent (and thus the randomness for each session is

independent). (3) Even a single modi�cation in the pre�x of the interaction up to the �rst message

in block number `, induces fresh randomness for all sessions in block number `.

16

De�nition 4.2 (Block-pre�x) The block-pre�x of a query q satisfying �

sn

(q) = (`; i), is the

pre�x of q that is answered with the �rst veri�er message of session (`; 1) (that is, the �rst

main session in block number `). More formally, bp(q) = (b

1

; a

1

; : : : ; b

; a

) is the block-pre�x

of q = (b

1

; a

1

; : : : ; b

t

; a

t

) if �

sn

(bp(q)) = (`; 1) and �

msg

(bp(q)) = 1. The block-pre�x will be said to

correspond to recursive block number `.

10

(Note that i may be any index in f1; : : : ; ng, and that a

t

need not belong to session (`; i).)

Determining whether and when to abort sessions: Whereas the randomness that is used

to compute the honest veri�er's answers in each session is determined before a session begins, the

randomness that is used in order to decide whether to abort a session is chosen independently every

time the execution of the schedule reaches the next veri�er message in this session. As before, the

required randomness is obtained by applying a hash function on the suitable pre�x of the execution

transcript. This time, however, the length of the pre�x increases each time the execution of the

session reaches the next veri�er message (rather than being �xed for the whole execution of the

session). This way, the decision of whether to abort a session also depends on the contents of

messages that were exchanged after the initiation of the session has occurred. Speci�cally, in order

to decide whether to abort session (`; i) = �

sn

(q) at the j

th

message (where j = �

msg

(q)), we feed

the hash function with the pre�x (of query q) that ends with the (j�1)

st

prover message in the n

th

main session of block number `. (As before, the hash function is also fed with the value of i (in

order to achieve independence from other sessions in the block).) This pre�x is called the iteration-

pre�x of query q and is de�ned next (see Figure 5 for a graphical description of the block-pre�x

and iteration-pre�x of a query).

De�nition 4.3 (Iteration-pre�x) The iteration-pre�x of a query q satisfying �

sn

(q) = (`; i) and

�

msg

(q) = j > 1, is the pre�x of q that ends with the (j�1)

st

prover message in session (`; n) (that is,

the n

th

main session in block number `). More formally, ip(q) = (b

1

; a

1

; : : : ; b

�

; a

�

) is the iteration-

pre�x of q = (b

1

; a

1

; : : : ; b

t

; a

t

) if a

�

is of the form p

(n)

j�1

(where p

(n)

j�1

denotes the (j�1)

st

prover

message in the n

th

main session of block number `). This iteration-pre�x is said to correspond to

the block-pre�x of q. (Again, note that i may be any index in f1; : : : ; ng, and that a

t

need not

belong to session (`; i). Also, note that the iteration-pre�x is de�ned only for �

msg

(q) > 1.)

We stress that two queries q

1

; q

2

may have the same iteration-pre�x even if they do not correspond

to the same session. This could happen whenever bp(q

1

) = bp(q

2

) and �

msg

(q

1

) = �

msg

(q

2

) (which

is possible even if �

sn

(q

1

) 6= �

sn

(q

2

)).

Motivating De�nitions 4.2 and 4.3: The choices made in De�nitions 4.2 and 4.3 are designed

to capture the di�culties encountered whenever many sessions are to be simulated concurrently.

As was previously mentioned, we would like to create a situation in which every attempt of the

simulator to rewind a speci�c session will result in loss of work done for other sessions (and so will

cause the simulator to do the same amount of work all over again). In order to force the simulator

to repeat each such rewinding attempt many times, we make each rewinding attempt fail with

some predetermined probability (by letting the veri�er send an ABORT message instead of a legal

answer).

11

10

In the special case that ` = 1 (that is, we are in the �rst block of the schedule), we de�ne bp(q) =?.

11

Recall that all of the above is required in order to make the simulator's work accumulate to too much, and

eventually cause its running time to be super-polynomial.

17

1 2 n n+ 1

v

1

p

1

(

)

(

)

:

.

.

(

)

R

m�n

k

v

2

p

2

(

)

(

)

:

.

.

(

)

: :

: :

: :

v

j�1

p

j�1

(

)

(

)

:

.

.

(

)

R

m�n

k

v

j

p

j

(

)

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(b)

(a)

Figure 5: Determining the pre�xes of query q (in this example, query q ends with a p

(1)

j

message

and is to be answered by v

(2)

j

, represented by the marked arrow): (a) indicates the block-pre�x

of q (i.e., messages up to this point are used by V

g;h

to determine the randomness to be used for

computing message v

(2)

j

). (b) indicates the iteration-pre�x of q (i.e., messages up to this point are

used by V

g;h

to determine whether or not message v

(2)

j

will be set to ABORT).

To see that De�nitions 4.2 and 4.3 indeed lead to the ful�llment of the above requirements, we

consider the following example. Suppose that at some point during the simulation, the adversary

veri�er aborts session (`; i) at the j

th

message (while answering query q). Further suppose that (for

some unspeci�ed reason) the simulator wants to to get a \second chance" in receiving a legal answer

to the j

th

message in session (`; i) (hoping that it will not receive the ABORT message again). Recall

that the decision of whether to abort a session depends on the outcome of a hash function when

applied to the iteration-pre�x ip(q), of query q. In particular, to obtain a \second chance", the

black-box simulator has no choice but to change at least one prover message in the above iteration-

pre�x (in other words, the simulator must rewind the interaction to some message occurring in

iteration-pre�x ip(q)). At �rst glance it may seem that the e�ect of changes in the iteration-pre�x

of query q is con�ned to the messages that belong to session (`; i) = �

sn

(q) (or at most, to messages

that belong to other sessions in block number `). However, taking a closer look at the schedule, we

observe that every iteration-pre�x (and in particular ip(q)) can also be viewed as the block-pre�x of

a recursive block one level down in the recursive construction. Viewed this way, it is clear that the

e�ect of changes in ip(q) is not con�ned only to messages that correspond to recursive block number

`, but rather extends also to sessions at lower levels in the recursive schedule. By changing even a

single message in iteration-pre�x ip(q), the simulator is actually modifying the block-pre�x of all

recursive blocks in a sub-schedule one level down in the recursive construction. This means that

the randomness for all sessions in these blocks is completely modi�ed (recall that the randomness

of a session is determined by applying a hash function on the corresponding block-pre�x), and that

all the simulation work done for these sessions is lost. In particular, by changing even a single

message in iteration-pre�x ip(q), the simulator will �nd himself doing the simulation work for these

18

lower-level sessions all over again.

Having established the e�ect of changes in iteration-pre�x ip(q) on sessions at lower levels in the

recursive schedule, we now turn to examine the actual e�ect on session (`; i) = �

sn

(q) itself. One

possible consequence of changes in iteration-pre�x ip(q) is that they may also e�ect the contents

of the block-pre�x bp(q) of query q (notice that, by de�nition, the block-pre�x bp(q) of query q

is contained in the iteration-pre�x ip(q) of query q). Whenever this happens, the randomness

used for session (`; i) is completely modi�ed, and all simulation work done for this session will be

lost. A more interesting consequence of a change in the contents of iteration-pre�x ip(q), is that

it will result in a completely independent decision of whether session (`; i) is to be aborted at the

j

th

message (the decision of whether to abort is taken whenever the simulator makes a query q

satisfying �

sn

(q) = (`; i), and �

msg

(q) = j). In other words, each time the simulator attempts to get

a \second chance" in receiving a legal answer to the j

th

message in session (`; i) (by rewinding the

interaction to a message that belongs to iteration-pre�x ip(q)), it faces the risk of being answered

with an ABORT message independently of all previous rewinding attempts.

4.1.3 The actual veri�er strategy V

g;h

We consider what happens when a simulator S (for the above schedule) is given oracle access to a

veri�er strategy V

g;h

de�ned as follows (depending on hash functions g; h and the input x). Recall

that we may assume that S runs in strict polynomial time: we denote such time bound by t

S

(�).

Let G denote a small family of t

S

(n)-wise independent hash functions mapping poly(n)-bit long

sequences into a single bit of output, so that for every � we have Pr

g G

[g(�) = 1] = n

�1=2k

. Let H

denote a small family of t

S

(n)-wise independent hash functions mapping poly(n)-bit long sequences

to �

V

(n)-bit sequences, so that for every � we have Pr

h H

[h(�) = 1] = 2

��

V

(n)

(where �

V

(n) is

the number of random bits used by an honest veri�er V on an input x 2 f0; 1g

n

).

12

We describe

a family fV

g;h

g

g2G;h2H

of adversarial veri�er strategies (where x is implicit in V

g;h

). On query

q = (b

1

; a

1

; : : : ; a

t�1

; b

t

; a

t

), the veri�er acts as follows:

1. First, V

g;h

checks if the execution transcript given by the query is legal (i.e., corresponds to a

possible execution pre�x), and halts with a special ERROR message if the query is not legal.

13

2. Next, V

g;h

determines the block-pre�x, bp(q) = (b

1

; a

1

; : : : ; b

; a

), of query q. It also deter-

mines the identi�ers of the next-message (`; i) = �

sn

(q) and j = �

msg

(q), the iteration-pre�x

ip(q) = (b

1

; a

1

; : : : ; b

�

; p

(n)

j�1

), and the j�1 prover messages of session i appearing in query q

(which we denote by p

(i)

1

; : : : ; p

(i)

j�1

).

(Motivating discussion: The next message is the j

th

veri�er message in the i

th

session of block `.

The value of the block-pre�x, bp(q), is used in order to determine the randomness of session (`; i),

whereas the value of the iteration-pre�x, ip(q), is used in order to determine whether session (`; i)

is about to be aborted at this point (i.e., j

th

message) in the schedule (by answering with a special

ABORT message).)

3. If j = 1, then V

g;h

answers with the veri�er's �xed initiation message for session i (i.e., v

(i)

1

).

12

We stress that functions in such families can be described by strings of polynomial length in a way that enables

polynomial time evaluation (cf. [24, 9, 10, 1]).

13

In particular, V

g;h

checks whether the query is of the prescribed format (as described in Section 2.5, and as

determined by the schedule), and that the contents of its messages is consistent with V

g;h

's prior answers. (That is,

for every proper pre�x q

0

= (b

1

; a

1

; : : : ; b

u

; a

u

) of query q = (b

1

; a

1

; : : : ; b

t

; a

t

), the veri�er checks whether the value

of b

u+1

(as it appears in q) is indeed equal to the value of V

g;h

(q

0

).)

19

4. If j > 1, then V

g;h

determines b

i;j

= g(i; ip(q)) (i.e., a bit deciding whether to abort session i):

(a) If b

i;j

= 0, then V

g;h

sets v

(i)

j

= ABORT (indicating that V

g;h

aborts session i).

(b) If b

i;j

= 1, then V

g;h

determines r

i

= h(i; bp(q)) (as coins to be used by V), and computes

the message v

(i)

j

= V (x; r

i

; p

(i)

1

; : : : ; p

(i)

j�1

) that would have been sent by the honest veri�er

on common input x, random-pad r

i

, and prover's messages p

(i)

1

; : : : ; p

(i)

j�1

.

(c) Finally, V

g;h

answers with v

(i)

j

.

Dealing with ABORT messages: Note that, once V

g;h

has aborted a session, the interaction in

this session essentially stops, and there is no need to continue exchanging messages in this session.

However, for simplicity of exposition we assume that the veri�er and prover stick to the �xed

schedule of Section 4.1.1 and exchange ABORT messages whenever an aborted session is scheduled.

Speci�cally, if the j

th

veri�er message in session i is ABORT then all subsequent prover and veri�er

messages in that session will also equal ABORT.

On the arguments to g and h: The hash function h, which determines the random input for

V in a session, is applied both on i (the identi�er of the relevant session within the current block)

and on the entire block-pre�x of the query q. This means that even though all sessions in a speci�c

block have the same block-pre�x, for every pair of two di�erent sessions, the corresponding random

inputs of V will be independent of each other (as long as the number of applications of h does not

exceed t

S

(n), which is indeed the case in our application). The hash function g, which determines

whether and when the veri�er aborts sessions, is applied both on i and on the entire iteration-pre�x

of the query q. As in the case of h, the decision whether to abort a session is independent from

the same decision for other sessions (again, as long as g is not applied more than t

S

(n) times).

However, there is a signi�cant di�erence between the inputs of h and g: Whereas the input of h

is �xed once i and the block-pre�x are �xed (and is une�ected by mesages that belong to that

session), the input of g varies depending on previous messages sent in that session. In particular,

whereas the randomness of a session is completely determined once the session begins, the decision

of whether to abort a session is taken independently each time that the schedule reaches the next

veri�er message of this session.

On the number of di�erent pre�xes that occur in interactions with V

g;h

: Since the num-

ber of recursive blocks in the schedule is equal to n, and since there is a one-to-one correspondence

between recursive blocks and block-pre�xes, we have that the number of di�erent block-pre�xes

that occur during an interaction between an honest prover P and the veri�er V

g;h

is always equal

to n. Since the number of iterations in the message exchange phase of a recursive invocation of

the schedule equals k + 1, and since there is a one-to-one correspondence between such iterations

and iteration-pre�xes

14

we have that the number of di�erent iteration-pre�xes that occur during

an interaction between and honest prover P and the veri�er V

g;h

, is always equal to k �n (that is, k

di�erent iteration-pre�xes for each one of the n recursive invocations of the schedule). In contrast,

the number of di�erent block-pre�xes (resp., iteration-pre�xes), that occur during an execution

of a black-box simulator S that is given oracle access to V

g;h

, may be considerably larger than n

(resp., k � n). The reason for this is that there is nothing that prevents the simulator from feeding

14

The only exception is the �rst iteration in the message exchange phase. Since only queries q that satisfy �

msg

(q)>1

have an iteration-pre�x, the �rst iteration will never have a corresponding iteration-pre�x.

20

V

g;h

with di�erent queries of the same length (this corresponds to the so called rewinding of an

interaction). Still, the number of di�erent pre�xes in an execution of S is always upper bounded

by the running time of S; that is, t

S

(n).

On the probability that a session is never aborted: A typical interaction between an

honest prover P and the veri�er V

g;h

will contain sessions whose execution has been aborted prior

to completion. Recall that at each point in the schedule, the decision of whether or not to abort the

next scheduled session depends on the outcome of g. Since the function g returns 1 with probability

n

�1=2k

, a speci�c session is never aborted with probability (n

�1=2k

)

k

= n

�1=2

. Using the fact that

whenever a session is not aborted, V

g;h

operates as the honest veri�er, we infer that the probability

that a speci�c session is eventually accepted by V

g;h

is at least 1=2 times the probability that the

very same session is never aborted (where 1=2 is an arbitrary lower bound on the completeness

probability of the protocol). In other words, the probability that a session is accepted by V

g;h

is

at least

n

�1=2

2

. In particular, for every set of n sessions, the expected number of sessions that are

eventually accepted by V

g;h

(when interacting with the honest prover P) is at least n �

n

�1=2

2

=

n

1=2

2

,

and with overwhelming high probability at least

n

1=2

4

sessions are accepted by V

g;h

.

A slight modi�cation of the veri�er strategy: To facilitate the analysis, we slightly modify

the veri�er strategy V

g;h

so that it does not allow the number of accepted sessions in the history

of the interaction to deviate much from its \expected behavior". Loosely speaking, given a pre�x

of the execution transcript (ending with a prover message), the veri�er will check whether the

recursive block that has just been completed contains at least

n

1=2

4

accepted sessions. (To this end,

it will be su�cient to inspect the history of the interaction only when the execution of the schedule

reaches the end of a recursive block. That is, whenever the schedule reaches the last prover message

in the last session of a recursive block (i.e., some p

(n)

k+1

message).) The modi�ed veri�er strategy

(which we continue to denote by V

g;h

), is obtained by adding to the original strategy an additional

Step 1' (to be executed after Step 1 of V

g;h

):

1'. If a

t

is of the form p

(n)

k+1

(i.e., in case query q = (b

1

; a

1

; : : : ; b

t

; a

t

) ends with the last prover

message of the n

th

main session of a recursive block), V

g;h

checks whether the transcript

q = (b

1

; a

1

; : : : ; b

t

; p

(n)

k+1

) contains the accepting conversations of at least

n

1=2

4

main sessions

in the block that has just been completed. In case it does not, V

g;h

halts with a special

DEVIATION message (indicating that the number of accepted sessions in the block that has

just been completed deviates from its expected value).

Motivating discussion: Since the expected number of accepted sessions in a speci�c block is

at least

n

1=2

2

, the probability that the block contains less than

n

1=2

4

accepted sessions is negligible.

Still, the above modi�cation is not super
uous (even though it refers to events that occur only with

negligible probability): It allows us to assume that every recursive block that is completed during

the simulation (including those that do not appear in the simulator's output) contains at least

n

1=2

4

accepted sessions. In particular, whenever the simulator feeds V

g;h

with a partial execution

transcript (i.e., a query), we are guaranteed that for every completed block in this transcript, the

simulator has indeed \invested work" to simulate the at least

n

1=2

4

accepted sessions in the block.

A slight modi�cation of the simulator: Before presenting the decision procedure, we slightly

modify the simulator so that it never makes a query that is answered with either the ERROR or

21

DEVIATION messages by the veri�er V

g;h

. Note that the corresponding condition can be easily

checked by the simulator (which can easily produce this special message by itself),

15

and that

the modi�cation does not e�ect the simulator's output. From this point on, when we talk of the

simulator (which we continue to denote by S) we mean the modi�ed one.

4.2 The decision procedure for L

We are now ready to describe a probabilistic polynomial-time decision procedure for L, based on

the black-box simulator S and the veri�er strategies V

g;h

. On input x 2 f0; 1g

n

, the procedure

operates as follows:

1. Uniformly select hash functions g

r

 G and h

r

 H.

2. Invoke S on input x providing it black-box access to V

g;h

(as de�ned above). That is, the

procedure emulates the execution of the oracle machine S on input x along with emulating

the answers of V

g;h

, where g and h are as determined in Step 1.

3. Accept if and only if S outputs a legal transcript (as determined by Steps 1 and 1' of V

g;h

).

16

By our hypothesis, the above procedure runs in probabilistic polynomial-time. We next analyze its

performance.

Lemma 4.4 (performance on yes-instances): For all but �nitely many x 2 L, the above procedure

accepts x with probability at least 2=3.

Proof Sketch: Let x 2 L, g

r

 G, h

r

 H, and consider the honest prover P . We show below

that, except for negligible probability (where the probability is taken over the random choices of g,

h, and P 's coin tosses), when V

g;h

interacts with P , all recursive blocks in the resulting transcript

contain the accepting conversations of at least

n

1=2

4

main sessions. Since for every g and h the

simulator S

V

g;h

(x) must generate a transcript whose deviation gap from hP; V

g;h

i(x) is at most 1=4,

it follows that S

V

g;h

(x) has deviation gap at most 1=4 from hP; V

g;h

i(x) also when g

r

 G and

h

r

 H. Consequently, when S is run by the decision procedure for L, the transcript S

V

g;h

(x) will

not be legal with probability at most 1=3. Details follow.

Let � denote the random variable describing the transcript of the interaction between the honest

prover P and V

g;h

, where the probability is taken over the choices of g, h, and P . Let s 2 f1; : : : ; n

2

g.

We �rst calculate the probability that the s

th

session in � is completed and accepted (i.e., V

g;h

sends

the message v

(s)

k+1

= ACCEPT), conditioned on the event that V

g;h

did not abandon the interaction

beforehand (i.e., V

g;h

did not send the DEVIATIONmessage before).

17

For uniformly selected g

r

 G,

the probability that V

g;h

does not abort the session in each of the k rounds, given that it has not

15

We stress that, as opposed to the ERROR and DEVIATION messages, the simulator cannot predict whether its query

is about to be answered with the ABORT message.

16

Recall that we are assuming that the simulator never makes a query that is ruled out by Steps 1 and 1' of

V

g;h

. Since before producing output (b

1

; a

1

; : : : ; b

T

; a

T

) the simulator makes the query (b

1

; a

1

; : : : ; b

T

; a

T

), cheking

the legality of the transcript in Step 3 is not really necessary (as, in case that the modi�ed simulator indeed reaches

the output stage \safely", we are guaranteed that it will produce a legal output). In particular, we are always

guaranteed that the simulator either produces execution transcripts in which every recursive block contains at least

n

1=2

=4 sessions that were accepted by V

g;h

, or it does not produce any output at all.

17

Note that, since we are dealing with the honest prover P , there is no need to consider the ERROR message at all

(since in an interaction with the honest prover P , the adversary veri�er V

g;h

will never output ERROR anyway).

22

already aborted, is n

�1=2k

. Thus, conditioned on the event that V

g;h

did not output DEVIATION

beforehand, the session is completed (without being aborted) with probability (n

�1=2k

)

k

= n

�1=2

.

The key observation is that if h is uniformly chosen from H then, conditioned on the event that

V

g;h

did not output DEVIATION beforehand and the current session is not aborted, the conversation

between V

g;h

and P is distributed identically to the conversation between the honest veri�er V

and P on input x. By the completeness requirement for zero-knowledge protocols, we have that

V accepts in such an interaction with probability at least 1=2 (this probability is actually higher,

but 1=2 is more than enough for our purposes). Consequently, for uniformly selected g and h,

conditioned on the event that V

g;h

did not output DEVIATION beforehand, the probability that a

session is accepted by V

g;h

is at least

n

�1=2

2

.

We calculate the probability that � contains a block such that less than

n

1=2

4

of its sessions are

accepted. Say that a block B in a transcript has been completed if all the messages of sessions

in B have been sent during the interaction. Say that B is admissible if the number of accepted

sessions that belong to block B in the transcript is at least

n

1=2

4

. Enumerating blocks in the order

in which they are completed (that is, when we refer to the `

th

block in � , we mean the `

th

block

that is completed in �), we denote by

`

the event that all the blocks up to and including the `

th

block are admissible in � .

For i 2 f1; : : : ; ng de�ne a boolean indicator �

`

i

to be 1 if and only if the i

th

session in the

`

th

block is accepted by V

g;h

. We have seen that, conditioned on the event

`�1

, each �

`

i

is 1

w.p. at least

n

�1=2

2

. As a consequence, for every `, the expectation of

P

n

i=1

�

`

i

(i.e., the number

of accepted main sessions in block number `) is at least

n

1=2

2

. Since, conditioned on

`�1

, the �

`

i

's

are independent of each other, we can apply the Cherno� bound, and infer that Pr [

`

j

`�1

] >

1 � e

�
(n

1=2

)

. Furthermore, since no session belongs to more than one block, we have: Pr [

`

] �

Pr [

l

j

`�1

] � Pr [

l�1

]. It follows (by induction on the number of completed blocks in a transcript),

that all blocks in � are admissible with probability at least (1� e

�
(n

1=2

)

)

n

> 1�n � e

�
(n

1=2

)

. The

lemma follows.

Lemma 4.5 (performance on no-instances): For all but �nitely many x 62 L, the above procedure

rejects x with probability at least 2=3.

We can actually prove that for every positive polynomial p(�) and for all but �nitely many x 62 L,

the above procedure accepts x with probability at most 1=p(jxj). Assuming towards contradiction

that this is not the case, we will construct a (probabilistic polynomial-time) strategy for a cheating

prover that fools the honest veri�er V with success probability at least 1=poly(n) in contradiction

to the soundness (and even computational-soundness) of the proof system.

5 Proof of Lemma 4.5 (performance on no-instances)

Let us �x an x 2 f0; 1g

n

n L as above.

18

Denote by AC = AC

x

the set of triplets (�; g; h) so that on

input x, internal coins � and oracle access to V

g;h

, the simulator outputs a legal transcript (which

we denote by S

V

g;h

�

(x)). Recall that our contradiction assumption is that Pr

�;g;h

[(�; g; h) 2 AC] >

1=p(n), for some �xed positive polynomial p(�). Before proceeding with the proof of Lemma 4.5,

we formalize what we mean by referring to the \execution of the simulator".

18

Actually, we need to consider in�nitely many such x's.

23

De�nition 5.1 (Execution of simulator) Let x; � 2 f0; 1g

�

, g 2 G and h 2 H. The execution

of simulator S, denoted exec

x

(�; g; h), is the sequence of queries made by S, given input x, random

coins �, and oracle access to V

g;h

(x).

Since the simulator has the ability to \rewind" the veri�er V

g;h

and explore V

g;h

's output on various

execution pre�xes (i.e., queries) of the same length, the number of distinct block-pre�xes that appear

in exec

x

(�; g; h) may be strictly larger than n (recall that the schedule consists of n invocations

to recursive blocks, and that in an interaction between the honest prover P and V

g;h

there is a

one-to-one correspondence between recursive blocks and block-pre�xes). As a consequence, the `

th

distinct block-pre�x appearing in exec

x

(�; g; h) does not necessarily correspond to the `

th

recursive

block in the schedule. Nevertheless, given exec

x

(�; g; h) and `, one can easily determine for the

`

th

distinct block-pre�x in the execution of the simulator the index of its corresponding block in

the schedule (say, by extracting the `

th

distinct block-pre�x in exec

x

(�; g; h), and then analyzing

its length).

In the sequel, given a speci�c block-pre�x bp, we let `

(bp)

2 f1; : : : ; ng denote the index of

its corresponding block in the schedule (as determined by bp's length). Note that two di�erent

block-pre�xes bp

1

and bp

2

in exec

x

(�; g; h) may satisfy `

(bp

1

)

= `

(bp

2

)

(as they may correspond to

two di�erent instances of the same recursive block). In particular, session (`

(bp

1

)

; i) may have more

than a single occurrence during the execution of the simulator (whereas in an interaction of the

honest prover P with V

g;h

each session index will occur exactly once). This means that whenever

we refer to an instance of session (`; i) in the simulation, we will also have to explicitly specify to

which block-pre�x this instance corresponds.

In order to avoid cumbersome statements, we will abuse the notation `

(bp)

and also use it in

order to specify to which instance the recursive block `

(bp)

corresponds. That is, whenever we refer

to recursive block number `

(bp)

we will actually mean: \the speci�c instance of recursive block

number ` (= `

(bp)

) that corresponds to block-pre�x bp in exec

x

(�; g; h)". Viewed this way, for

`

(bp

1

)

= `

(bp

2

)

, sessions (`

(bp

1

)

; i) and (`

(bp

2

)

; i) actually correspond to two di�erent instances of the

same session in the schedule.

5.1 The cheating prover

The cheating prover (denoted P

�

) starts by uniformly selecting a triplet (�; g; h) while hoping

that (�; g; h) 2 AC. It next selects uniformly a pair (�; �) 2 f1; : : : ; t

S

(n)g � f1; : : : ; ng, where

the simulator's running time, t

S

(n), acts as a bound on the number of (di�erent block-pre�xes

induced by the) queries made by S on input x 2 f0; 1g

n

. The prover next emulates an execution of

S

V

g;h

(r)

�

(x) (where h

(r)

, which is essentially equivalent to h, will be de�ned below), while interacting

with V (x; r) (that is, the honest veri�er, running on input x and using coins r). The prover handles

the simulator's queries as well as the communication with the veri�er as follows: Suppose that the

simulator makes query q = (b

1

; a

1

; : : : ; b

t

; a

t

), where the a's are prover messages.

1. Operating as V

g;h

, the cheating prover determines the block-pre�x bp(q) = (b

1

; a

1

; : : : ; b

; a

).

It also determines (`; i) = �

sn

(q), j = �

msg

(q), the iteration-pre�x ip(q) = (b

1

; a

1

; : : : ; b

�

; p

(n)

j�1

),

and the j�1 prover messages p

(i)

1

; : : : ; p

(i)

j�1

appearing in the query q (as done by V

g;h

in Step 2).

(Note that by the modi�cation of S there is no need to perform Steps 1 and 1' of V

g;h

.)

2. If j = 1, the cheating prover answers the simulator with the veri�er's �xed initiation message

for session i (as done by V

g;h

in Step 3).

24

3. If j > 1, the cheating prover determines b

i;j

= g(i; ip(q)) (as done by V

g;h

in Step 4).

4. If bp(q) is the �

th

distinct block-pre�x resulting from the simulator's queries so far and if, in

addition, i equals �, then the cheating prover operates as follows:

(a) If b

i;j

= 0, then the cheating prover answers the simulator with ABORT.

Motivating discussion for substeps b and c: The cheating prover has now reached a point

in the schedule in which it is supposed to feed the simulator with v

(i)

j

. To do so, it �rst forwards

p

(i)

j�1

to the honest veri�er V (x; r), and only then feeds the simulator with the veri�er's answer

v

(i)

j

(as if it were the answer given by V

g;h

(r)

). We stress the following two points: (1) The

cheating prover cannot forward more than one p

(i)

j�1

message to V (since P

�

and V engage in an

actual execution of the protocol hP; V i). (2) The cheating prover will wait and forward p

(i)

j�1

to

the veri�er only when v

(i)

j

is the next scheduled message.

(b) If b

i;j

= 1, and the cheating prover has only sent j�2 messages to the actual veri�er, the

cheating-prover forwards p

(i)

j�1

to the veri�er, and feeds the simulator with the veri�er's

response (i.e., which is of the form v

(i)

j

).

19

(We comment that by our conventions regarding the simulator, it cannot be the case that the

cheating prover has sent less than j�2 prover messages to the actual veri�er. The pre�xes of

the current query dictate j�2 sequences of prover messages with distinct lengths, so that none

of these sequences was answered with ABORT. In particular, the last message of each one of these

sequences was already forwarded to the veri�er.)

(c) If b

i;j

= 1, and the cheating prover has already sent j�1 messages (or more) to the actual

veri�er then it retrieves the (j�1)

st

answer it has received and feeds it to the simulator.

(We comment that this makes sense provided that the simulator never makes two queries with

the same block-pre�x and the same number of prover messages, but with a di�erent sequence of

such messages. However, for j � 2 it may be the case that a previous query regarding the same

block-pre�x had a di�erent p

(i)

j�1

message. This is the case in which the cheating prover may fail

to conduct Step 4c (see further discussion below).)

5. If either bp(q) is NOT the �

th

distinct block-pre�x resulting from the queries so far, or if i is

NOT equal to �, the prover emulates V

g;h

in the obvious manner (i.e., as in Step 4 of V

g;h

):

(a) If b

i;j

= 0, then the cheating prover answers the simulator with ABORT.

(b) If b

i;j

= 1, then the cheating prover determines r

i

= h(i; bp(q)), and then answers the

simulator with V (x; r

i

; p

(i)

1

; : : : ; p

(i)

j�1

), where all notations are as above.

On the e�ciency of the cheating prover: Notice that the strategy of the cheating prover

can be implemented in polynomial-time (that is, given that the simulator's running time, t

S

(�), is

polynomial as well). Thus, Lemma 4.5 (and so Theorem 1.1) will also hold if hP; V i is an argument

system (since, in the case of argument systems, the existence of an e�cient P

�

leads to contradiction

of the computational soundness of hP; V i).

19

Note that in the special case that j = 1 (i.e., when the veri�er's response is the �xed initiation message v

(i)

1

), the

cheating prover cannot really forward p

(i)

j�1

to the honest veri�er (since no such message exists). Still, since v

(i)

1

is

a �xed initiation message, the cheating prover can produce v

(i)

1

without actually having to interact with the honest

veri�er (as it indeed does in Step 2 of the cheating prover strategy).

25

The cheating prover may "do nonsense" in Step 4c: The cheating prover is hoping to

convince an honest veri�er by focusing on the �

th

session in recursive block number `

(bp

�

)

, where

bp

�

denotes the �

th

distinct block-pre�x in the simulator's execution. Prover messages in session

(`

(bp

�

)

; �) are received from the (multi-session) simulator and are forwarded to the (single-session)

veri�er. The honest veri�er's answers are then fed back to the simulator as if they were answers

given by V

g;h

(r)

(de�ned below). For the cheating prover to succeed in convincing the honest veri�er

the following two conditions must be satis�ed: (1) Session (`

(bp

�

)

; �) is eventually accepted by V

g;h

(r)

.

(2) The cheating prover never "does nonsense" in Step 4c during its execution. Let us clarify the

meaning of this "nonsense".

One main problem that the cheating prover is facing while conducting Step 4c emerges from the

following fact: Whereas the black-box simulator is allowed to \rewind" V

g;h

(r)

(impersonated by the

cheating prover) and attempt di�erent execution pre�xes before proceeding with the interaction

of a session, the prover cannot do so while interacting with the actual veri�er. In particular, the

cheating prover may reach Step 4c with a p

(�)

j�1

message that is di�erent from the p

(�)

j�1

message

that was previously forwarded to the honest veri�er (in Step 4b). Given that the veri�er's answer

to the current p

(�)

j�1

message is most likely to be di�erent than the answer which was given to the

\previous" p

(�)

j�1

message, by answering (in Step 4c) in the same way as before, the prover action

"makes no sense".

20

We stress that, at this point in its execution, the cheating prover might as well have stopped

with some predetermined "failure" message (rather than "doing nonsense"). However, for simplicity

of presentation, it is more convenient for us to let the cheating prover "do nonsense".

The punchline of the analysis is that with noticeable probability (over choices of (�; g; h)), there

exists a choice of (�; �) so that the above \bad" event will not occur for session (`

(bp

�

)

; �). That is,

using the fact that the success of a \rewinding" also depends on the output of g (which determines

whether and when sessions are aborted) we show that, with non-negligible probability, Step 4c is

never reached with two di�erent p

(�)

j�1

messages. Speci�cally, for every j 2 f2; : : : ; k+1g, once a

p

(�)

j�1

message is forwarded to the veri�er (in Step 4b), all subsequent p

(�)

j�1

messages are either equal

to the forwarded message or are answered with ABORT (here we assume that session (`

(bp

�

)

; �) is

eventually accepted by V

g;h

(r)

, and every p

(�)

j�1

message is forwarded to the veri�er at least once).

De�ning h

(r)

(mentioned above): Let (�; g; h) and (�; �) be the initial choices made by the

cheating prover, let bp

�

be the �

th

block-pre�x appearing in exec

x

(�; g; h), and suppose that the

honest veri�er uses coins r. Then, the function h

(r)

= h

(r;�;g;h;�;�)

is de�ned to be uniformly

distributed among the functions h

0

which satisfy the following conditions: The value of h

0

when

applied on (�; bp

�

) equals r, whereas for (�

0

; �

0

) 6= (�; �) the value of h

0

when applied on (�

0

; bp

�

0

)

equals the value of h on this pre�x. (The set of such functions h

0

is not empty due to the hypothesis

that the functions are selected in a family of t

S

(n)-wise independent hash functions.) We note that

replacing h by h

(r)

does not e�ect Step 5 of the cheating prover, and that the cheating prover does

not know h

(r)

. In particular, whenever the honest veri�er V uses coins r, one may think of the

20

We stress that the cheating prover does not know the random coins of the honest veri�er, and so it cannot compute

the veri�er's answers by himself. In addition, since P

�

and V are engaging in an actual execution of the speci�ed

protocol hP; V i (in which every message is sent exactly once), the cheating prover cannot forward the \recent" p

(�)

j�1

message to the honest veri�er in order to obtain the corresponding answer (because it has already forwarded the

previous p

(�)

j�1

message to the honest veri�er).

26

cheating prover as if it is answering the simulator's queries with the answers that would have been

given by V

g;h

(r)

.

Claim 5.2 For every value of �; g; � and �, if h and r are uniformly distributed then so is h

(r)

.

Proof Sketch: Fix some simulator coins � 2 f0; 1g

�

, g 2 G, block-pre�x index � 2 f1; : : : ; t

S

(n)g,

and session index � 2 f1; : : : ; ng. The key for proving Claim 5.2 is to view the process of picking a

function h 2 H as consisting of two stages. The �rst stage is an iterative process in which up to

t

S

(n) di�erent arguments are adversarially chosen, and for each such argument the value of h on this

argument is uniformly selected in its range. In the second stage, a function h is chosen uniformly

from all h's in H under the constraints that are introduced in the �rst stage. The iterative process

in which the arguments are chosen (that is, the �rst stage above) corresponds the simulator's choice

of the various block-pre�xes bp (along with the indices i), on which h is applied.

At �rst glance, it seems obvious that the function h

(r)

, which is uniformly distributed amongst

all functions that are de�ned to be equal to h on all inputs (except for the input (�; bp

�

) on which it

equals r) is uniformly distributed in H. Taking a closer look, however, one realizes that a rigorous

proof for the above claim is more complex than one may initially think, since it is not even clear

that an h that is de�ned by the above process actually belongs to the family H.

The main di�culty in proving the above lies in the fact that the simulator's queries may \adap-

tively\ depend on previous answers it has received (which, in turn, may depend on previous out-

comes of h). The key obervation used in order to overcome this di�culty is that for every family

of t

S

(n)-wise independent functions and for every sequence of at most t

S

(n) arguments (and in

particular, for an adaptively chosen sequence), the values of a uniformly chosen function when

applied to the arguments in the sequence are uniformly and independently distributed. Thus, as

long as the values assigned to the function in the �rst stage of the above process are uniformly and

independently distributed (which is indeed the case, even if we constraint one output to be equal

to r), the process will yield a uniformly distributed function from H.

5.2 The success probability of the cheating prover

We start by introducing two important notions that will play a central role in the analysis of the

success probability of the cheating prover.

5.2.1 Grouping queries according to their iteration-pre�xes

In the sequel, it will be convenient to group the queries of the simulator into di�erent classes based

on di�erent iteration-pre�xes. (Recall that the iteration-pre�x of a query q (satisfying �

sn

(q)=(`; i)

and �

msg

(q)=j>1) is the pre�x of q that ends with the (j�1)

st

prover message in session (`; n).).

Grouping by iteration-pre�xes particularly makes sense in the case that two queries are of the

same length (see discussion below). Nevertheless, by De�nition 4.3, two queries may have the same

iteration-pre�x even if they are of di�erent lengths (see below).

De�nition 5.3 (ip-di�erent queries) Two queries, q

1

and q

2

(of possibly di�erent lengths), are

said to be ip-di�erent, if and only if they have di�erent iteration-pre�xes (that is, ip(q

1

) 6= ip(q

2

)).

By De�nition 4.3, if two queries, q

1

and q

2

, satisfy ip(q

1

) = ip(q

2

), then the following two conditions

must hold: (1) �

sn

(q

1

) = (`; i

1

), �

sn

(q

2

) = (`; i

2

) and; (2) �

msg

(q

1

) = �

msg

(q

2

). However, it is not

necessarily true that i

1

= i

2

. In particular, it may very well be the case that q

1

; q

2

have di�erent

lengths (i.e., i

1

6= i

2

) but are not ip-di�erent (note that if i

1

= i

2

then q

1

and q

2

are of equal

27

length). Still, even if two queries are of the same length and have the same iteration-pre�x, it is

not necessarily true that they are equal, as they may be di�erent at some message which occurs

after their iteration-pre�xes.

Motivating De�nition 5.3: Recall that a necessary condition for the success of the cheating

prover is that for every j, once a p

(�)

j�1

message has been forwarded to the veri�er (in Step 4b), all

subsequent p

(�)

j�1

messages (that are not answered with ABORT) are equal to the forwarded message.

In order to satisfy the above condition it is su�cient to require that the cheating prover never

reaches Steps 4b and 4c with two ip-di�erent queries of equal length. The reason for this is that if

two queries of the same length have the same iteration-pre�x, then they contain the same sequence

of prover messages for the corresponding session (since all such messages are contained in the

iteration-pre�x), and so they agree on their p

(�)

j�1

message. In particular, once a p

(�)

j�1

message has

been forwarded to the veri�er (in Step 4b), all subsequent queries that reach Step 4c and are of

the same lenght will have the same p

(�)

j�1

messages as the �rst such query (since they have the same

iteration-pre�x).

In light of the above discussion, it is only natural to require that the number of ip-di�erent

queries that reach Step 4c of the cheating prover is exactly one (as, in such a case, the above

necessary condition is indeed sati�ed).

21

Jumping ahead, we comment that the smaller is the

number of ip-di�erent queries that correspond to block-pre�x bp

�

, the smaller is the probability

that more than one ip-di�erent query reaches Step 4c. The reason for this lies in the fact that

the number of ip-di�erent queries that correspond to block-pre�x bp

�

is equal to the number of

di�erent iteration-pre�xes that correspond to bp

�

. In particular, the smaller is the number of such

iteration-pre�xes, the smaller is the probability that g will evaluate to 1 on more than a single

iteration-pre�x (thus reaching Step 4c with more than one ip-di�erent query).

5.2.2 Useful block-pre�xes

The probability that the cheating prover makes the honest veri�er accept will be lower bounded by

the probability that the �

th

distinct block-pre�x in exec

x

(�; g; h) is �-useful (in the sense hinted

above and de�ned next):

De�nition 5.4 (Useful block-pre�x) A speci�c block-pre�x bp = (b

1

; a

1

; : : : ; b

; a

), appearing

in exec

x

(�; g; h), is called i-useful if it satis�es the following two conditions:

1. For every j2f2; ::; k+1g, the number of ip-di�erent queries q in exec

x

(�; g; h) that correspond

to block-pre�x bp and satisfy �

sn

(q)=(`

(bp)

; i), �

msg

(q)=j, and g(i; ip(q))=1, is exactly one.

2. The (only) query q in exec

x

(�; g; h) that corresponds to block-pre�x bp and that satis�es

�

sn

(q) = (`

(bp)

; i), �

msg

(q) = k+1, and g(i; ip(q)) = 1, is answered with ACCEPT by V

g;h

.

If there exists an i 2 f1; : : : ; ng, so that a block-pre�x is i-useful, then this block-pre�x is called

useful.

Condition 1 in De�nition 5.4 states that for every �xed value of j there exists exactly one iteration-

pre�x, ip, that corresponds to queries of the block-pre�x bp and the the j

th

message so that g(i; ip)

evaluates to 1. Condition 2 asserts that the last veri�er message in the i

th

main session of recursive

block number ` = `

(bp)

is equal to ACCEPT. It follows that if the cheating prover happens to select

21

In order to ensure the cheating prover's success, the above requirement should be augmented by the condition

that session (`

(bp

�

)

; �) is accepted by V

g;h

(r)

.

28

(�; g; h; �; �) so that block-pre�x bp

�

(i.e., the �

th

distinct block-pre�x in exec

x

(�; g; h

(r)

)) is �-

useful, then it convinces V (x; r); the reason being that (by Condition 2) the last message in session

(`

(bp

�

)

; �) is answered with ACCEPT,

22

and that (by Condition 1) the emulation does not get into

trouble in Step 4c of the cheating prover (to see this, notice that each prover message in session

(`

(bp

�

)

; �) will end up reaching Step 4c only once).

Let hP

�

; V i(x) = hP

�

(�; g; h; �; �); V (r)i(x) denote the random variable representing the (local)

output of the honest veri�er V when interacting with the cheating prover P

�

on common input

x, where �; g; h; �; � are the initial random choices made by the cheating prover P

�

, and r is the

randomness used by the honest veri�er V . Adopting this notation, we will say that the cheating

prover P

�

= P

�

(x; �; g; h; �; �) has convinced the honest veri�er V = V (x; r) if hP

�

; V i(x) = ACCEPT.

With these notations, we are ready to formalize the above discussion.

Claim 5.5 If the cheating prover happens to select (�; g; h; �; �) so that the �

th

distinct block-

pre�x in exec

x

(�; g; h

(r)

) is �-useful, then the cheating prover convinces V (x; r) (i.e., hP

�

; V i(x)=

ACCEPT).

Proof: Let us �x x 2 f0; 1g

n

, � 2 f0; 1g

�

, g 2 G, h 2 H, r 2 f1; : : : ; �

V

(n)g, � 2 f1; : : : ; ng,

and � 2 f1; : : : ; t

S

(n)g. We show that if the �

th

distinct block-pre�x in exec

x

(�; g; h

(r)

) is �-useful,

then the cheating prover P

�

(x; �; g; h; �; �) convinces the honest veri�er V (x; r).

By de�nition of the cheating-prover, the prover messages that are actually forwarded to the hon-

est veri�er (in Step 4b) correspond to session (`

(bp

�

)

; �). Speci�cally, messages that are forwarded by

the cheating prover are of the form p

(�)

j�1

, and correspond to queries q, that satisfy �

sn

(q) = (`

(bp

�

)

; �),

�

msg

(q) = j and g(�; ip(q)) = 1. Since the �

th

distinct block-pre�x in exec

x

(�; g; h

(r)

) is �-useful,

we have that for every j 2 f2; : : : ; k+1g, there is exactly one query q that satis�es the above condi-

tions. Thus, for every j 2 f2; : : : ; k+1g, the cheating prover never reaches Step 4c with two di�erent

p

(�)

j�1

messages. Here we use the fact that if two queries of the same length are not ip-di�erent (i.e.,

have the same iteration-pre�x) then the answers given by V

g;h

(r)

to these queries are identical (see

discussion above). This in particular means that P

�

is answering the simulator's queries with the

answers that would have been given by V

g;h

(r)

itself. (Put in other words, whenever the �

th

distinct

block-pre�x in exec

x

(�; g; h

(r)

) is �-useful, the emulation does not "get into trouble" in Step 4c of

the cheating prover.)

At this point, we have that the cheating prover never fails to perform Step 4c, and so the

interaction that it is conducting with V (x; r) reaches \safely" the (k+1)

st

veri�er message in the

protocol. To complete the proof we have to show that at the end of the interaction with the cheating-

prover, V (x; r) outputs ACCEPT. This is true since, by Condition 2 of De�nition 5.4, the query q,

that corresponds to block-pre�x bp

�

, satis�es �

sn

(q) = (`

(bp

�

)

; �), �

msg

(q) = j and g(�; ip(q)) = 1,

is answered with ACCEPT. Here we use the fact that V (x; r) behaves exactly as V

g;h

(r)

behaves on

queries that correspond to the �

th

distinct block-pre�x in exec

x

(�; g; h

(r)

).

5.2.3 Reduction to rareness of legal transcripts without useful block-pre�xes

The following lemma (Lemma 5.6) establishes the connection between the success probability of the

simulator and the success probability of the cheating-prover. Loosely speaking, the lemma asserts

that if S outputs a legal transcript with non-negligible probability, then the cheating prover will

22

Notice that V (x; r) behaves exactly as V

g;h

(r)

behaves on queries that correspond to the �

th

distinct iteration-

pre�x in exec

x

(�; g; h

(r)

).

29

succeed in convincing the honest veri�er with non-negligible probability. Since this is in contradic-

tion to the computational soundness of the proof system, we have that Lemma 5.6 actually implies

the correctness of Lemma 4.5 (recall that the contradiction hypothesis of Lemma 4.5 is that the

probability that the simulator outputs a legal transcript is non-negligible).

Lemma 5.6 Suppose that Pr

�;g;h

[(�; g; h) 2 AC] > 1=p(n) for some �xed polynomial p(�). Then the

probability (taken over �; g; h; �; �; r), that hP

�

; V i(x) = ACCEPT is at least

1

2�p(n)�t

S

(n)�n

.

Proof: De�ne a Boolean indicator useful

�;�

(�; g; h) to be true if and only if the �

th

distinct block-

pre�x in exec

x

(�; g; h) is �-useful. Using Claim 5.5, we have:

Pr

�;g;h;�;�;r

[hP

�

; V i(x) = ACCEPT] � Pr

�;g;h;�;�;r

h

useful

�;�

(�; g; h

(r)

)

i

(2)

where the second probability refers to an interaction between S and V

g;h

(r)

. Since for every value

of �; g; � and �, when h and r are uniformly selected the function h

(r)

is uniformly distributed (see

Claim 5.2), we infer that:

Pr

�;g;h;�;�;r

h

useful

�;�

(�; g; h

(r)

)

i

= Pr

�;g;h

0

;�;�

�

useful

�;�

(�; g; h

0

)

�

(3)

On the other hand, since � and � are distributed independently of (�; g; h), we have:

Pr

�;g;h;�;�

[useful

�;�

(�; g; h)] =

t

S

(n)

X

d=1

n

X

i=1

Pr

�;g;h;�;�

[useful

d;i

(�; g; h) & (� = d & � = i)]

=

t

S

(n)

X

d=1

n

X

i=1

Pr

�;g;h

[useful

d;i

(�; g; h)] � Pr

�;�

[� = d & � = i]

=

t

S

(n)

X

d=1

n

X

i=1

Pr

�;g;h

[useful

d;i

(�; g; h)] �

1

t

S

(n) � n

� Pr

�;g;h

[9d; i s.t. useful

d;i

(�; g; h)] �

1

t

S

(n) � n

(4)

where t

S

(n) is the bound used by the cheating prover (for the number of distinct block-pre�xes in

exec

x

(�; g; h)). Combining Eq. (2), (3), (4) we get:

Pr

�;g;h;�;�;r

[hP

�

; V i(x) = ACCEPT] � Pr

�;g;h

[9d; i s.t. useful

d;i

(�; g; h)] �

1

t

S

(n) � n

(5)

Recall that by our hypothesis, Pr[(�; g; h) 2 AC] > 1=p(n) for some �xed polynomial p(�). We can

thus rewrite and lower bound the value of Pr

�;g;h

[9d; i s.t. useful

d;i

(�; g; h)] in the following way:

Pr

h

9d; i s.t. useful

d;i

(�; g; h)

i

= 1� Pr

h

8d; i :useful

d;i

(�; g; h)

i

= 1� Pr

h

(8d; i :useful

d;i

(�; g; h)) & ((�; g; h)62AC)

i

� Pr

h

(8d; i :useful

d;i

(�; g; h)) & ((�; g; h)2AC)

i

� 1� Pr

h

(�; g; h) 62 AC

i

� Pr

h

(8d; i :useful

d;i

(�; g; h)) & (�; g; h) 2 AC

i

> 1=p(n)� Pr

h

(8d; i :useful

d;i

(�; g; h)) & (�; g; h) 2 AC

i

30

where all the above probabilities are taken over (�; g; h). It follows that in order to show that

Pr

�;g;h;�;�;r

[hP

�

; V i(x) = ACCEPT] >

1

2�p(n)�t

S

(n)�n

, it will be su�cient to prove that for every �xed

polynomial p

0

(�) it holds that:

Pr

�;g;h

[(8d; i :useful

d;i

(�; g; h)) & (�; g; h) 2 AC] < 1=p

0

(n)

Thus, Lemma 5.6 is satis�ed provided that Pr

�;g;h

[8d; i :useful

d;i

(�; g; h) & (�; g; h) 2 AC] is negli-

gible. Consequently, Lemma 5.6 will follow by establishing Lemma 5.7, stated next.

Lemma 5.7 The probability (taken over �; g; h), that for all pairs (d; i) useful

d;i

(�; g; h) does not

hold and that (�; g; h) 2 AC, is negligible. That is, the probability that exec

x

(�; g; h) does not

contain a useful block-pre�x and S outputs a legal transcript is negligible.

This completes the proof of Lemma 5.6. The rest of this section is devoted to proving Lemma 5.7.

5.3 Proof of Lemma 5.7 (existence of useful block-pre�xes in legal transcripts)

The proof of Lemma 5.7 will proceed as follows. We �rst de�ne a special kind of block-pre�xes,

called potentially-useful block-pre�xes. Loosely speaking, these are block-pre�xes in which the sim-

ulator does not make too many \rewinding" attempts (each \rewinding" corresponds to a di�erent

iteration-pre�x). Intuitively, the larger the number of \rewindings" is, the smaller is the probability

that a speci�c block-pre�x is useful. A block-pre�x with a small number of \rewindings" is thus

more likely to cause its block-pre�x to be useful. Thus our basic approach will be to show that:

1. In every \successful" execution (i.e., producing a legal transcript), the simulator generates a

potentially-useful block-pre�x. This is proved by demonstrating, based on the structure of

the schedule, that if no potentially-useful block-pre�x exists, then the simulation must take

super-polynomial time.

2. Any potentially-useful block-pre�x is in fact useful with considerable probability. The argu-

ment that demonstrates this claim proceeds basically as follows. Consider a speci�c block-

pre�x bp, let ` = `

(bp)

, and focus on a speci�c instance of session (`; i) (that is, the speci�c

instance of session (`; i) that corresponds to block-pre�x bp). Suppose that block-pre�x bp

is potentially-useful and that the above instance of session (`; i) happens to be accepted by

V

g;h

. This means that there exist k queries with block-pre�x bp that consist of the \main

thread" that leads to acceptance (i.e., all queries that were not answered with ABORT). Recall

that the decision to abort a session (`; i) is made by applying the function g to i and the

iteration-pre�x of the corresponding query. Thus, if there are only few di�erent iteration-

pre�xes that correspond to block-pre�x bp (which, as we said, is potentially-useful), then

there is considerable probability that all the queries having block-pre�x bp, but which do

not belong to that \main thread", will be answered with ABORT (that is, g will evaluate to 0

on the corresponding input). If this lucky event occurs, then block-pre�x bp will indeed be

useful (recall that for a block-pre�x to be useful we require that there exists a corresponding

session that is accepted by V

g;h

and satis�es that for every j 2 f2; : : : ; k+1g there is a single

iteration-pre�x that makes g evaluate to 1 at the j

th

message of this session).

Returning to the actual proof, we start by introducing the necessary de�nition (of a potentially-

useful block-pre�x). Recall that, for any g 2 G and h 2 H, the running time of the simulator S

with oracle access to V

g;h

is bounded by t

S

(n). Let c be a constant such that t

S

(n) � n

c

for all

su�ciently large n.

31

De�nition 5.8 (Potentially-useful block-pre�x) A speci�c block-pre�x bp = (b

1

; a

1

; ::; b

; a

),

appearing in exec

x

(�; g; h), is called potentially-useful if it satis�es the following two conditions:

1. The number of ip-di�erent queries that correspond to block-pre�x bp is at most k

c+1

.

2. The execution of the simulator reaches the end of the block that corresponds to block-pre�x bp.

That is, exec

x

(�; g; h) contains a query q, that ends with the (k+1)

st

prover message in the

n

th

main session of recursive block number `

(bp)

(i.e., some p

(`

(bp)

;n)

k+1

message).

We stress that the bound k

c+1

in Condition 1 above refers to the same constant c > 0 that is used

in the time bound t

S

(n) � n

c

. Using De�nition 5.3 (of ip-di�erent queries), we have that a bound

of k

c+1

on the number of ip-di�erent queries that correspond to block-pre�x bp induces an upper

bound on the total number of iteration-pre�xes that correspond to block-pre�x bp. Note that this

is in contrast to the de�nition of a useful block-pre�x (De�nition 5.4), in which we only have a

bound on the number of ip-di�erent queries of a speci�c length (i.e., the number of ip-di�erent

queries that correspond to speci�c message in a speci�c session).

Turning to Condition 2 of De�nition 5.8 we recall that the query q ends with a p

(`

(bp)

;n)

k+1

message

(i.e., the last prover message of recursive block number `

(bp)

). Technically speaking, this means that

q does not actually correspond to block-pre�x bp (since, by de�nition of the recursive schedule, the

answer to query q is a message that does not belong to recursive block number `

(bp)

). Nevertheless,

since before making query q, the simulator has made queries to all pre�xes of q, we are guaranteed

that for every i 2 f1; : : : ; ng and j 2 f1; : : : ; k+1g, the simulator has made a query q

i;j

that is

a pre�x of q, corresponds to block-pre�x bp, and satis�es �

sn

(q) = (`

(bp)

; i) and �

msg

(q) = j. (In

other words, all messages of all sessions in recursive block number `

(bp)

have occurred during the

execution of the simulator.) Furthermore, since the (modi�ed) simulator does not make a query

that is answered with a DEVIATION message (in Step 1' of V

g;h

) and it does make the query q , we

are guaranteed that the partial execution transcript induced by the query q contains the accepting

conversations of at least

n

1=2

4

sessions in recursive block number `

(bp)

. (The latter observation will

be used only at a later stage (while proving Lemma 5.7).)

It is worth noting that whereas the de�nition of a useful block-pre�x refers to the contents

of iteration-pre�xes (induced by the queries) that are sent by the simulator, the de�nition of a

potentially-useful block-pre�x refers only to their quantity (neither to their contents nor to the

e�ect of the application of g on them).

23

It is thus natural that statements referring to potentially-

useful block-pre�xes tend to have a combinatorial
avor. The following lemma is no exception. It

asserts that every \successful" execution of the simulator must contain a potentially-useful block-

pre�x (or, otherwise, the simulator will run in super-polynomial time).

Lemma 5.9 For any (�; g; h) 2 AC

x

, exec

x

(�; g; h) contains a potentially-useful block-pre�x.

5.3.1 Proof of Lemma 5.9 (existence of potentially-useful block-pre�xes)

The proof of Lemma 5.9 is by contradiction. We assume the existence of a triplet (�; g; h) 2 AC

so that every block-pre�x in exec

x

(�; g; h) is not potentially-useful, and show that this implies

that S

V

h

�

(x) made strictly more than n

c

queries (which contradicts the explicit hypothesis that the

running time of S is bounded by n

c

).

23

In particular, whereas the de�nition of a useful block-pre�x refers to the outcome of g on iteration-pre�xes that

correspond to the relevant block-pre�x, the de�nition of a potentially-useful block-pre�x refers only to the number of

ip-di�erent queries that correspond to the block-pre�x (ignoring the outcomes of g on the relevant iteration-pre�xes).

32

The query{and{answer tree: Throughout the proof of Lemma 5.9, we will �x an arbitrary

(�; g; h) 2 AC as above, and study the corresponding exec

x

(�; g; h). A key vehicle in this study is

the notion of a query{and{answer tree introduced in [26] (and also used in [29]).

24

This is a rooted

tree (corresponding to exec

x

(�; g; h)) in which vertices are labeled with veri�er messages and edges

are labeled with prover's messages. The root is labeled with the �xed veri�er message initializing

the �rst session, and has outgoing edges corresponding to the prover's messages initializing this

session. In general, paths down the tree (i.e., from the root to some vertices) correspond to queries.

The query associated with such a path is obtained by concatenating the labeling of the vertices and

edges along the path in the order traversed. We stress that each vertex in the query{and{answer

tree corresponds to a query actually made by the simulator.

The index of the veri�er (resp., prover) message labeling a speci�c vertex (resp., edge) in the

tree is completely determined by the level in which the vertex (resp., edge) lies. That is, all vertices

(resp., edges) in the !

th

level of the tree are labeled with the !

th

veri�er (resp., prover) message

in the schedule (out of a total of n

2

�(k+1) scheduled messages). For example, if ! = n

2

�(k+1)

all vertices (resp., edges) at the !

th

level (which is the lowest possible level in the tree) are labeled

with v

(n;n)

k+1

(resp., p

(n;n)

k+1

). The di�erence between \sibling" vertices in the same level of the tree lies

in the di�erence in the labels of their incoming edges (as induced by the simulator's \rewindings").

Speci�cally, whenever the simulator \rewinds" the interaction to the !

th

veri�er message in the

schedule (i.e., makes a new query that is answered with the !

th

veri�er message), the corresponding

vertex in the tree (which lies at the !

th

level) will have multiple descendants one level down in the

tree (i.e., at the (!+1)

st

level). The edges to each one of these descendants will be labeled with a

di�erent prover message.

25

We stress that the di�erence between these prover messages lies in the

contents of the corresponding message (and not in its index).

By the above discussion, the outdegree of every vertex in the query{and{answer tree corresponds

to the number of \rewindings" that the simulator has made to the relevant point in the schedule

(the order in which the outgoing edges appear in the tree does not necessarily correspond to the

order in which the \rewindings" were actually performed by the simulator). Vertices in which the

simulator does not perform a \rewinding" will thus have a single outgoing edge. In particular, in

case that the simulator follows the prescribed prover strategy P (sending each scheduled message

exactly once), all vertices in the tree will have outdegree one, and the tree will actually consist of

a single path of total length n

2

� (k+1) (ending with an edge that is labeled with a p

(n;n)

k+1

message).

Recall that, by our conventions regarding the simulator, before making a query q the simulator

has made queries to all pre�xes of q. Since every query corresponds to a path down the tree,

we have that every particular path down the query{and{answer tree is developed from the root

downwards (that is, within a speci�c path, a level ! < !

0

vertex is always visited before a level

!

0

vertex). However, we cannot say anything about the order in which di�erent paths in the tree

are developed (for example, we cannot assume that the simulator has made all queries that end at

a level ! vertex before making any other query that ends at a level !

0

> ! vertex, or that it has

visited all vertices of level ! in some speci�c order). To summarize, the only guarantee that we

have about the order in which the query{and{answer tree is developed is implied by the convention

that before making a speci�c query, the simulator has made queries to all relevant pre�xes.

Satis�ed path: A path from one node in the tree to some of its descendants is said to satisfy

session i if the path contains edges (resp., vertices) for each of the messages sent by the prover

24

The query{and{answer tree should not be confused with the tree that is induced by the recursive schedule.

25

In particular, the shape of the query{and{answer tree is completely determined by the contents of prover messages

in exec

x

(�; g; h) (whereas the contents of veri�er answers given by V

g;h

have no e�ect on the shape of the tree).

33

(resp., veri�er) in session i. A path is called satis�ed if it satis�es all sessions for which the veri�er's

�rst message appears along the path. One important example for a satis�ed path is the path that

starts at the root of the query{and{answer tree and ends with an edge that is labeled with a p

(n;n)

k+1

message. This path contains all n

2

� (k+1) messages in the schedule (and so satis�es all n

2

sessions

in the schedule). We stress that the contents of messages (occurring as labels) along a path are

completely irrelevant to the question of whether the path is satis�ed or not. In particular, a path

may be satis�ed even if some (or even all) of the vertices along it are labeled with ABORT.

Recall that, by our conventions, the simulator never makes a query that is answered with the

DEVIATION message. We are thus guaranteed that, for every completed block along a path in

the tree, at least

n

1=2

4

sessions are accepted by V

g;h

. In particular, the vertices corresponding to

messages of these accepted sessions cannot be labeled with ABORT.

Good sub-tree: Consider an arbitrary sub-tree (of the query{and{answer tree) that satis�es the

following two conditions:

1. The sub-tree is rooted at a vertex corresponding to the �rst message of some session so that

this session is the �rst main session of some recursive invocation of the schedule.

2. Each path in the sub-tree is truncated at the last message of the relevant recursive invocation.

The full tree (i.e., the tree rooted at the vertex labeled with the �rst message in the schedule)

is indeed such a tree, but we will need to consider sub-trees which correspond to m sessions in

the recursive schedule construction (i.e., correspond to R

m

). We call such a sub-tree m-good if it

contains a satis�ed path starting at the root of the sub-tree. Since (�; g; h)2AC, we have that the

simulator has indeed produced a \legal" transcript as output. It follows that the full tree contains a

path from the root to a leaf that contains vertices (resp., edges) for each of the messages sent by the

veri�er (resp., prover) in all n

2

sessions of the schedule (as otherwise the transcript S

V

g;h

�

(x) would

have not been legal). In other words, the full tree contains a satis�ed path and is thus n

2

-good.

Note that, by the de�nition of the recursive schedule, two m-good sub-trees are always disjoint.

On the other hand, if m

0

< m, it may be the case that an m

0

-good sub-tree is contained in another

m-good sub-tree. As a matter of fact, since an m-good sub-tree contains all messages of all sessions

in a recursive block corresponding to R

m

, then it must contain at least k disjoint

m�n

k

-good sub-

trees (i.e., that correspond to k the recursive invocations of R
m�n

k

made by R

m

).

The next lemma (which can be viewed as the crux of the proof) states that, if the contradiction

hypothesis of Lemma 5.9 is satis�ed, then the number of disjoint

m�n

k

-good sub-trees that are

contained in an m-good sub-tree is actually considerably larger than k.

Lemma 5.10 Suppose that every block-pre�x that appears in exec

x

(�; g; h) is not potentially-

useful. Then for every m � n, every m-good sub-tree contains at least k

c+1

disjoint

m�n

k

-good

sub-trees.

Denote by W (m) the size of an m-good sub-tree. (That is, W (m) actually represents the work

performed by the simulator on m concurrent sessions in our �xed scheduling.) It follows (from

Lemma 5.10) that any m-good sub-tree must satisfy:

W (m) �

(

1 if m � n

k

c+1

�W

�

m�n

k

�

if m > n

(6)

Since for all but �nitely many n, Eq. (6) solves to W (n

2

) > n

c

(see Section B in the Appendix),

and since every vertex in the query{and{answer tree corresponds to a query actually made by the

34

simulator, it follows that the hypothesis that the simulator runs in time that is bounded by n

c

(and

hence the full n

2

-good tree must have been of size at most n

c

) is contradicted. Thus, Lemma 5.9

will actually follow from Lemma 5.10.

Proof (of Lemma 5.10): Let T be an arbitrary m-good sub-tree of the query{and{answer tree.

Considering the m sessions corresponding to an m-good sub-tree, we focus on the n main sessions

of this level of the recursive construction. Let B

T

denote the recursive block to which the indices

of these n sessions belong. A T -query is a query q whose corresponding path down the query{and{

answer tree ends with a node that belongs to T (recall that every query q appearing in exec

x

(�; g; h)

corresponds to a path down the full tree), and that satis�es �

sn

(q) 2 B

T

.

26

We �rst claim that all

T -queries q in exec

x

(�; g; h) have the same block-pre�x. This block-pre�x corresponds to the path

from the root of the full tree to the root of T , and is denoted by bp

T

.

Fact 5.11 All T -queries in exec

x

(�; g; h) have the same block-pre�x (denoted bp

T

).

Proof: Assume, towards contradiction, that there exist two di�erent T -queries q

1

; q

2

so that

bp(q

1

) 6= bp(q

2

). In particular, bp(q

1

) and bp(q

2

) must di�er in a message that precedes the �rst

message of the �rst main session in B

T

. (Note that if two block-pre�xes are equal in all messages

preceding the �rst message of the �rst session of the relevant block then, by de�nition, they are

equal.

27

) This means that the paths that correspond to q

1

and q

2

split from each other before they

reach the root of T (remember that T is rooted at a node corresponding to the �rst main session of

recursive block B

T

). But this contradicts the fact that both paths that correspond to these queries

end with a node in T , and the fact follows. 2

Using the hypothesis that no block-pre�x in exec

x

(�; g; h) is potentially-useful, we prove:

Claim 5.12 Let T be an m-good sub-tree. Then the number of ip-di�erent queries that correspond

to block-pre�x bp

T

is at least k

c+1

.

Proof: Since all block-pre�xes that appear in exec

x

(�; g; h) are not potentially-useful (by the

hypothesis of Lemma 5.10), this holds as a special case for block-pre�x bp

T

. Let ` = `

(bp

T

)

be the

index of the recursive block that corresponds to block-pre�x bp

T

in exec

x

(�; g; h). Since block-

pre�x bp

T

is not potentially-useful, at least one of the two conditions of De�nition 5.8 is violated.

In other words, one of the following two conditions is satis�ed:

1. The number of ip-di�erent queries that correspond to block-pre�x bp

T

is at least k

c+1

.

2. The execution of the simulator does not reach the end of the block that corresponds to

block-pre�x bp

T

(i.e., there is no query in exec

x

(�; g; h) that ends with a p

(`;n)

k+1

message that

corresponds to block-pre�x bp

T

).

Now, since T is an m-good sub-tree, then it must contain a satis�ed path. Such a path starts at

the root of T and satis�es all sessions whose �rst veri�er message appears along the path. The key

observation is that every satis�ed path that starts at the root of sub-tree T must satisfy all the

26

Note that queries q that satisfy �

sn

(q) 2 B

T

do not necessarily correspond to a path that ends with a node in T

(as exec

x

(�; g; h) may contain a di�erent sub-tree T

0

that satis�es B

T

= B

T

0

). Also note that there exist queries q,

whose corresponding path ends with a node that belongs to T , but satisfy �

sn

(q) 62 B

T

. This is so, since T may also

contain vertices that correspond to messages in sessions which are not main sessions of B

T

(in particular, all sessions

that belong to the lower level recursive blocks that are invoked by block B

T

).

27

Recall that the index of the relevant block is determined by the length of the corresponding block-pre�x

35

main sessions in B

T

(to see this, notice that the �rst message of all main sessions in B

T

will always

appear along such a path), and so it contains all messages of all main session in recursive block

B

T

. In particular, the sub-tree T contains a path that starts at the root of T and ends with an

edge that is labeled with the last prover message in session number (`; n) (i.e., a p

(`;n)

k+1

message).

In other words, the execution of the simulator does reach the end of the block that corresponds to

block-pre�x bp

T

(since, for the above path to exist, the simulator must have made a query that

ends with a p

(`;n)

k+1

message that corresponds to block-pre�x bp

T

), and so Condition 2 above does

not apply. Thus, the only reason that may cause block-pre�x bp

T

not to be potentially-useful is

Condition 1. We conclude that the number of ip-di�erent queries that correspond to block-pre�x

bp

T

is at least k

c+1

, as required. 2

The following claim establishes the connection between the number of ip-di�erent queries that

correspond to block-pre�x bp

T

and the number of

m�n

k

-good sub-trees contained in T . Loosely

speaking, this is achieved based on the following three observations: (1) Two queries are said to

be ip-di�erent if and only if they have di�erent iteration-pre�xes. (2) Every iteration-pre�x is a

block-pre�x of some sub-schedule one level down in the recursive construction (consisting of

m�n

k

sessions). (3) Every such distinct block-pre�x yields a distinct

m�n

k

-good sub-tree.

Claim 5.13 Let T be an m-good sub-tree. Then for every pair of ip-di�erent queries that correspond

to block-pre�x bp

T

, the sub-tree T contains two disjoint

m�n

k

-good sub-trees.

Once Claim 5.13 is proved, we can use it in conjunction with Claim 5.12 to infer that T contains

at least k

c+1

disjoint

m�n

k

-good sub-trees.

Proof: Before we proceed with the proof of Claim 5.13, we introduce the notion of an iteration-su�x

of a query q. This is the su�x of q that starts at the ending point of the query's iteration-pre�x.

A key feature satis�ed by an iteration-su�x of a query is that it contains all the messages of all

sessions belonging to some invocation of the schedule one level down in the recursive construction

(this follows directly from the structure of our �xed schedule).

De�nition 5.14 (Iteration-su�x) The iteration-su�x of a query q (satisfying j = �

msg

(q) > 1),

denoted is(q), is the su�x of q that begins at the ending point of the iteration-pre�x of query q.

That is, for q = (b

1

; a

1

; : : : ; a

t

; b

t

) if ip(q) = (b

1

; a

1

; : : : ; b

��1

; a

�

) then is(q) = (a

�

; b

�+1

; : : : ; a

t

; b

t

).

28

Let q be a query, and let (`; i) = �

sn

(q), j = �

msg

(q). Let P(q) denote the path corresponding to

query q in the query-and-answer tree. Let P

ip

(q) denote the sub-path of P(q) that corresponds

to the iteration-pre�x ip(q) of q, and let P

is

(q) denote the sub-path of P(q) that corresponds to

the iteration-su�x is(q) of q. That is, the sub-path P

ip

(q) starts at the root of the full tree, and

ends at a p

(`;n)

j�1

message, whereas the sub-path P

is

(q) starts at a p

(`;n)

j�1

message and ends at a v

(`;i)

j

message (in particular, path P(q) can be obtained by concatenating P

ip

(q) with P

is

(q)

29

).

Fact 5.15 For every query q 2 exec

x

(�; g; h), the sub-path P

is

(q) is satis�ed. Moreover:

1. The sub-path P

is

(q) satis�es all

m�n

k

sessions of a recursive invocation one level down in the

recursive construction (i.e., corresponding to R
m�n

k

).

2. If q corresponds to block-pre�x bp

T

, then the sub-path P

is

(q) is contained in T .

28

This means that a

�

is of the form p

(`;n)

j�1

, where (`; i)=�

sn

(q) and j=�

msg

(q).

29

To be precise, one should delete from the resulting concatenation one of the two consecutive edges which are

labeled with a

�

= p

(`;n)

j�1

(one edge is the last in P

ip

(q) and the other edge is the �rst in P

is

(q)).

36

Proof: Let (`; i)=�

sn

(q) and j=�

msg

(q). By nature of our �xed scheduling, the vertex in which

sub-path P

is

(q) begins precedes the �rst message of all (nested) sessions in the (j�1)

st

recursive

invocation made by recursive block number ` (i.e., an instance of R
m�n

k

which is invoked by R

m

).

Since query q is answered with a v

(`;i)

j

message, we have that the sub-path P

is

(q) eventually reaches

a vertex labeled with v

(`;i)

j

. In particular, the sub-path P

is

(q) (starting at a p

(`;n)

j�1

edge and ending

at a v

(`;i)

j

vertex) contains the �rst and last messages of each of the above (nested) sessions, and

so contains edges (resp., vertices) for each prover (resp., veri�er) message in these sessions. But

this means (by de�nition) that all these (nested) sessions are satis�ed by P

is

(q). Since the above

(nested) sessions are the only sessions whose �rst message appears along the sub-path P

is

(q), we

have that P

is

(q) is satis�ed. To see that whenever q corresponds to block-pre�x bp

T

the sub-path

P

is

(q) is contained in the sub-tree T , we observe that both its starting point (i.e., a p

(`;n)

j�1

edge)

and its ending point (i.e., a v

(`;i)

j

vertex) are contained in T . 2

Fact 5.16 Let q

1

; q

2

be two ip-di�erent queries. Then P

is

(q

1

) and P

is

(q

2

) are disjoint.

Proof: Let q

1

and q

2

be two ip-di�erent queries, let (`

1

; i

1

) = �

sn

(q

1

); (`

2

; i

2

) = �

sn

(q

2

), and let

j

1

= �

msg

(q

1

); j

2

= �

msg

(q

2

). Recall that queries q

1

and q

2

are said to be ip-di�erent if and only

if they have di�erent iteration-pre�xes. Since q

1

and q

2

are assumed to be ip-di�erent, then so are

iteration-pre�xes ip(q

1

) and ip(q

2

). In particular, the paths P

ip

(q

1

) and P

ip

(q

2

) are di�erent. We

distinguish between the following two cases:

1. Path P

ip

(q

1

) splits from P

ip

(q

2

): In such a case, the ending points of paths P

ip

(q

1

) and

P

ip

(q

2

) must belong to di�erent sub-trees of the query{and{answer tree. Since the starting

point of an iteration-su�x is the ending point of the corresponding iteration-pre�x, we must

have that paths P

is

(q

1

) and P

is

(q

2

) are disjoint.

2. Path P

ip

(q

1

) is a pre�x of path P

ip

(q

2

): That is, both P

ip

(q

1

) and P

ip

(q

2

) reach a v

(`

1

;n)

j

1

�1

vertex, while path P

ip

(q

2

) continues down the tree and reaches a v

(`

2

;n)

j

2

�1

vertex. The key

observation in this case is that either `

1

is strictly smaller than `

2

, or j

1

is strictly smaller

than j

2

. The reason for this is that in case both `

1

= `

2

and j

1

= j

2

hold, iteration-pre�x

ip(q

1

) must be equal to iteration-pre�x ip(q

2

),

30

in contradiction to our hypothesis. Since

path P

is

(q

1

) starts at a p

(`

1

;n)

j

1

�1

vertex and ends with a v

(`

1

;i

1

)

j

1

vertex, and since path P

is

(q

2

)

starts with a p

(`

2

;n)

j

2

�1

vertex, we have that the ending point of path P

is

(q

1

) precedes the starting

point of path P

is

(q

2

) (this is so since if j

1

< j

2

, the p

(`

1

;i

1

)

j

1

message will always precede/equal

the p

(`

2

;n)

j

2

�1

message). In particular, paths P

is

(q

1

) and P

is

(q

2

) are disjoint.

It follows that for every two ip-di�erent queries, q

1

and q

2

, sub-paths P

is

(q

1

) and P

is

(q

2

) are

disjoint, as required. 2

Back to the proof of Claim 5.13, let q

1

and q

2

be two ip-di�erent queries that correspond to block-

pre�x bp

T

(as guaranteed by the hypothesis of Claim 5.13), and let P

is

(q

1

) and P

is

(q

2

) be as above.

Consider the two sub-trees, T

1

and T

2

, of T that are rooted at the starting point of sub-paths

P

is

(q

1

) and P

is

(q

2

) respectively (note that by, Fact 5.15, T

1

and T

2

are indeed sub-trees of T). By

de�nition of our recursive schedule, T

1

and T

2

correspond to

m�n

k

sessions one level down in the

30

That is, unless bp(q

1

) 6= bp(q

2

). But in such a case, paths P

ip

(q

1

) and P

ip

(q

2

) must split from each other (since

they di�er in some message that belongs to their block-pre�x), and we are back to Case 1.

37

recursive construction (i.e., to an instance of R
m�n

k

). Using Fact 5.15 we infer that sub-path P

is

(q

1

)

(resp., P

is

(q

2

)) contains all messages of all sessions in T

1

(resp., T

2

), and so the sub-tree T

1

(resp.,

T

2

), is

m�n

k

-good. In addition, since sub-paths P

is

(q

1

) and P

is

(q

2

) are disjoint (by Fact 5.16) and

since, by de�nition of an

m�n

k

-good tree, two di�erent

m�n

k

-good trees are always disjoint, then T

1

and T

2

(which, being rooted at di�erent vertices, must be di�erent) are also disjoint. It follows

that for every pair of di�erent queries that correspond to block-pre�x bp

T

, the sub-tree T contains

two disjoint

m�n

k

-good sub-trees.

We are �nally ready to establish Lemma 5.10 (using Claims 5.12 and 5.13). By Claim 5.12, we

have that the number of di�erent queries that correspond to block-pre�x bp

T

is at least k

c+1

.

Since (by Claim 5.13), for every pair of di�erent queries that correspond to block-pre�x bp

T

the

sub-tree T contains two disjoint

m�n

k

-good sub-trees, we infer that T contains a total of at least

k

c+1

disjoint

m�n

k

-good sub-trees (corresponding to the (at least) k

c+1

di�erent queries mentioned

above). Lemma 5.10 follows.

5.3.2 Back to the Proof of Lemma 5.7 (existence of useful block-pre�xes)

Once the correctness of Lemma 5.9 is established, we may proceed with the proof of Lemma 5.7.

Let x 2 f0; 1g

n

. We bound from above the probability, taken over the choices of � 2 f0; 1g

�

; g

r

 G

and h

r

 H, that (�; g; h) 2 AC and that for all d 2 f1; : : : ; t

S

(n)g and all i 2 f1; : : : ; ng, the d

th

distinct block-pre�x in exec

x

(�; g; h) is not i-useful. Speci�cally, we would like to show that:

Pr

�;g;h

"

(8d; i :useful

d;i

(�; g; h)) & ((�; g; h) 2 AC)

#

(7)

is negligible. De�ne a Boolean indicator pot�use

d

(�; g; h) to be true if and only if the d

th

distinct

block-pre�x in exec

x

(�; g; h) is potentially-useful. As proved in Lemma 5.9, for any (�; g; h) 2 AC

there exists an index d 2 f1; : : : ; t

S

(n)g, so that the d

th

block-pre�x in exec

x

(�; g; h) is potentially-

useful. In other words, for every (�; g; h) 2 AC, pot�use

d

(�; g; h) holds for some value of d.

Thus, Eq. (7) is upper bounded by:

Pr

�;g;h

2

4

t

S

(n)

_

d=1

pot�use

d

(�; g; h) & (8i2f1; : : : ; ng :useful

d;i

(�; g; h))

3

5

(8)

Consider a speci�c d 2 f1; : : : ; t

S

(n)g so that pot�use

d

(�; g; h) is satis�ed (i.e., the d

th

block pre�x in

exec

x

(�; g; h) is potentially-useful). By Condition 2 in the de�nition of a potentially-useful block-

pre�x (De�nition 5.8), the execution of the simulator reaches the end of the corresponding block in

the schedule. In other words, there exists a query q 2 exec

x

(�; g; h) that ends with the (k + 1)

st

prover message in the n

th

main session of recursive block number `

(bp

d

)

, where bp

d

denotes the

d

th

distinct block-pre�x in exec

x

(�; g; h), and `

(bp

d

)

denotes the index of the recursive block that

corresponds to block-pre�x bp

d

in exec

x

(�; g; h). Since, by our convention and the modi�cation of

the simulator, S never generates a query that is answered with a DEVIATION message, we have that

the partial execution transcript induced by query q must contain the accepting conversations of at

least

n

1=2

4

main sessions in block number `

(bp

d

)

(as otherwise query q would have been answered

with the DEVIATION message in Step 1' of V

g;h

).

38

Let q

(bp

d

)

= q

(bp

d

)

(�; g; h) denote the �rst query in exec

x

(�; g; h) that is as above (i.e., that

ends with the (k + 1)

st

prover message in the n

th

main session of recursive block number `

(bp

d

)

,

where bp

d

denotes the d

th

block-pre�x appearing in exec

x

(�; g; h)).

31

De�ne an additional Boolean

indicator accept

d;i

(�; g; h) to be true if and only if query q

(bp

d

)

contains an accepting conversation

for session (`

(bp

d

)

; i) (that is, no prover message in session (`

(bp

d

)

; i) is answered with ABORT, and

the last veri�er message of this session equals ACCEPT).

32

It follows that for every d 2 f1; : : : ; t

S

(n)g

that satis�es pot�use

d

(�; g; h) (as above), there exists a set S � f1; : : : ; ng of size

n

1=2

4

such that

accept

d;i

(�; g; h) holds for every i 2 S. Thus, Eq. (8) is upper bounded by:

Pr

�;g;h

2

6

6

6

6

4

t

S

(n)

_

d=1

_

S�f1;:::;ng

jSj=

n

1=2

4

�

pot�use

d

(�; g; h) &

�

8i 2 S; :useful

d;i

(�; g; h) & accept

d;i

(�; g; h)

��

3

7

7

7

7

5

(9)

Using the union bound, we upper bound Eq. (9) by:

t

S

(n)

X

d=1

X

S�f1;:::;ng

jSj=

n

1=2

4

Pr

�;g;h

h

pot�use

d

(�; g; h) &

�

8i 2 S; :useful

d;i

(�; g; h) & accept

d;i

(�; g; h)

�i

(10)

The last expression is upper bounded using the following lemma, that bounds the probability that a

speci�c set of di�erent sessions corresponding to the same (in index) potentially-useful block-pre�x

are accepted (at the �rst time that the recursive block to which they belong is completed), but still

do not turn it into a useful block-pre�x. In fact, we prove something stronger:

Lemma 5.17 For every � 2 f0; 1g

�

, every h 2 H, every d 2 f1; : : : ; t

S

(n)g, and every set of

indices S � f1; : : : ; ng, so that jSj > k:

Pr

g

h

pot�use

d

(�; g; h) &

�

8i 2 S; :useful

d;i

(�; g; h) & accept

d;i

(�; g; h)

�i

<

�

n

�

(

1

2

+

1

4k

)

�

jSj

Proof: Let x 2 f0; 1g

�

. Fix some � 2 f0; 1g

�

, h 2 H, d 2 f1; : : : ; t

S

(n)g and a set S � f1; : : : ; ng.

Denote by bp

d

= bp

d

(g) the d

th

distinct block-pre�x in exec

x

(�; h; g), and by `

(bp

d

)

the index of its

corresponding recursive block in the schedule. We bound the probability, taken over the choice of

g

r

 G, that for all i 2 S block-pre�x bp

d

is not i-useful, even though it is potentially-useful and

for all i 2 S the query q

(bp

d

)

contains an accepting conversation for session (`

(bp

d

)

; i).

31

Since the simulator is allowed to feed V

g;h

with di�erent queries of the same length, we have that the execution

of the simulator may reach the end of the corresponding block more than once (and thus, exec

x

(�; g; h) may contain

more than a single query that ends with the (k+1)

st

prover message in the n

th

main session of block number `

(bp

d

)

).

Since each time that the simulator reaches the end of the corresponding block, the above set of accepted sessions may

be di�erent, we are not able to pinpoint a speci�c set of accepted sessions without explicitly specifying to which one

of the above queries we are referring. We solve this problem by explicitly referring to the �rst query that satis�es the

above conditions (note that, in our case, such a query is always guaranteed to exist).

32

Note that the second condition implies the �rst one. Namely, if the last veri�er message of session (`

(bp

d

)

; i)

equals ACCEPT, then no prover message in this session could have been answered with ABORT.

39

A technical problem resolved: In order to prove Lemma 5.17 we need to focus on the d

th

distinct block-pre�x in exec

x

(�; h; g) (denoted by bp

d

) and analyze the behaviour of a uniformly

chosen g when applied to the various iteration-pre�xes that correspond to bp

d

. However, trying to

do so we encounter a technical problem. This problem is caused by the fact that the contents of

block-pre�x bp

d

depends on g.

33

In particular, it does not make sense to analyze the behaviour of a

uniformly chosen g on iteration-pre�xes that correspond to an \undetermined" block-pre�x (since

it is not possible to determine the iteration-pre�xes that correspond to bp

d

when bp

d

itself is not

determined). To overcome the above problem, we rely on the following observations:

1. Whenever �; h and d are �xed, the contents of block-pre�x bp

d

is completely determined by

the output of g on inputs that have occurred before bp

d

has been reached (i.e., has appeared

as a block-pre�x of some query) for the �rst time.

2. All iteration-pre�xes that correspond to block-pre�x bp

d

occur after bp

d

has been reached for

the �rst time.

It is thus possible to carry out the analysis by considering the output of g only on inputs that have

occurred after bp

d

has been determined. That is, �xing �; h and d we distinguish between: (a) the

outputs of g that have occurred before the d

th

distinct block-pre�x in exec

x

(�; g; h) (i.e., bp

d

) has

been reached, and (b) the outputs of g that have occurred after bp

d

has been reached. For every

possible outcome of (a) we will analyze the (probabilistic) behaviour of g only over the outcomes

of (b). (Recall that once (a)'s outcome has been determined, the identities (but not the contents)

of all relevant pre�xes are well de�ned.) Since for every possible outcome of (a) the analysis will

hold, it will in particular hold over all choices of g.

More formally, consider the following (alternative) way of describing a uniformly chosen g 2 G

(at least as far as exec

x

(�; g; h) is concerned). Let g

1

; g

2

be two t

S

(n)-wise independent hash

functions uniformly chosen from G and let �; h; d be as above. We de�ne g

(g

1

;g

2

)

= g

(�;h;d;g

1

;g

2

)

to

be uniformly distributed among the functions g

0

that satisfy the following conditions: the value of

g

0

when applied to an input � that has occurred before bp

d

has been reached (in exec

x

(�; g; h)) is

equal to g

1

(�), whereas the value of g

0

when applied to an input � that has occurred after bp

d

has

been reached is equal to g

2

(�).

Similarly to the proof of Claim 5.2 it can be shown that for every �; h; d as above, if g

1

and g

2

are uniformly distributed then so is g

(g

1

;g

2

)

. In particular:

Pr

g

h

pot�use

d

(�; g; h) &

�

8i 2 S; :useful

d;i

(�; g; h) & accept

d;i

(�; g; h)

�i

= Pr

g

1

;g

2

h

pot�use

d

(�; g

(g

1

;g

2

)

; h) &

�

8i 2 S; :useful

d;i

(�; g

(g

1

;g

2

)

; h) & accept

d;i

(�; g

(g

1

;g

2

)

; h)

�i

By �xing g

1

and then analyzing the behaviour of a uniformly chosen g

2

on the relevant iteration-

pre�xes the above technical problem is resolved. This is due to the following two reasons: (1) For

every choice of �; h; d and for every �xed value of g

1

, the block-pre�x bp

d

is completely determined

(and the corresponding iteration-pre�xes are well de�ned). (2) Once bp

d

has been reached, the

outcome of g

(g

1

;g

2

)

when applied to the relevant iteration-pre�xes is completely determined by the

33

Clearly, the contents of queries that appear in exec

x

(�; g; h) may depend on the choice of the hash function g.

(This is because the simulator may dynamically adapt its queries depending on the outcome of g on iteration-pre�xes

of past queries.) As a consequence, the contents of bp

d

= bp

d

(g) may vary together with the choice of g.

40

choice of g

2

. Thus, all we need to show in order to prove Lemma 5.17 is that for every choice of g

1

,

the value of:

Pr

g

2

h

pot�use

d

(�; g

(g

1

;g

2

)

; h) &

�

8i 2 S; :useful

d;i

(�; g

(g

1

;g

2

)

; h) & accept

d;i

(�; g

(g

1

;g

2

)

; h)

�i

(11)

is upper bounded by (n

�(1=2+1=4k)

)

jSj

.

Back to the actual proof of Lemma 5.17: Consider the block-pre�x bp

d

, as determined by the

choices of �; h; d and g

1

, and focus on the iteration-pre�xes that correspond to bp

d

in exec

x

(�; g; h).

We next analyze the implications of bp

d

being not i-useful, even though it is potentially-useful and

for all i 2 S query q

(bp

d

)

contains an accepting conversation for session (`

(bp

d

)

; i).

Claim 5.18 Let � 2 f0; 1g

�

, g 2 G, h 2 H, d 2 f1; : : : ; t

S

(n)g and S � f1; : : : ; ng. Suppose that

the indicator

�

pot�use

d

(�; g; h) & (8i 2 S;:useful

d;i

(�; g; h) & accept

d;i

(�; g; h))

�

is true. Then:

1. The number of di�erent iteration-pre�xes that correspond to block-pre�x bp

d

is at most k

c+1

.

2. For every j 2 f2; : : : ; k+1g, there exists an iteration-pre�x ip

j

(corresponding to block-

pre�x bp

d

), so that for every i 2 S we have g(i; ip

j

) = 1.

3. For every i 2 S, there exist an (additional) iteration-pre�x ip

(i)

(corresponding to block-

pre�x bp

d

), so that for every j2f2; : : : ; k + 1g, we have ip

(i)

6= ip

j

, and g(i; ip

(i)

) = 1.

In accordance with the discussion above, Claim 5.18 will be invoked with g = g

(g

1

;g

2

)

.

Proof: Loosely speaking, Item (1) follows directly from the hypothesis that block-pre�x bp

d

is

potentially-useful. In order to prove Item (2) we also use the hypothesis that for all i 2 S query

q

(bp

d

)

contains an accepting conversation for session (`

(bp

d

)

; i), and in order to to prove Item (3)

we additionally use the hypothesis that for all i 2 S block-pre�x bp

d

is not i-useful. Details follow.

Proof of Item 1: The hypothesis that block-pre�x bp

d

is potentially-useful (i.e., pot�use

d

(�; g; h)

holds), implies that the number of iteration-pre�xes that correspond to block-pre�x bp

d

is at

most k

c+1

(as otherwise, the number of ip-di�erent queries that correspond to bp

d

would have

been greater than k

c+1

).

Proof of Item 2: Let i 2 S and recall that accept

d;i

(�; g; h) holds. In particular, we have that

query q

(bp

d

)

(i.e., the �rst query in exec

x

(�; g; h) that ends with the (k+1)

st

prover message

in the n

th

main session of recursive block number `

(bp

d

)

) contains an accepting conversation for

session (`

(bp

d

)

; i). That is, no prover message in session (`

(bp

d

)

; i) is answered with ABORT, and

the last veri�er message of this session equals ACCEPT. Since by our conventions regarding

the simulator, before making query q

(bp

d

)

the simulator has made queries to all relevant

pre�xes, then it must be the case that all pre�xes of query q

(bp

d

)

have previously occurred as

queries in exec

x

(�; g; h). In particular, for every i 2 S and for every j 2 f2; : : : ; k + 1g, the

execution of the simulator must contain a query q

i;j

that is a pre�x of q

(bp

d

)

and that satis�es

bp(q

i;j

) = bp

d

, �

sn

(q

i;j

)=(`

(bp

d

)

; i), �

msg

(q

i;j

)=j, and g(i; ip(q

i;j

)) = 1. (If g(i; ip(q

i;j

)) would

have been equal to 0, query q

(bp

d

)

would have contained a prover message in session (`

(bp

d

)

; i)

that is answered with ABORT, in contradiction to the fact that accept

d;i

(�; g; h) holds.) Since

41

for every j 2 f2; : : : ; k+1g and for every i

1

; i

2

2 S we have that ip(q

i

1

;j

) = ip(q

i

2

;j

) (as queries

q

i;j

are all pre�xes of q

`

and jip(q

i

1

;j

)j = jip(q

i

2

;j

)j), we can set ip

j

= ip(q

i;j

). It follows that

for every j 2 f2; : : : ; k + 1g, iteration-pre�x ip

j

corresponds to block-pre�x bp

d

(as queries

q

i;j

all have block-pre�x bp

d

), and for every i 2 S we have that g(i; ip

j

) = 1.

Proof of Item 3: Let i 2 S and recall that in addition to the fact that accept

d;i

(�; g; h) holds, we

have that useful

d;i

(�; g; h) does not hold. Notice that the only reason for which useful

d;i

(�; g; h)

can be false (i.e., the d

th

block-pre�x is not i-useful), is that Condition 1 in De�nition 5.4

is violated by exec

x

(�; g; h). (Recall that accept

d;i

(�; g; h) holds, and so Condition 2 in

De�nition 5.4 is indeed satis�ed by query q

i;k+1

(as de�ned above): This query corresponds

to block-pre�x bp

d

, satis�es �

sn

(q

i;k+1

) = (`

(bp

d

)

; i), �

msg

(q

i;k+1

) = k + 1, g(i; ip(q

i;k+1

)) = 1,

and is answered with ACCEPT.)

For Condition 1 in De�nition 5.4 to be violated, there must exists a j 2 f2; : : : ; k+1g, with two

ip-di�erent queries, q

1

and q

2

, that correspond to block-pre�x bp

d

, satisfy �

sn

(q

1

)=�

sn

(q

2

)=

(`

(bp

d

)

; i), �

msg

(q

1

) = �

msg

(q

2

) = j, and g(i; ip(q

1

)) = g(i; ip(q

2

)) = 1. Since, by de�nition,

two queries are considered ip-di�erent only if they di�er in their iteration-pre�xes, we have

that there exist two di�erent iteration-pre�xes ip(q

1

) and ip(q

2

) (of the same length) that

correspond to block-pre�x bp

d

and satisfy g(i; ip(q

1

)) = g(i; ip(q

2

)) = 1. Since iteration-

pre�xes ip

2

; : : : ; ip

k+1

(from Item 2 above) are all of distinct length, and since the only

iteration-pre�x in ip

2

; : : : ; ip

k+1

that can be equal to either ip(q

1

) or ip(q

2

) is ip

j

(note that

this is the only iteration-pre�x having the same length as ip(q

1

) and ip(q

2

)), then it must

be the case that at least one of ip(q

1

); ip(q

2

) is di�erent from all of ip

2

; : : : ; ip

k+1

(recall

that ip(q

1

) and ip(q

2

) are di�erent, which means that they cannot be both equal to ip

j

). In

particular, for every i 2 S (that satis�es useful

d;i

(�; g; h) & accept

d;i

(�; g; h)), there exists at

least one (extra) iteration-pre�x, ip

(i)

2 fip(q

1

); ip(q

2

)g, that corresponds to block-pre�x bp

d

,

di�ers from ip

j

for every j 2 f2; : : : ; k + 1g, and satis�es g

2

(i; ip

(i)

) = 1.

This completes the proof of Claim 5.18.

Recall that the hash function g

2

is chosen at random from a t

S

(n)-wise independent family. Since

for every pair of di�erent iteration-pre�xes the function g

2

will have di�erent inputs, then g

2

will

have independent outputs when applied to di�erent iteration-pre�xes (since no more than t

S

(n)

queries are made by the simulator). Similarly, for every pair of di�erent i; i

0

2 S, g

2

will have

di�erent input, and thus independent output. Put in other words, all outcomes of g

2

that are

relevant to block-pre�x bp

d

are independent of each other. Since a uniformly chosen g

2

will output

1 with probability n

�1=2k

, we may view every application of g

2

on iteration-pre�xes that correspond

to bp

d

as an independently executed experiment that succeeds with probability n

�1=2k

.

34

Using Claim 5.18:1 (i.e., Item 1 of Claim 5.18), the applications of g

2

which are relevant to

sessions f(`

(bp

d

)

; i)g

i2S

can be viewed as a sequence of at most k

c+1

experiments (corresponding to

at most k

c+1

di�erent iteration-pre�xes). Each of these experiments consists of jSj independent

sub-experiments (corresponding to the di�erent i 2 S), and each sub-experiment succeeds with

probability n

�1=2k

. Claim 5.18:2 now implies that at least k of the above experiments will fully

succeed (that is, all of their sub-experiments will succeed), while Claim 5.18:3 implies that for every

34

We may describe the process of picking g

2

r

 G as the process of independently letting the output of g

2

be equal

to 1 with probability n

�1=2k

(each time a new input is introduced). Note that we will be doing so only for inputs that

occur after block-pre�x bp

d

has been determined (as, in the above case, all inputs for g

2

are iteration-pre�xes that

correspond to block-pre�x bp

d

, and such iteration-pre�xes will occur only after bp

d

has already been determined).

42

i 2 S there exists an additional successful sub-experiment (that is, a sub-experiment of one of the

k

c+1

�k remaining experiments). Using the fact that the probability that a sub-experiment succeeds

is n

�1=2k

, we infer that the probability that an experiment fully succeeds is equal to (n

�1=2k

)

jSj

. In

particular, the probability in Eq. (11) is upper bounded by the probability that the following two

events occur (these events correspond to Claims 5.18:2 and 5.18:3 respectively):

Event 1: In a sequence of (at most k

c+1

) experiments, each succeeding with probability (n

�1=2k

)

jSj

,

there exist k successful experiments. (The success probability corresponds to the probability

that for every i 2 S, we have g

2

(i; ip

j

) = 1 (see Claim 5.18:2).)

Event 2: For every one out of jSj sequences of the remaining (at most k

c+1

�k) sub-experiments,

each succeeding with probability n

�1=2k

, there exists at least one successful experiment. (In this

case, the success probability corresponds to the probability that iteration-pre�x ip

(i)

satis�es

g

2

(i; ip

(i)

)=1 (see Claim 5.18:3).)

For i 2 jSj and j 2 [k

c+1

], let us denote the success of the i

th

sub-experiment in the j

th

experiment

by �

i;j

. By the above discussion for every i; j, the probability that �

i;j

holds is n

�1=2k

(indepen-

dently of other �

i;j

's). We now have that, for Event 1 above to suceed, there must exists a set

of k experiments, K � [k

c+1

], so that for all (i; j) 2 S �K, the event �

i;j

holds. For Event 2 to

suceed, it must be the case that, for every i 2 S, there exist one additional experiment (i.e., some

j 2 [k

c+1

] nK) so that �

i;j

holds. It follows that Eq. (11) is upper bounded by:

X

K�[k

c+1

]

jKj=k

Pr

�

8j 2 K; 8i 2 S s:t: �

i;j

�

� Pr

�

8i 2 S; 9j 2 [k

c+1

] nK s:t: �

i;j

�

=

k

c+1

k

!

�

�

�

n

�

1

2k

�

jSj

�

k

�

�

1�

�

1� n

�

1

2k

�

k

c+1

�k

�

jSj

<

�

k

c+1

�

k

�

�

�

n

�

1

2k

�

jSj

�

k

�

�

k

c+1

� n

�

1

2k

�

jSj

(12)

=

�

k

c+1

�

k+jSj

�

�

n

�

1

2k

�

k�jSj+jSj

=

�

k

c+1

�

k+jSj

�

�

n

�

1

4k

�

jSj

�

n

�

(

1

2

+

1

4k

)

�

jSj

<

�

n

�

(

1

2

+

1

4k

)

�

jSj

(13)

where Eq. (12) holds whenever k

c+1

�k = o(n

1=2k

) (which is satis�ed if k = o(

log n

log log n

)), and Eq. (13)

holds whenever (k

c+1

)

k+jSj

� (n

�1=4k

)

jSj

< 1 (which is satis�ed if both jSj > k and k = o(

log n

log log n

)).

This means that Eq. (11) is upper bounded by (n

�(1=2+1=4k)

)

jSj

, and the proof of Lemma 5.17 is

complete.

Using Lemma 5.17, we upper bound Eq. (10) by

t

S

(n) �

n

n

1=2

4

!

�

�

n

�

(

1

2

+

1

4k

)

�

n

1=2

4

< t

S

(n) �

�

4 � e � n

n

1=2

�

n

1=2

4

�

�

n

�

(

1

2

+

1

4k

)

�

n

1=2

4

= t

S

(n) �

�

4 � e

n

1=4k

�

n

1=2

4

< t

S

(n) � 2

�

n

1=2

4

(14)

43

where Inequality 14 holds whenever 8 � e < n

1=4k

(which holds for k <

log n

4�(3+log e)

). This completes

the proof of Lemma 5.7 (since poly(n) � 2

�
(n

1=2

)

is negligible).

Acknowledgements

We are indebted to Oded Goldreich for his devoted help and technical contribution to this project.

References

[1] N. Alon, L. Babai, and A. Itai A Fast and Simple Randomized Parallel Algorithm for the

Maximal Independent Set Problem. Journal of ALgorithms, 7, pages 567{583, 1986.

[2] B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages

106{115, 2001.

[3] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error in

Computationally Sound Protocols? In 38th FOCS, pages 374{383, 1997.

[4] M. Bellare, S. Micali, and R. Ostrovsky. Perfect zero-knowledge in constant rounds. In

22nd STOC, pages 482{493, 1990.

[5] G. Brassard, D. Chaum and C. Cr�epeau. MinimumDisclosure Proofs of Knowledge. JCSS,

Vol. 37, No. 2, pages 156{189, 1988.

[6] G. Brassard, C. Cr�epeau and M. Yung. Constant-Round Perfect Zero-Knowledge Com-

putationally Convincing Protocols. Theoret. Comput. Sci. , Vol. 84, pp. 23-52, 1991.

[7] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In

32nd STOC, pages 235{244 ,2000.

[8] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge

Requires

~

(log n) Rounds. In 33rd STOC, pages 570{579, 2001.

[9] M.N. Wegman, and J.L. Carter. New Hash Functions and Their Use in Authentication

and Set Equality. JCSS 22, 1981, pages 265{279.

[10] B. Chor, and O. Goldreich On the power of Two-Point Based Sampling. Jour. of Com-

plexity, Vol. 5, 1989, pages 96-106.

[11] I. Damgard. E�cient Concurrent Zero-Knowledge in the Auxiliary String Model. In

EuroCrypt2000, LNCS 1807, pages 418{430, 2000.

[12] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages

409{418, 1998.

[13] C. Dwork, and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing

Constraints. In Crypto98, Springer LNCS 1462 , pages 442{457, 1998.

[14] U. Feige. Alternative Models For Zero-Knowledge Interactive Proofs. Ph.D. thesis, Weiz-

mann Institute of Science, 1990.

44

[15] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In

22nd STOC, pages 416{426, 1990.

[16] O. Goldreich. Foundations of Cryptography - Basic Tools. Cambridge University Press,

2001.

[17] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof

Systems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages 167{189, 1996.

[18] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.

SIAM J. Computing, Vol. 25, No. 1, pages 169{192, 1996.

[19] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity

or All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pp.

691{729, 1991.

[20] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof Systems.

Jour. of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.

[21] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive Proof

Systems. SIAM J. Comput., Vol. 18, No. 1, pp. 186{208, 1989.

[22] S. Hada and T. Tanaka. On the Existence of 3-Round Zero-Knowledge Protocols. In

Crypto98, Springer LNCS 1462, pages 408{423, 1998.

[23] J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom

Generator from any One-Way Function. SIAM Jour. on Computing, Vol. 28 (4), pages

1364{1396, 1999.

[24] A. Jo�e. On a set of Almost Deterministic k-Independent Random Variables. The annals

of Probability, 1974, Vol. 2, No. 1, pages 161-162.

[25] J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-logarithmic

Rounds. In 33rd STOC, pages 560{569, 2001.

[26] J. Kilian, E. Petrank, and C. Racko�. Lower Bounds for Zero-Knowledge on the Internet.

In 39th FOCS, pages 484{492, 1998.

[27] M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology, Vol. 4, pages

151{158, 1991.

[28] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs.

In EuroCrypt99, Springer LNCS 1592, pages 415{431, 1999.

[29] A. Rosen. A note on the round-complexity of Concurrent Zero-Knowledge. In Crypto2000,

Springer LNCS 1880, pages 451{468, 2000.

45

Appendix

A Alternative Description of the Recursive Schedule

The schedule consists of n

2

sessions (each session consists of k+1 prover messages and k+1 veri�er

messages). It is de�ned recursively, where for each m � n

2

, the schedule for sessions i

1

; : : : ; i

m

(denoted R

i

1

;:::;i

m

) proceeds as follows:

1. If m � n, execute sessions i

1

; : : : ; i

m

sequentially until they are all completed;

2. Otherwise, For j = 1; : : : ; k + 1:

(a) For ` = 1; : : : ; n:

i. Send the j

th

veri�er message in session i

`

(i.e., v

(i

`

)

j

);

ii. Send the j

th

prover message in session i

`

(i.e., p

(i

`

)

j

);

(b) If j < k + 1, invoke a recursive copy of R

i

(n+(j�1)�t+1)

;:::;i

(n+j�t)

(where t

def

= b

m�n

k

c);

(Sessions i

(n+(j�1)�t+1)

; : : : ; i

(n+j�t)

are the next t remaining sessions out of i

1

; : : : ; i

m

.)

B Solving the Recursion

Claim B.1 Suppose that Eq. (6) holds. Then for all su�ciently large n, W (n

2

) > n

c

.

Proof: By applying Eq. (6) iteratively log

k

(n� 1) times, we get:

W (n

2

) �

�

k

c+1

�

log

k

(n�1)

�W (n)

�

�

k

c+1

�

log

k

(n�1)

� 1

= (n� 1)

c+1

> n

c

(15)

where Eq. (15) holds for all su�ciently large n. 2

46

