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Abstract. We present a lower bound on the number of rounds re-

quired by Concurrent Zero-Knowledge proofs for languages in NP. It is

shown that in the context of Concurrent Zero-Knowledge, at least eight

rounds of interaction are essential for black-box simulation of non-trivial

proof systems (i.e., systems for languages that are not in BPP). This

improves previously known lower bounds, and rules out several candi-

dates for constant-round Concurrent Zero-Knowledge. In particular, we

investigate the Richardson-Kilian protocol [20] (which is the only proto-

col known to be Concurrent Zero-Knowledge in the vanilla model), and

show that for an apparently natural choice of its main parameter (which

yields a 9-round protocol), the protocol is not likely to be Concurrent

Zero-Knowledge.

1 Introduction

Zero-knowledge proof systems, introduced by Goldwasser, Micali and Rack-

o� [14] are e�cient interactive proofs which have the remarkable property of

yielding nothing beyond the validity of the assertion being proved. The gen-

erality of zero-knowledge proofs has been demonstrated by Goldreich, Micali

and Wigderson [12], who showed that every NP-statement can be proved in

zero-knowledge provided that one-way functions exist [16, 19]. Since then, zero-

knowledge protocols have turned out to be an extremely useful tool in the design

of various cryptographic tasks.

The original setting in which zero-knowledge proofs were investigated con-

sisted of a single prover and veri�er which execute only one instance of the pro-

tocol at a time. A more realistic setting, especially in the time of the internet, is

one which allows the concurrent execution of zero-knowledge protocols. In the

concurrent setting (�rst considered by Dwork, Naor and Sahai [6]), many proto-

cols (sessions) are executed at the same time, involving many veri�ers which may

be talking with the same (or many) provers simultaneously (the so-called paral-

lel composition considered in [11] is a special case). This presents the new risk

of an overall adversary which controls the veri�ers, interleaving the executions

and choosing veri�ers queries based on other partial executions of the protocol.

Since it seems unrealistic for the honest provers to coordinate their action so that



zero-knowledge is preserved, we must assume that in each prover-veri�er pair the

prover acts independently. A zero-knowledge proof is said to be concurrent zero-

knowledge if it remains zero-knowledge even when executed in the concurrent

setting. Recall that in order to prove that a certain protocol is zero-knowledge

it is required to demonstrate that every probabilistic polynomial-time adversary

interacting with the prover can be simulated by a probabilistic polynomial-time

machine (a.k.a. the simulator) which is in solitude. In the concurrent setting, the

simulation task becomes even more complicated, as the adversary may have con-

trol over multiple sessions at the same time, and is thus able to determine their

scheduling (i.e., the order in which the interleaved execution of these sessions

should be conducted).

1.1 Previous Work

Coming up with an e�cient concurrent zero-knowledge protocol for all languages

in NP seems to be a challenging task. Indications on the di�culty of this prob-

lem were already given in [6], where it was argued that for a speci�c recursive

scheduling of n sessions a particular (natural) simulation of a particular 4-round

protocol may require time which is exponential in n. Further evidence on the

di�culty was given by Kilian, Petrank and Racko� [18]. Using the same recur-

sive scheduling as in [6], they were able to prove that for every language outside

BPP there is no 4-round protocol whose concurrent execution is simulatable in

polynomial-time (by a black-box simulator).

Recent works have (successfully) attempted to overcome the above di�cul-

ties by augmenting the communication model with the so-called timing assump-

tion [6, 7] or, alternatively, by using various set-up assumptions (such as the

public-key model [4, 5]).

1

For a while it was not clear whether it is even possi-

ble to come up with a concurrent zero-knowledge protocol (not to mention an

e�cient one) without making any kind of timing or set-up assumptions. It was

therefore a remarkable achievement when Richardson and Kilian [20] proposed

a concurrent zero-knowledge protocol for all languages in NP (in the vanilla

model).

2

Unfortunately, the simulator shown by Richardson-Kilian is polynomial-time

only when a non-constant round version of their protocol is considered. This

leaves a considerable gap between the currently known upper and lower bounds

on the number of rounds required by concurrent zero-knowledge [20, 18]. We

note that narrowing the above gap is not only of theoretical interest but has also

practical consequences. Since the number of rounds is an important resource for

protocols, establishing whether constant-round concurrent zero-knowledge exists

is a well motivated problem.

1

The lower bound of [18] (as well as our own work) applies only in a cleaner model,

in which no timing or set-up assumptions are allowed (the so-called vanilla model).

2

In fact, their solution is a family of protocols where the number of rounds is deter-

mined by a special parameter.



1.2 A closer look at the Richardson-Kilian Protocol

Being the only protocol known to be concurrent zero-knowledge in the vanilla

model, versions of the Richardson-Kilian protocol are natural candidates for

constant-round concurrent zero-knowledge. That is, it is still conceivable that

there exists a (di�erent) polynomial-time simulator for one of the protocol's

constant-round versions.

The Protocol: The Richardson-Kilian (RK for short) protocol [20] consists of

two stages. In the �rst stage, which is independent of the actual common input,

the veri�er commits to k random bit sequences, v

1

; :::; v

k

2 f0; 1g

n

, where n

is the \security" parameter of the protocol and k is a special parameter which

determines the number of rounds. This is followed by k iterations so that in

each iteration the prover commits to a random bit sequence, p

i

, and the veri�er

decommits to the corresponding v

i

. The result of the i

th

iteration is de�ned as

v

i

� p

i

and is known only to the prover. In the second stage, the prover provides

a witness indistinguishable (WI) proof [8] that either the common input is in

the language or that the result of one of the k iterations is the all-zero string

(i.e., v

i

= p

i

for some i). Intuitively, since the latter case is unlikely to happen

in an actual execution of the protocol, the protocol constitutes a proof system

for the language. However, the latter case is the key to the simulation of the

protocol in the concurrent zero-knowledge model: Whenever the simulator may

cause v

i

= p

i

to happen for some i (this is done by the means of rewinding

the veri�er after the value v

i

has been revealed), it can simulate the rest of the

protocol (and speci�cally Stage 2) by merely running the WI proof system with

v

i

(and the prover's coins) as a witness.

The Simulator: The RK protocol was designed to overcome the main di�-

culty encountered whenever many sessions are to be simulated in the concurrent

setting. As observed by Dwork, Naor and Sahai [6], rewinding a speci�c session

in the concurrent setting may result in loss of work done for other sessions, and

cause the simulator to do the same amount of work again. In particular, all sim-

ulation work done for sessions starting after the point to which we rewind may

be lost. Considering a speci�c session of the RK protocol (out of m = poly(n)

concurrent sessions), there must be an iteration (i.e., an i 2 f1; :::; kg) so that at

most (m � 1)=k sessions start in the interval corresponding to the i

th

iteration

(of this speci�c session). So if we try to rewind on the correct i, we will invest

(and so waste) only work proportional to (m�1)=k sessions. The idea is to abort

the rewinding attempt on the i

th

iteration if more than (m � 1)=k sessions are

initiated in the corresponding interval (this will rule out the incorrect i's). The

same reasoning applies recursively (i.e., to the rewinding in these (m� 1)=k ses-

sions). Denoting by W (m) the amount of work invested in m sessions, we obtain

the recursion W (m) = poly(m) �W (

m�1

k

), which solves to W (m) = m

�(log

k

m)

.

Thus, whenever k = n, we getW (m) = m

O(1)

, whereas taking k to be a constant

will cause W (m) to be quasi-polynomial.



1.3 Our First Result

Given the above state of a�airs, one may be tempted to think that a better simu-

lation method would improve the recursion into something of the form W (m) =

O(W (

m�1

k

)). In such a case, taking k to be a constant (greater than 1) would

imply a constant-round protocol whose simulation in the concurrent setting re-

quires polynomial-time (i.e., W (m) = O(W (

m�1

k

)) solves to W (m) = m

O(1)

).

This should hold in particular for k = 2 (which gives a 9-round version of the

RK protocol). However, as we show in the sequel, this is not likely to be the case.

Theorem 1 (informal) : If L is a language such that concurrent executions

of the 9-round version of the RK protocol (i.e., for k = 2) can be black-box

simulated in polynomial-time, then L 2 BPP.

Thus, in general, the RK protocol is unlikely to be simulatable by a recursive

procedure (as above) that satis�es the work recursion W (m) = O(W (

m�1

k

)).

1.4 Our Second Result

The proof of Theorem 1 is obtained by extending the proof of the following

general result.

Theorem 2 : Suppose that (P; V ) is a 7-round proof system for a language L

(i.e., on input x, the number of messages exchanged is at most 7), and that

concurrent executions of P can be simulated in polynomial-time using black-

box simulation. Then L 2 BPP. This holds even if the proof system is only

computationally-sound (with negligible soundness error) and the simulation is

only computationally-indistinguishable (from the actual executions).

In addition to shedding more light on the reasons that make the problem of

constant-round concurrent zero-knowledge so di�cult to solve, Theorem 2 rules

out several constant-round protocols which may have been previously considered

as candidates. These include 5-round zero-knowledge proofs for NP [10], as well

as 6-round perfect zero-knowledge arguments for NP [3].

1.5 Techniques

The proof of Theorem 2 builds on the works of Goldreich and Krawczyk [11] and

Kilian, Petrank and Racko� [18]. It utilizes a �xed scheduling of the concurrent

executions. This scheduling is de�ned recursively and is more sophisticated than

the one proposed by [6] and used by [18]. It also exploits a special property of

the �rst message sent by the veri�er.

Note that since the scheduling considered here is �xed (rather than dynamic),

both Theorems 1 and 2 are actually stronger than stated. Furthermore, our argu-

ment refers to veri�er strategies that never refuse to answer the prover's queries.

Simulating a concurrent interaction in which the veri�er may occasionally refuse

to answer (depending on its coin tosses and on the history of the current and/or

other conversations) seems even more challenging than the simulation task which

is treated in this work. Thus, it is conceivable that one may use the extra power

of the adversary veri�er to prove stronger lower bounds.



1.6 Organization of the Paper

Theorem 2 is proved in Section 2. We then demonstrate (in Section 3) how to

modify the proof so it will work for the 9-round version of the Richardson-Kilian

protocol (i.e., with k = 2). We conclude with Section 4 by discussing additional

issues and recent work.

2 Proof of Theorem 2

In this section we prove that in the context of concurrent zero-knowledge, at least

eight rounds of interaction are essential for black-box simulation of non-trivial

proof systems (i.e., systems for languages that are not in BPP). We note that in

all known protocols, the zero-knowledge feature is demonstrated via a black-box

simulator, and that it is hard to conceive of an alternative (for demonstrating

zero-knowledge).

3

De�nitions: We use the standard de�nitions of interactive proofs [14] and argu-

ments (a.k.a computationally-sound proofs) [2], black-box simulation (allowing

non-uniform, deterministic veri�er strategies, cf. [11, 18]) and concurrent zero-

knowledge (cf. [20, 18]). Furthermore, since we consider a �xed scheduling of ses-

sions, there is no need to use formalism for specifying to which session the next

message of the veri�er belongs. Finally, by (computationally-sound) interactive

proof systems we mean systems in which the soundness error is negligible.

4

Preliminary conventions: We consider protocols in which 8 messages are ex-

changed subject to the following conventions. The �rst message is an initiation

message by the prover

5

, denoted p

1

, which is answered by the veri�er's �rst

message denoted v

1

. The following prover and veri�er messages are denoted

p

2

; v

2

; :::; p

4

; v

4

, where the last message (i.e., v

4

) is a single bit indicating whether

the veri�er has accepted the input (and will not be counted as an actual mes-

sage). Clearly, any 7-round protocol can be modi�ed to �t this form. Next, we

consider black-box simulators which are restricted in several ways (but claim

3

The interesting work of Hada and Tanaka [15] is supposedly an exception; but not

really: They show that such a non-black-box simulation can be conducted if one

makes an assumption of a similar nature (i.e., that for every machine which does

X there exists a machine which does X along with Y). In contrast, starting from a

more standard assumption (such as \it is infeasible to do X"), it is hard to conceive

how one may use non-black-box simulators in places where black-box ones fail.

4

We do not know whether this condition can be relaxed. Whereas we may consider

polynomially-many parallel interactions of a proof system in order to decrease sound-

ness error in interactive proofs (as such may occur anyhow in the concurrent model),

this is not necessarily su�cient in order to decrease the soundness error in the case

of arguments (cf. [1]).

5

Being in control of the schedule, it would be more natural to let the veri�er initiate

each session. However, since the schedule is �xed, we choose to simplify the exposition

by letting the prover send the �rst message of the session.



that each of these restrictions can be easily satis�ed): Firstly, we allow only

simulators running in strict polynomial-time, but allow them to produce output

that deviates from the actual execution by at most a gap of 1=6 (rather than

requiring the deviation to be negligible).

6

(The latter relaxation enables a simple

transformation of any expected polynomial-time simulator into a simulator run-

ning in strict polynomial-time.) Secondly, we assume, without loss of generality

that the simulator never repeats the same query. As usual (cf. [11]), the queries

of the simulator are pre�xes of possible execution transcripts (in the concurrent

setting

7

). Such a pre�x is a sequence of alternating prover and veri�er messages

(which may belong to di�erent sessions as determined by the �xed schedule).

Thirdly, we assume that before making a query q = (a

1

; b

1

; :::; a

t

; b

t

; a

t+1

), where

the a's are prover messages, the simulator makes queries to all relevant pre�xes

(i.e., (a

1

; b

1

; :::; a

i�1

; b

i�1

; a

i

), for every i � t), and indeed has obtained the b

i

's

as answers. Lastly, we assume that before producing output (a

1

; b

1

; :::; a

T

; b

T

),

the simulator makes the query (a

1

; b

1

; :::; a

T

).

2.1 The schedule, aversary veri�ers and decision procedure

The �xed schedule: For each x 2 f0; 1g

n

, we consider the following con-

current scheduling of n sessions all run on common input x. The scheduling is

de�ned recursively, where the scheduling of m sessions (denoted R

m

) proceeds

in 3 phases:

First phase: Each of the �rstm= logm sessions exchanges three messages (i.e.,

p

1

; v

1

; p

2

), this is followed by a recursive application of the scheduling on the

next m= logm sessions.

Second phase: Each of the �rst m= logm sessions exchanges two additional

messages (i.e., v

2

; p

3

), this is followed by a recursive application of the

scheduling on the last m� 2 �

m

logm

sessions.

Third phase: Each of the �rst m= logm sessions exchanges the remaining

messages (i.e.,v

3

,p

4

,v

4

).

The schedule is depicted in Figure 1. We stress that the veri�er typically post-

pones its answer (i.e., v

(i)

j

) to the last prover's message (i.e., p

(i)

j

) till after a

recursive sub-schedule is executed, and that it is crucial that in the �rst phase

each session will �nish exchanging its messages before the next sessions begins

(whereas the order in which the messages are exchanged in the second and third

phases is immaterial).

6

We refer to the deviation gap, as viewed by any polynomial-time distinguisher. Such

a distinguisher is required to decide whether its input consists of a conversation

corresponding to real ececutions of the protocol, or rather to a transcript that was

produced by the simulator. The computational deviation consists of the fraction of

inputs which are accpted by the distinguisher in one case but rejected in the other.

7

Indeed, for sake of clarity, we adopt a redundant representation. Alternatively, one

may consider the subsequence of all prover's messages appearing in such transcripts.
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Fig. 1. The �xed schedule { recursive structure for m sessions.

De�nition 3 (identi�ers of next message): The �xed schedule de�nes a mapping

from partial execution transcripts ending with a prover message to the identi�ers

of the next veri�er message; that is, the session and round number to which the

next veri�er message belongs. (Recall that such partial execution transcripts

correspond to queries of a black-box simulator and so the mapping de�nes the

identi�er of the answer:) For such a query q = (a

1

; b

1

; :::; a

t

; b

t

; a

t+1

), we let

�

sn

(q) 2 f1; :::; ng denote the session to which the next veri�er message belongs,

and by �

msg

(q) 2 f1; :::; 4g its index within the veri�er's messages in this session.

De�nition 4 (initiation-pre�x): The initiation-pre�x ip of a query q is the pre�x

of q ending with the prover's initiation message of session �

sn

(q). More formally,

ip = a

1

; b

1

; :::; a

`

; b

`

; a

`+1

, is the initiation-pre�x of q = (a

1

; b

1

; :::; a

t

; b

t

; a

t+1

) if

a

`+1

is of the form p

(i)

1

for i = �

sn

(q). (Note that �

msg

(q) may be any index in

f1; :::; 4g, and that a

t+1

need not belong to session i.)

De�nition 5 (prover-sequence): The prover-sequence of a query q is the se-

quence of all prover's messages in session �

sn

(q) that appear in the query q. The

length of such a sequence is �

msg

(q) 2 f1; : : : ; 4g. In case the length of the prover-

sequence equals 4, both query q and its prover-sequence are said to be terminating

(otherwise, they are called non-terminating). The prover-sequence is said to cor-



respond to the initiation-pre�x ip of the query q. (Note that all queries having

the same initiation-pre�x agree on the �rst element of their prover-sequence,

since this message is part of the initiation-pre�x.)

We consider what happens when a black-box simulator (for the above schedule)

is given oracle access to a veri�er strategy V

h

de�ned as follows (depending on

a hash function h and the input x).

The veri�er strategy V

h

: On query q = (a

1

; b

1

; :::; a

t

; b

t

; a

t+1

), where the a's

are prover messages (and x is implicit in V

h

), the veri�er answers as follows:

1. First, V

h

checks if the execution transcript given by the query is legal (i.e.,

consistent with V

h

's prior answers), and answers with an error message if the

query is not legal. (In fact this is not necessary since by our convention the

simulator only makes legal queries. From this point on we ignore this case.)

2. More importantly, V

h

checks whether the query contains the transcript of a

session in which the last veri�er message indicates rejecting the input. In case

such a session exists, V

h

refuses to answer (i.e., answers with some special

\refuse" symbol).

3. Next, V

h

determines the initiation-pre�x, denoted a

1

; b

1

; :::; a

`

; b

`

; a

`+1

, of

query q. It also determines i = �

sn

(q), j = �

msg

(q), and the prover-sequence

of query q, denoted p

(i)

1

; :::; p

(i)

j

.

4. Finally, V

h

determines r

i

= h(a

1

; b

1

; :::; a

`

; b

`

; a

`+1

) (as coins to be used by

V ), and answers with the message V (x; r

i

; p

(i)

1

; :::; p

(i)

j

) that would have been

sent by the honest veri�er on common input x, random-pad r

i

, and prover's

messages p

(i)

1

; :::; p

(i)

j

.

Assuming towards the contradiction that a black-box simulator, denoted S, con-

tradicting Theorem 2 exists, we now descibe a probabilistic polynomial-time deci-

sion procedure for L, based on S. Recall that we may assume that S runs in strict

polynomial time: we denote such time bound by t

S

(�). On input x 2 L\ f0; 1g

n

and oracle access to any (probabilistic polynomial-time) V

�

, the simulator S

must output transcipts with distribution having computational deviation of at

most 1=6 from the distribution of transcripts in the actual concurrent executions

of V

�

with P .

A slight modi�cation of the simulator: Before presenting the procedure, we

slightly modify the simulator so that it never makes a query that is refused

by a veri�er V

h

. Note that this condition can be easily checked by the simulator,

and that the modi�cation does not e�ect the simulator's output. From this point

on, when we talk of the simulator (which we continue to denote by S) we mean

the modi�ed one.



Decision procedure for L: On input x 2 f0; 1g

n

, proceed as follows:

1. Uniformly select a function h out of a small family of t

S

(n)-wise independent

hash functions mapping poly(n)-bit long sequences to �

V

(n)-bit sequences,

where �

V

(n) is the number of random bits used by V on an input x 2 f0; 1g

n

.

2. Invoke S on input x providing it black-box access to V

h

(as de�ned above).

That is, the procedure emulates the execution of the oracle machine S on

input x along with emulating the answers of V

h

.

3. Accept if and only if all sessions in the transcript output by S are accepting.

By our hypothesis, the above procedure runs in probabilistic polynomial-time.

We next analyze its performance.

Lemma 6 (performance on yes-instances): For all but �nitely many x 2 L, the

above procedure acccepts x with probability at least 2=3.

Proof Sketch: The key observation is that for uniformly selected h, the behav-

ior of V

h

in actual (concurrent) interactions with P is identical to the behavior of

V in such interactions. The reason is that, in such actual interactions, a randomly

selected h determines uniformly and independently distributed random-pads for

all n sessions. Since with high probability (say at least 5/6), V accepts in all n

concurrent sessions, the same must be true for V

h

, when h is uniformly selected.

Since the simulation deviation of S is at most 1=6, it follows that for every h

the probability that S

V

h

(x) is a transcript in which all sessions accept is lower

bounded by p

h

� 1=6, where p

h

denotes the probability that V

h

accepts x (in all

sessions) when interacting with P . Taking expectation over all possible h's, the

lemma follows.

Lemma 7 (performance on no-instances): For all but �nitely many x 62 L, the

above procedure rejects x with probability at least 2=3.

We can actually prove that for every polynomial p and all but �nitely many

x 62 L, the above procedure accepts x with probability at most 1=p(jxj). As-

suming towards the contradiction that this is not the case, we will construct a

(probabilistic polynomial-time) strategy for a cheating prover that fools the hon-

est veri�er V with success probability at least 1=poly(n) (in contradiction to the

computational-soundness of the proof system). Loosely speaking, the argument

capitalizes on the fact that rewinding of a session requires the simulator to work

on a new simulation sub-problem (one level down in the recursive construction).

New work is required since each di�erent message for the rewinded session forms

an unrelated instance of the simulation sub-problem (by virtue of de�nition of

V

h

). The schedule causes work involved in such rewinding to accumulate to too

much, and so it must be the case that the simulator does not rewind some (full

instance of some) session. In this case the cheating prover may use such a session

in order to fool the veri�er.



2.2 Proof of Lemma 7 (performance on no-instances)

Let us �x an x 2 f0; 1g

n

n L as above.

8

De�ne by AC = AC

x

the set of pairs

(�; h) so that on input x, coins � and oracle access to V

h

, the simulator outputs

a transcript, denoted S

V

h

�

(x), in which all n sessions accept. Recall that our

contradiction assumption is that Pr

�;h

[(�; h) 2 AC] > 1=p(n), for some �xed

polynomial p(�).

The cheating prover: The cheating prover starts by uniformly selecting a pair

(�; h) and hoping that (�; h) is in AC. It next selects uniformly two elements �

and � in f1; :::; q

S

(n)g, where q

S

(n) < t

S

(n) is a bound on the number of queries

made by S on input x 2 f0; 1g

n

. The prover next emulates an execution of

S

V

h

0

�

(x) (where h

0

, which is essentially equivalent to h, will be de�ned below),

while interacting with the honest veri�er V . The prover handles the simulator's

queries as well as the communication with the veri�er as follows: Suppose that

the simulator makes query q = (a

1

; b

1

; :::; a

t

; b

t

; a

t+1

), where the a's are prover

messages.

1. Operating as V

h

, the cheating prover �rst determines the initiation-pre�x,

ip = a

1

; b

1

; :::; a

`

; b

`

; a

`+1

, corresponding to the current query q. (Note that

by our convention and the modi�cation of the simulator there is no need to

perform Steps 1 and 2 of V

h

.)

2. If ip is the �

th

distinct initiation-pre�x resulting from the simulator's queries

so far then the cheating prover operates as follows:

(a) The cheating prover determines i = �

sn

(q), j = �

msg

(q), and the prover-

sequence of q, denoted p

(i)

1

; :::; p

(i)

j

(as done by V

h

in Step 3).

(b) If the query q is non-terminating (i.e., j � 3), and the cheating prover

has only sent j � 1 messages to the actual veri�er then it forwards p

(i)

j

to the veri�er, and feeds the simulator with the veri�er's response (i.e.,

which is of the form v

(i)

j

).

9

(c) If the query q is non-terminating (i.e., j � 3), and the cheating prover

has already sent j messages to the actual veri�er, the prover retrieves

the j

th

message it has received and feeds it to the simulator.

10

8

In a formal proof we need to consider in�nitely many such x's.

9

We comment that by our conventions regarding the simulator, it cannot be the case

that the cheating prover has sent less than j� 1 messages to the actual veri�er: The

pre�xes of the current query dictate j � 1 such messages.

10

We comment that the cheating prover may fail to conduct Step 2c. This will happen

whenever the simulator makes two queries with the same initiation-pre�x and the

same number of prover messages in the corresponding session, but with a di�erent

sequence of such messages. Whereas this will never happen when j = 1 (as once the

initiation-pre�x is �xed then so is the value of p

(i)

1

), it may very well be the case

that for j 2 f2; 3g a previous query regarding initiation-pre�x ip had a di�erent p

(i)

j

message. In such a case the cheating prover will indeed fail. The punchline of the

analysis is that with noticeable probability this will not happen.



(d) Whenever the query q is terminating (i.e., j = 4), the cheating prover

operates as follows:

i. As long as the �

th

terminating query corresponding to the above

initiation-pre�x has not been made, the cheating prover feeds the

simulator with v

(i)

4

= 0 (i.e., session rejected).

ii. Otherwise, the cheating prover operates as in Step 2b (i.e., it for-

wards p

(i)

4

to the veri�er, and feeds the simulator with the veri�er's

response { some v

(i)

4

message).

11

3. If ip is NOT the �

th

distinct initiation-pre�x resulting from the queries so

far then the prover emulates V

h

in the obvious manner (i.e., as in Step 4 of

V

h

): It �rst determines r

i

= h(a

1

; b

1

; :::; a

`

; b

`

; a

`+1

), and then answers with

V (x; r

i

; p

(i)

1

; :::; p

(i)

j

), where all notations are as above.

De�ning h

0

(mentioned above): Let (�; h) and � be the initial choices made by

the cheating prover, and suppose that the honest veri�er uses coins r. Then, the

function h

0

is de�ned to be uniformly distributed among the functions h

00

which

satisfy the following conditions: The value of h

00

on the �

th

initiation-pre�x equals

r, whereas for every �

0

6= �, the value of h

00

on the �

0

th

initiation-pre�x equals

the value of h on this pre�x. (Here we use the hypothesis that the functions

are selected in a family of t

S

(n)-wise independent hash functions. We note that

replacing h by h

0

does not e�ect Step 3 of the cheating prover, and that the

prover does not know h

0

.)

The probability that the cheating prover makes the honest veri�er accept

is lower bounded by the probability that both (�; h

0

) 2 AC and the messages

forwarded by the cheating prover in Step 2 are consistent with an accepting

conversation with V

h

0

. For the latter event to occur, it is necessary that the �

th

distinct initiation-pre�x will be useful (in the sense hinted above and de�ned

now). It is also necessary that � was \successfully" chosen (i.e., the �

th

termi-

nating query which corresponds to the �

th

initiation-pre�x is accepted by V

h

0

).

De�nition 8 (accepting query): A terminating query q = (a

1

; b

1

; :::; a

t

; b

t

; a

t+1

)

(i.e., for which �

msg

(q) = 4) is said to be accepting if V

h

0

(a

1

; b

1

; :::; a

t

; b

t

; a

t+1

)

equals 1 (i.e., session �

sn

(q) is accepted by V

h

0

).

De�nition 9 (useful initiation-pre�x): A speci�c initiation-pre�x ip in an exe-

cution of S

V

h

0

�

(x) is called useful if the following conditions hold:

1. During its execution, S

V

h

0

�

(x) made at least one accepting query which cor-

responds to the initiation-pre�x ip.

11

We note that once the cheating prover arrives to this point, then it either succeds

in the cheating task or completely fails (depending on the veri�er's response). As

a consequence, it is not essential to de�ne the cheating prover's actions from this

point on (as in both cases the algorithm will be terminated).



2. As long as no accepting query corresponding to the initiation-pre�x ip was

made during the execution of S

V

h

0

�

(x), the number of (non-terminating) dif-

ferent prover-sequences that correspond to ip is at most 3, and these prover-

sequences are pre�xes of one another.

12

Otherwise, the pre�x is called unuseful.

The success probability: De�ne a Boolean indicator �(�; h

0

; �) to be true if

and only if the �

th

distinct initiation-pre�x in an execution of S

V

h

0

�

(x) is useful.

De�ne an additional Boolean indicator  (�; h

0

; �; �) to be true if and only if

the �

th

terminating query among all terminating queries that correspond to the

�

th

distinct initiation-pre�x (in an execution of S

V

h

0

�

(x)) is the �rst one to be

accepting. It follows that if the cheating prover happens to select (�; h; �; �) so

that both �(�; h

0

; �) and  (�; h

0

; �; �) hold then it convinces V (x; r); the �rst

reason being that the �

th

such query is answered by an accept message

13

, and

the second reason being that the emulation does not get into trouble (in Steps 2c

and 2d). To see this, notice that all �rst (� � 1) queries having the �

th

distinct

initiation-pre�x satisfy exactly one of the following conditions:

1. They have non-terminating prover-sequences that are pre�xes of one another

(which implies that the cheating prover never has to forward such queries to

the veri�er twice).

2. They have terminating prover-sequences which should be rejected (recall

that as long as the �

th

terminating query has not been asked by S

V

h

0

�

(x), the

cheating prover automatically rejects any terminating query).

Thus, the probability that when selecting (�; h; �; �) the cheating prover con-

vinces V (x; r) is at least

Pr [ (�; h

0

; �; �) & �(�; h

0

; �)]

= Pr [ (�; h

0

; �; �) j �(�; h

0

; �)] � Pr [�(�; h

0

; �)]

� Pr [ (�; h

0

; �; �) j �(�; h

0

; �)] � Pr [(�; h

0

) 2 AC & �(�; h

0

; �)] (1)

Note that if the �

th

distinct initiation-pre�x is useful, and � is uniformly (and

independently) selected in f1; :::; q

S

(n)g, the probability that the �

th

query cor-

responding to the �

th

distinct initiation{pre�x is the �rst to be accepting is at

least 1=q

S

(n). Thus, Eq. (1) is lower bounded by

Pr [(�; h

0

) 2 AC & �(�; h

0

; �)]

q

S

(n)

(2)

12

In other words, we allow for many di�erent terminating queries to occur (as long

as they are not accepting). On the other hand, for j 2 f1; 2; 3g only a single query

that has a prover sequence of length j is allowed. This requirement will enable us to

avoid situations in which the cheating prover will fail (as described in Footnote 10).

13

We use the fact that V (x; r) behaves exactly as V

h

0

(x) behaves on queries for the

�

th

distinct initiation-pre�x.



Using the fact that, for every value of � and �, when h and r are uniformly

selected the function h

0

is uniformly distributed, we infer that � is distributed

independently of (�; h

0

). Thus, Eq. (2) is lower bounded by

Pr[(�; h

0

) 2 AC] �

Pr[9i s.t. �(�; h

0

; i) j (�; h

0

) 2 AC]

q

S

(n)

2

(3)

Thus, Eq. (3) is noticeable (i.e., at least 1=poly(n)) provided that so is the

value of Pr[9i s.t. �(�; h

0

; i) j (�; h

0

) 2 AC]. The rest of the proof is devoted to

establishing the last hypothesis. In fact we prove a much stronger statement:

Lemma 10 For every (�; h

0

) 2 AC, the execution of S

V

h

0

�

(x) contains a useful

initiation-pre�x (that is, there exists an i s.t. �(�; h

0

; i) holds).

2.3 Proof of Lemma 10 (existence of useful initiation pre�xes)

The proof of Lemma 10 is by contradiction. We assume the existence of a pair

(�; h

0

) 2 AC so that all initiation-pre�xes in the execution of S

V

h

0

�

(x) are unuseful

and show that this implies that S

V

h

0

�

(x) made at least n




(

logn

log log n

)

� poly(n)

queries which contradicts the assumption that it runs in polynomial-time.

The query{and{answer tree: Throughout the rest of the proof, we �x an

arbitrary (�; h

0

) 2 AC so that all initiation-pre�xes in the execution of S

V

h

0

�

(x) are

unuseful, and study this execution. A key vehicle in this study is the notion of a

query{and{answer tree introduced in [18]. This is a rooted tree in which vertices

are labeled with veri�er messages and edges are labeled by prover's messages.

The root is labeled by the empty string, and it has outgoing edges corresponding

to the possible prover's messages initializing the �rst session. In general, paths

down the tree (i.e., from the root to some vertices) correspond to queries. The

query associated with such a path is obtained by concatenating the labeling of

the vertices and edges in the order traversed. We stress that each vertex in the

tree corresponds to a query actually made by the simulator.

Satis�ed sub-path: A sub-path from one node in the tree to some of its descen-

dants is said to satisfy session i if the sub-path contains edges (resp., vertices)

for each of the messages sent by the prover (resp., veri�er) in session i, and if

the last such message (i.e., v

(i)

4

) indicates that the veri�er accepts session i. A

sub-path is called satis�ed if it satis�es all sessions for which the �rst prover's

message appears on the sub-path.

Forking sub-tree: For any i and j 2 f2; 3; 4g, we say that a sub-tree (i; j)-forks

if it contains two sub-paths, p and r, having the same initiation-pre�x, so that

1. Sub-paths p and r di�er in the edge representing the j

th

prover message for

session i (i.e., a p

(i)

j

message).

2. Each of the sub-paths p and r reaches a vertex representing the j

th

veri�er

message (i.e., some v

(i)

j

).

In such a case, we may also say that the sub-tree (i; j)-forks on p (or on r).



Good sub-tree: Consider an arbitrary sub-tree rooted at a vertex corresponding

to the �rst message in some session so that this session is the �rst at some level

of the recursive construction of the schedule. The full tree is indeed such a tree,

but we will need to consider sub-trees which correspond to m sessions in the

recursive schedule construction. We call such a sub-tree m-good if it contains a

sub-path satisfying all m sessions for which the prover's �rst message appears in

the sub-tree (all these �rst messages are in particular contained in the sub-path).

Since (�; h

0

) 2 AC it follows that the full tree contains a path from the root to

a leaf representing an accepting transcript. The path from the root to this leaf

thus satis�es all sessions (i.e., 1 through n) which implies that the full tree is

n-good. The crux of the entire proof is given in the following lemma.

Lemma 11 Let T be an m-good sub-tree, then at least one of the following holds:

1. T contains at least two di�erent

�

m� 2 �

m

logm

�

-good sub-trees.

2. T contains at least

m

logm

di�erent

�

m

logm

�

-good sub-trees.

Denote by W (m) the size of an m-good sub-tree (where W (m) stands for the

work actually performed by the simulator on m concurrent sessions in our �xed

scheduling). It follows (from Lemma 11) that any m-good sub-tree must satisfy

W (m) � min

�

m

logm

�W

�

m

logm

�

; 2 �W

�

m� 2 �

m

logm

��

(4)

Since Eq. (4) solves to n




(

log n

log logn

)

(proof omitted), and since every vertex in the

query{and{answer tree corresponds to a query actually made by the simulator,

then the assumption that the simulator runs in poly(n)-time (and hence the tree

is of poly(n) size) is contradicted. Thus, Lemma 10 follows from Lemma 11.

2.4 Proof of Lemma 11 (the structure of good sub-trees)

Considering the m sessions corresponding to an m-good sub-tree, we focus on

the m= logm sessions dealt explicitly at this level of the recursive construction

(i.e., the �rst m= logm sessions, which we denote by F

def

= f1; :::;m= logmg).

Claim 12 Let T be an m-good sub-tree. Then for any session i 2 F , there exists

j 2 f2; 3g such that the sub-tree (i; j)-forks.

Proof: Consider some i 2 F , and let p

i

be the �rst sub-path reached during the

execution of S

V

h

0

�

(x) which satis�es session i (since the sub-tree is m-good such

a sub-path must exist, and since i 2 F every such sub-path must be contained

in the sub-tree). Recall that by the contradiction assumption for the proof of

Lemma 10, all initiation-pre�xes in the execution of S

V

h

0

�

(x) are unuseful. In

particular, the initiation-pre�x corresponding to sub-path p

i

is unuseful. Still,

path p

i

contains vertices for each prover message in session i and contains an



accepting message by the veri�er. So the only thing which may prevent the above

initiation-pre�x from being useful is having two (non-terminating) queries with

the very same initiation-pre�x (non-terminating) prover-sequences of the same

length. Say that these sequences �rst di�er at their j

th

element, and note that j 2

f2; 3g (as the prover-sequences are non-terminating and the �rst prover message,

p

(i)

1

, is constant once the initiation-pre�x is �xed). Also note that the two (non-

terminating) queries were answered by the veri�er (rather than refused), since

the (modi�ed) simulator avoids queries which will be refused. By associating

a sub-path to each one of the above queries we obtain two di�erent sub-paths

(having the same initiation-pre�x), that di�er in some p

(i)

j

edge and eventually

reach a v

(i)

j

vertex (for j 2 f2; 3g). The required (i; j)-forking follows.

Claim 13 If there exists a session i 2 F such that the sub-tree (i; 3)-forks, then

the sub-tree contains two di�erent

(

m�2�

m

logm

)

-good sub-trees.

Proof: Let i 2 F such that the sub-tree (i; 3)-forks. That is, there exist two

sub-paths, p

i

and r

i

, that di�er in the edge representing a p

(i)

3

message, and that

eventually reach some v

(i)

3

vertex. In particular, paths p

i

and r

i

split from each

other before the edge which corresponds to the p

(i)

3

message occurs along these

paths (as otherwise the p

(i)

3

edge would have been identical in both paths). By

nature of the �xed scheduling, the vertex in which the above splitting occurs

precedes the �rst message of all (nested) sessions in the second recursive con-

struction (that is, sessions 2�

m

logm

+1;:::;m). It follows that both p

i

and r

i

contain

the �rst and last messages of each of these (nested) sessions (as they both reach

a v

(i)

3

vertex). Therefore, by de�nition of V

h

, all these sessions must be satis�ed

by both these paths (or else V

h

would have not answered with a v

(i)

3

message

but rather with a \refuse" symbol). Consider now the corresponding sub-paths

of p

i

and r

i

which begin at edge p

(k)

1

where k = 2 �

m

logm

+1 (i.e., p

(k)

1

is the edge

which represents the �rst message of the �rst session in the second recursive

construction). Each of these new sub-paths is contained in a disjoint sub-tree

corresponding to the recursive construction, and satis�es all of its

(

m�2�

m

logm

)

sessions. It follows that the (original) sub-tree contains two di�erent

(

m�2�

m

logm

)

-

good sub-trees and the claim follows.

Claim 14 If for every session i 2 F the sub-tree (i; 2)-forks, then the sub-tree

contains at least jFj =

m

logm

di�erent

(

m

logm

)

-good sub-trees.

In the proof of Claim 14 we use a special property of (i; 2)-forking: The only

location in which the splitting of path r

i

from path p

i

may occur, is a vertex

which represents a v

(i)

1

message. Any splitting which has occured at a vertex

which precedes the v

(i)

1

vertex would have caused the initiation-pre�xes of (ses-

sion i along) paths p

i

and r

i

to be di�erent (by virtue of the de�nition of V

h

,

and since all vertices preceding v

(i)

1

are part of the initiation-pre�x of session i).



Proof: Since for all sessions i 2 F the sub-tree (i; 2)-forks, then for every

such i there exist two sub-paths, p

i

and r

i

, that split from each other in a

v

(i)

1

vertex and that eventually reach some v

(i)

2

vertex. Similarly to the proof of

Claim 13, we can claim that each one of the above paths contains a \special"

sub-path (denoted p

i

and r

i

respectively), that starts at a v

(i)

1

vertex, ends at a

v

(i)

2

vertex, and satis�es all

m

logm

sessions in the �rst recursive construction (that

is, sessions

m

logm

+1;:::;2�

m

logm

). Note that paths p

i

and r

i

are completely disjoint.

Let i

1

; i

2

be two di�erent sesions in F (without loss of generality i

1

< i

2

), and

let p

i

1

; r

i

1

; p

i

2

; r

i

2

be their corresponding \special" sub-paths. The key point is

that for every i

1

; i

2

as above, it cannot be the case that both \special" sub-

paths corresponding to session i

2

are contained in the sub-paths corresponding

to session i

1

(to justify this, we use the fact that p

i

2

and r

i

2

split from each other

in a v

(i

2

)

1

vertex and that for every i 2 fi

1

; i

2

g, paths p

i

and r

i

are disjoint).

This enables us to associate a distinct

(

m

logm

)

-good sub-tree to every i 2 F

(i.e., which either corresponds to path p

i

, or to path r

i

). Which in particular

means that the tree contains at least jFj di�erent

(

m

logm

)

-good sub-trees.

We are �nally ready to analyze the structure of the sub-tree T . Since for every

i 2 F there must exist j 2 f2; 3g such that the sub-tree (i; j)-forks (Claim 12),

then it must be the case that either T contains two distinct

(

m�2�

m

logm

)

-good sub-

trees (Claim 13), or T contains at least

m

logm

distinct

(

m

logm

)

-good sub-trees (Claim

14). This completes the proof of Lemma 11 which in turn implies Lemmata 10

and 7. The proof of Theorem 2 is complete.

3 Extending the proof for the Richardson-Kilian protocol

Recall that the Richardson-Kilian protocol [20] consists of two stages. We will

treat the �rst stage of the RK protocol (which consists of 6 rounds) as if it were

the �rst 6 rounds of any 7-round protocol, and the second stage (which consists

of a 3-round WI proof) as if it were the remaining 7

th

message. An important

property which is satis�ed by the RK protocol is that the coin tosses used by the

veri�er in the second stage are independent of the coins used by the veri�er in the

�rst stage. We can therefore de�ne and take advantage of two (di�erent) types

of initiation-pre�xes. A �rst-stage initiation pre�x and a second-stage initiation

pre�x (which is well de�ned only given the �rst one). These initiation-pre�xes

will determine the coin tosses to be used by V

h

in each corresponding stage of

the protocol (analogously to the proof of Theorem 2).

The cheating prover will pick a random index for each of the above types of

initiation-pre�xes (corresponding to � and � in the proof of Theorem 2). The

�rst index (i.e., �) is treated exactly as in the proof of Theorem 2, whereas the

second index (i.e., �) will determine which of the WI session corresponding to

the second-phase initiation-pre�x (and which also correspond to the very same

�

th

�rst-phase initiation-pre�x) will be actually executed between the cheating

prover and the veri�er. As long as the �

th

second-stage initiation pre�x will not

be encountered, the cheating prover will be able to impersonate V

h

while always



deciding correctly whether to reject or to accept the corresponding \dummy" WI

session (as the second-stage initiation-pre�x completely determines the coins to

be used by V

h

in the second stage of the protocol). As in the proof of Theorem 2,

the probability that the �

th

second-stage initiation pre�x (that correponds to the

�

th

�rst-phase initiation-pre�x) will make the veri�er accept is non-negligible.

The existence of a useful pair of initiation-pre�xes (i.e., � and �) is proved es-

sentially in the same way as in the proof of Theorem 2.

4 Concluding Remarks

Summary: In this work we have pointed out the impossibility of black-box simu-

lation of non-trivial 7-round protocols in the concurrent setting. The result which

is proved is actually stronger than stated. Not only because we consider a �xed

scheduling in which the adversarial veri�er never refuses to answer (and thus

should have been easier to simulate, as argued in Section 1.5), but also because

we are considering simulators which may have as much as a constant devia-

tion from actual executions of the protocol (rather than negligible deviation, as

typically required in the de�nition of Zero-Knowledge).

On the applicability of the RK protocol: We note that the above discussion does

not imply that the k = 2 version of the RK protocol is completely useless. As

noted by Richardson and Kilian, for security parameter n, the simulation of

m = poly(n) concurrent sessions may be performed in quasi-polynomial time

(recall that the simulation work required for m sessions is m

�(log

k

m)

). Thus, the

advantage that a polynomial-time adversary veri�er may gain from executing

m concurrent sessions is not signi�cant. As a matter of fact, if one is willing

to settle for less than polynomially-many (in n) concurrent sessions, then the

RK protocol may be secure in an even stronger sense. Speci�cally, as long as

the number of sessions is m = 2

O(

p

log

2

n)

, then simulation of the RK protocol

can be performed in polynomial-time even if k = 2. This is considerably larger

than the logarithmic number of concurrent sessions enabled by straightforward

simulation of previously known constant-round protocols.

Improved simulation of the RK protocol: Recently, Kilian and Petrank [17]

have proved that the Richardson-Kilian protocol will remain concurrent zero-

knowledge even if k = O(g(n) � log

2

n), where g(�) is any non-constant function

(e.g., g(n) = logn). Thus, the huge gap between the known upper and lower

bounds on the number of rounds required by concurrent zero-knowledge has

been considerably narrowed.
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