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Abstract

We present a non-malleable commitment scheme that retains its security properties even
when concurrently executed a polynomial number of times. That is, a man-in-the-middle ad-
versary who is simultaneously participating in multiple concurrent commitment phases of our
scheme, both as a sender and as a receiver, cannot make the values he commits to depend on the
values he receives commitments to. Our result is achieved without assuming an a-priori bound
on the number of executions and without relying on any set-up assumptions.

Our construction relies on the existence of standard claw-free permutations and only requires
a constant number of communication rounds.

1 Introduction

The notion of commitment is central in cryptographic protocol design. Often described as the
“digital” analogue of sealed envelopes, commitment schemes enable a party, known as the sender,
to commit itself to a value while keeping it secret from the receiver. This property is called hiding.
Furthermore, the commitment is binding, and thus in a later stage when the commitment is opened,
it is guaranteed that the “opening” can yield only a single value determined in the committing stage.

For some applications, the above security guarantees are not sufficient and additional properties
are required. For instance, the definition of commitments does not rule out the possibility that
an adversary, upon seeing a commitment to a specific value v, is able to commit to a related
value (say, v — 1), even though it does not know the actual value of v. This kind of attack
might have devastating consequences if the underlying application relies on the independence of
committed values (e.g., consider a case in which the commitment scheme is used for securely
implementing a contract bidding mechanism). The state of affairs is even worsened by the fact that
many of the known commitment schemes are actually susceptible to this kind of attack.

1.1 Non-Malleable Commitments

In order to address the above concerns, Dolev, Dwork and Naor (DDN) introduced the concept
of non-malleable commitments [15]. Loosely speaking, a commitment scheme is said to be non-
malleable if no adversary can succeed in the attack described above. That is, it is infeasible for the
adversary to maul a commitment to a value v into a commitment to a “related” value v.

The first non-malleable commitment protocol was constructed by Dolev, Dwork and Naor [15].
The security of their protocol relies on the existence of one-way functions, and requires O(logn)
rounds of interaction, where n € N is a security parameter. A more recent result by Barak presents
a constant-round protocol for non-malleable commitment, whose security relies on the existence of
trapdoor permutations and hash functions that are collision-resistant against sub-exponential sized
circuits [2]. Even more recently, Pass and Rosen present a constant-round protocol for the same
task, assuming only collision resistant hash function secure against polynomial sized circuits [38].
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1.2 Concurrent Non-Malleable Commitments

The basic definition of non-malleable commitments only considers a scenario in which two execu-
tions take place at the same time. A natural extension of this scenario (already suggested in [15])
is one in which more than two invocations of the commitment protocol take place concurrently.
In the concurrent scenario, the adversary is receiving commitments to multiple values vq,..., v,
while attempting to commit to related values o1,...,0p,. As argued in [15], non-malleability with
respect to two executions can be shown to guarantee individual independence of any v; from any
v;. However, it does not rule out the possibility of an adversary to create joint dependencies be-
tween more than a single individual pair (see [15], Section 3.4.1 for an example in the context of
non-malleable encryption). Resolving this issue has been stated as a major open problem in [15].

Partially addressing this issue, prior work has demonstrated the existence of commitment
schemes that remain non-malleable under bounded concurrent composition [36]. That is, for any
(predetermined) polynomial p(-), there exists a non-malleable commitment that remains secure as
long as it is not executed more than p(n) times, where n € N is a security parameter.

One evident disadvantage of the above solution is that it requires that the number of execu-
tions is fixed before the protocol is specified, or otherwise no security guarantee is provided. Less
evidently, the length of the messages in the protocols has to grow linearly with the number of
executions. Thus, from both a theoretical and a practical point of view, the solution is still not
satisfactory. What we would like to have is a single protocol that preserves its non-malleability
even when it is executed concurrently for any (not predetermined) polynomial number of times.

1.3 Owur Results

We present a new protocol for concurrent non-malleable commitments. Our protocol remains non-
malleable even when concurrently executed an (unbounded) polynomial number of times. We do
not rely on any kind of set-up assumption (such as the existence of a common reference string).

The resulting commitment is statistically binding, and satisfies non-malleability with respect to
commitment. The former condition implies that, except with negligible probability, a transcript of
a commitment corresponds to a unique value, whereas the latter implies that, upon concurrently
participating in polynomially many commitments, both as a receiver and as a sender, the adversary
is not able to commit to a sequence of related values.! Here we assume that the adversary does
not get to see the de-commitment to any of the values he is receiving a commitment to until he is
done with committing to all of his values.

Theorem 1 (Concurrent non-malleable commitment) Suppose that there exists a family of
pairs of claw-free permutations.? Then, there exists a constant-round statistically-binding commit-
ment scheme that is concurrently non malleable with respect to commitment.

To the best of our knowledge, this result yields the first instance of a non-trivial protocol that
simultaneously satisfies non-malleability and concurrency without relying on set-up assumptions.

n a different variant, called non-malleable commitment with respect to opening [18], the adversary is considered
to have succeeded only if it manages to de-commit to a related value. This paper only considers the notion of
non-malleability with respect to commitments.

2The existence of claw-free permutations follows from the assumption that factoring Blum integers is hard (or
from the hardness of finding discrete-logarithms modulo a prime). They are required for obtaining perfectly hiding-
commitments, as well as collision resistant hashing.




Additional contributions. Our proof also yields the first commitment scheme that is strictly
non-malleable with respect to commitment.® Strict non-malleability means that the simulation
used to prove non-malleability runs in strict (as opposed to expected) polynomial time. This was
the security notion originally defined (but not achieved in) the DDN paper [15].

Our definitions of non-malleable commitments are somewhat different (stronger) than the ones
appearing in the DDN paper [15]. Specifically, we formalize the notion of two values being unre-
lated through the concept of computational indistinguishability (rather than using polynomial time
computable relations). The main reason for strengthening the definition is that it yields a notion
that is more intuitive and easier to work with (especially in the concurrent setting). We stress that
any protocol satisfying our definition also satisfies the original one.

Techniques and ideas Our construction follows the paradigm introduced by Pass and Rosen
(PR), of using a protocol for non-malleable zero-knowledge in order to obtain (single execution)
non-malleable commitments [38]. While our construction relies on the same high-level structure,
the analysis of the protocol is significantly different. The central observation that enables the
analysis is that concurrent simulation of the underlying (non-malleable) zero-knowledge protocol
is not actually necessary for proving concurrent non-malleability of our commitments. Indeed, for
our analysis to go through, it will be sufficient to simulate only a single execution of the underlying
zero-knowledge protocol. This will be performed while concurrently extracting multiple witnesses
for the statements proved by the adversary. We call the above property one-many simulation
extractability. We prove that this property is indeed satisfied by the non-malleable zero-knowledge
protocols of [36, 38]. To show this, we rely on a non-black box simulation argument, which is
delicately combined with a black-boz extraction technique. (Here we use the fact that concurrent
extraction is significantly easier than concurrent simulation (cf. [30]).)

1.4 Related Work

A large body of previous work deals with the construction of non-malleable protocols assuming
various kinds of trusted set-up. Known constructions include non-malleable commitment schemes
assuming the existence of a common reference string [18, 10], as well as non-malleable commitment
schemes and non-interactive non-malleable ZXC protocols assuming the existence of a common
random string [14, 13, 12].

Several of the above works explicitly address the issue of multiple executions of non-malleable
schemes [12, 10, 8] (also called reusability in the terminology of [10]). Perhaps most notable amongst
the works addressing concurrency, is the one on Universally composable commitments [8]. Universal
composability implies concurrent non-malleability. However, it is impossible to construct univer-
sally composable commitments without making set-up assumptions [8].

Other related works involve the task of session-key generation in a setting where the honest
parties share a password that is taken from a relatively small dictionary [21, 35, 3]. These protocols
are designed having a man-in-the-middle adversary in mind, and only require the usage of a “mild”
set-up assumption (namely the existence of a “short” password). Some of these works explicitly
address the issue of multiple protocol execution (cf. [21]), but their treatment is limited to the case
of sequential composition. A treatment of the full concurrent case appears in [28] (see also [9, 3]),
but it relies on the existence of a common reference string.

3This should not be confused with a previous result showing the existence of commitment schemes that are strictly
non-malleability with respect to opening [38].



2 Preliminaries

2.1 Basic notation

We let N denote the set of all integers. For any integer m € N, denote by [m] the set {1,2,...,m}.
For any = € {0,1}*, we let |z| denote the size of z (i.e., the number of bits used in order to write it).
For two machines M, A, we let M A(ac) denote the output of machine M on input x and given oracle
access to A. The term negligible is used for denoting functions that are (asymptotically) smaller
than one over any polynomial. More precisely, a function v(-) from non-negative integers to reals
is called negligible if for every constant ¢ > 0 and all sufficiently large n, it holds that v(n) < n™°.
2.2 Witness Relations

We recall the definition of a witness relation for an NP language [19].

Definition 2.1 (Witness relation) A witness relation for a language L € N'P is a binary relation
Ry, that is polynomially bounded, polynomial time recognizable and characterizes L by

L={x:3yst. (z,y) € Ry}

We say that y is a witness for the membership = € L if (x,y) € R,. We will also let Ry (x) denote
the set of witnesses for the membership x € L, i.e.,

Rp(z) ={y: (z,y) € L}

In the following, we assume a fixed witness relation Ry, for each language L € N'P.

2.3 Probabilistic notation

Denote by z <~ X the process of uniformly choosing an element z in a set X. If B(-) is an
event depending on the choice of z <~ X, then Pr,_x[B(z)] (alternatively, Pr,[B(z)]) denotes the
probability that B(z) holds when z is chosen with probability 1/|X|. Namely,

Pr,x [B(z)] =Y ﬁ X (B(z))

where x is an indicator function so that x(B) = 1 if event B holds, and equals zero otherwise. We
denote by U, the uniform distribution over the set {0,1}".
2.4 Computational indistinguishability and statistical closeness

Let S C {0,1}* be a set of strings. A probability ensemble indexed by S is a sequence of random
variables indexed by S. Namely, any X = {X,, }wes is a random variable indexed by S.

Definition 2.2 (Computational indistinguishability) Two ensembles X = { Xy }wes andY =
{Yytwes are said to be computationally indistinguishable if for every probabilistic polynomial-time
algorithm D, there exists a negligible function v(-) so that for every w € S:

|Pr[D(Xy,w) =1] — Pr[D(Yy,w) = 1]| < v(Jw|)

The algorithm D is often referred to as the distinguisher. For more details on computational
indistinguishability see Section 3.2 of [19].



Definition 2.3 (Statistical Closeness) Two ensembles X = {Xy}twes and Y = {Y,}wes are
said to be statistically close if there exists a negligible function v(-) so that for every w € S:

mgX{Pr[D(Xw,w) = 1] — Pr[D(Yy,w) = 1]} < v(|w])
Note that the definition does not require that the functions D are computable in polynomial time.

2.5 Interactive Proofs, Zero-Knowledge and Witness-Indistinguishability

We use the standard definitions of interactive proofs (and interactive Turing machines) [26, 19] and
arguments [4]. Given a pair of interactive Turing machines, P and V', we denote by (P, V)(z) the
random variable representing the (local) output of V' when interacting with machine P on common
input 2, when the random input to each machine is uniformly and independently chosen.

Definition 2.4 (Interactive Proof System) A pair of interactive machines (P, V') is called an
interactive proof system for a language L if machine V is polynomial-time and the following two
conditions hold with respect to some negligible function v(-):

e Completeness: For every x € L,

Pr(P,V)(x) =1] =1 —v(|z])

e Soundness: For every x € L, and every interactive machine B,

Pr((B,V)(x) = 1] < v(|z])

In case that the soundness condition is required to hold only with respect to a computationally
bounded prover, the pair (P, V') is called an interactive argument system.

Definition 2.4 can be relaxed to require only soundness error that is bounded away from 1—v(|x|).
This is so, since the soundness error can always be made negligible by sufficiently many parallel
repetitions of the protocol. However, in the case of interactive arguments, we do not know whether
this condition can be relaxed. In particular, in this case parallel repetitions do not necessarily
reduce the soundness error (cf. [7]).

Zero-knowledge. An interactive proof is said to be zero-knowledge (ZK) if it yields nothing
beyond the validity of the assertion being proved. This is formalized by requiring that the view
of every probabilistic polynomial-time adversary V* interacting with the honest prover P can be
simulated by a probabilistic polynomial-time machine S (a.k.a. the simulator). The idea behind
this definition is that whatever V* might have learned from interacting with P, he could have
actually learned by himself (by running the simulator ).

The notion of ZX was introduced by Goldwasser, Micali and Rackoff [26]. To make Z/C robust
in the context of protocol composition, Goldreich and Oren [24] suggested to augment the definition
so that the above requirement holds also with respect to all z € {0,1}*, where both V* and S are
allowed to obtain z as auxiliary input. The verifier’s view of an interaction consists of the common
input z, followed by its random tape and the sequence of prover messages the verifier receives
during the interaction. We denote by view}.(z,z) a random variable describing V*(z)’s view of
the interaction with P on common input z.



Definition 2.5 (Zero-knowledge) Let (P, V') be an interactive proof system. We say that (P, V)
1s zero-knowledge, if for every probabilistic polynomial-time interactive machine V* there exists a
probabilistic polynomial-time algorithm S such that the ensembles {view{(z,2)}.c(0,1}* zer and
{S(z,2)}.eq0,1} e, are computationally indistinguishable.

A stronger variant of zero-knowledge is one in which the output of the simulator is statistically close
to the verifier’s view of real interactions. We focus on argument systems, in which the soundness
property is only guaranteed to hold with respect to polynomial time provers.

Definition 2.6 (Statistical zero-knowledge) Let (P, V) be an interactive argument system. We
say that (P,V) is statistical zero-knowledge, if for every probabilistic polynomial-time V* there
exists a probabilistic polynomial-time S such that the ensembles {Viewy«(,2)}.cq0,1}+ wcr and
{S(z,2)}.eq0,1} zer are statistically close.

In case that the ensembles {view(.(z,2)}.cq0,1}+ zer and {S(, 2)}.cf0,1}+ zer are identically
distributed, the protocol (P, V') is said to be perfect zero-knowledge.

Witness Indistinguishability. An interactive proof is said to be witness indistinguishable WVT)
if the verifier’s view is “computationally independent” of the witness used by the prover for proving
the statement. In this context, we focus our attention to languages L € NP with a corresponding
witness relation Ry. Namely, we consider interactions in which on common input x the prover is
given a witness in Ry (z). By saying that the view is computationally independent of the witness,
we mean that for any two possible N'P-witnesses that could ne used by the prover to prove the
statement x« € L, the corresponding views are computationally indistinguishable.

Let V* be a probabilistic polynomial time adversary interacting with the prover, and let
view«(x,w) denote V*’s view of an interaction in which the witness used by the prover is w
(where the common input is x).

Definition 2.7 (Witness-indistinguishability) Let (P, V) be an interactive proof system for a
language L € N'P. We say that (P,V) is witness-indistinguishable for Ry, if for every probabilistic
polynomial-time interactive machine V* and for every two sequences {wl},er and {w?},er, such
that w},w? € Ry (x), the ensembles {view?.(z,wl)}ser and {viewD.(x,w2)}scr are computation-
ally indistinguishable.

In case that the ensembles {viewl.(z,wl)}.cr and {viewD.(z,w?)},cr are identically dis-
tributed, the proof system (P, V) is said to be witness independent.

2.6 Universal Arguments

Universal arguments (introduced in [5] and closely related to the notion of CS-proofs [31]) are used
in order to provide “efficient” proofs to statements of the form y = (M, x,t), where y is considered
to be a true statement if M is a non-deterministic machine that accepts x within ¢ steps. The
corresponding language and witness relation are denoted Ly, and Ry, respectively, where the pair
((M,z,t),w) is in Ry if M (viewed here as a two-input deterministic machine) accepts the pair
(z,w) within ¢ steps. Notice that every language in NP is linear time reducible to Ly. Thus, a
proof system for L;; allows us to handle all N'P-statements. In fact, a proof system for Ly, enables
us to handle languages that are presumably "beyond” NP, as the language L is N E-complete
(hence the name universal arguments).*

“Furthermore, every language in NEXP is polynomial-time (but not linear-time) reducible to Ly



Definition 2.8 (Universal argument) A pair of interactive Turing machines (P, V') is called a
universal argument system if it satisfies the following properties:

e Efficient verification: There exists a polynomial p such that for any y = (M, z,t), the total
time spent by the (probabilistic) verifier strategy V , on common input y, is at most p(|y|).
In particular, all messages exchanged in the protocol have length smaller than p(|y|).

e Completeness by a relatively efficient prover: For every ((M,z,t);w) in Ry,
Pri(Pw),V)(M,z,8) = 1] = 1

Furthermore, there exists a polynomial p such that the total time spent by P(w), on common
input (M, z,t), is at most p(Ty(x,w)) < p(t).

e Computational Soundness: For every polynomialsize circuit family {P}nen, and every triplet
(M,ﬂj‘,t) € {07 1}n \LUa
Pr((Py,V)(M;x;t) = 1] < v(n)

where v(-) is a negligible function.

2.7 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself to a
value while keeping it secret from the receiver (this property is called hiding). Furthermore, the
commitment is binding, and thus in a later stage when the commitment is opened, it is guaranteed
that the “opening” can yield only a single value determined in the committing phase. Commitment
schemes come in two different flavors, statistically-binding and statistically-hiding. We sketch the
properties of each one of these flavors. Full definitions can be found in [19].

Statistically-binding: In statistically binding commitments, the binding property holds against
unbounded adversaries, while the hiding property only holds against computationally bounded
(non-uniform) adversaries. Loosely speaking, the statistical-binding property asserts that,
with overwhelming probability over the coin-tosses of the receiver, the transcript of the in-
teraction fully determines the value committed to by the sender. The computational-hiding
property guarantees that the commitments to any two different values are computationally
indistinguishable.

Statistically-hiding: In statistically-hiding commitments, the hiding property holds against un-
bounded adversaries, while the binding property only holds against computationally bounded
(non-uniform) adversaries. Loosely speaking, the statistical-hiding property asserts that com-
mitments to any two different values are statistically close (i.e., have negligible statistical dis-
tance). In case the statistical distance is 0, the commitments are said to be perfectly-hiding.
The computational-binding property guarantees that no polynomial time machine is able to
open a given commitment in two different ways.

Non-interactive statistically-binding commitment schemes can be constructed using any 1-1
one-way function (see Section 4.4.1 of [19]). Allowing some minimal interaction (in which the re-
ceiver first sends a single random initialization message), statistically-binding commitment schemes
can be obtained from any one-way function [32, 27]. We will think of such commitments as a fam-
ily of non-interactive commitments, where the description of members in the family will be the
initialization message. Perfectly-hiding commitment schemes can be constructed from any one-
way permutation [33]. However, constant-round schemes are only known to exist under stronger
assumptions; specifically, assuming the existence of a collection of certified clawfree functions [20].



2.8 Proofs of Knowledge

Informally an interactive proof is a proof of knowledge if the prover convinces the verifier not only
of the validity of a statement, but also that it possesses a witness for the statement. This notion is
formalized by the introduction of an machine F, called a knowledge extractor. As the name suggests,
the extractor F is supposed to extract a witness from any malicious prover P* that succeeds in
convincing an honest verifier. More formally,

Definition 2.9 Let (P, V) be an interactive proof system for the language L with witness relation
Rp. We say that (P,V) is a proof of knowledge if there exists a polynomial q and a probabilistic
oracle machine E, a so called knowledge extractor, such that for every interactive machine P’,
every © € L and every y,r € {0,1}* the following two properties hold:

1. Except with negligible probability, the machine E with oracle access to Pg’c’w outputs a solution
s € Rp(x).

2. Furthermore, the expected number of steps taken by E is bounded by

a(j))
Prl(PL,, V(@) = 1]

:B7y7r ?

where P:::,y,r denotes the machine P’ with common input fized to z, auziliary input fized to y

and random tape fized to r.

3 Concurrent Non-Malleable Commitments

Non-malleable commitments were introduced by Dolev, Dwork and Naor (DDN) [15]. Our defini-
tions of non-malleability are somewhat stronger that the ones proposed by DDN [15]. Specifically,
we formalize the notion of two values being unrelated through the concept of computational indis-
tinguishability (rather than using polynomial time computable relations).

3.1 The General Setting

Let (C, R) be a commitment scheme and consider a man-in-the-middle adversary A that is simulta-
neously participating in multiple concurrent executions of (C, R). Executions in which A is playing
the role of the receiver are said to belong to the left interaction, whereas executions in which A is
playing the role of the sender are said to belong to the right interaction. We assume for simplicity,
and without loss of generality, that the number of commitment schemes taking place in the left
and right interactions is identical. The total number of the interactions in which the adversary is
involved (either as a sender or as a receiver) is not a-priori bounded by any polynomial (though it
is assumed to be polynomial in the security parameter). We assume that the adversary does not
get to see the de-commitment to any of the values he is receiving a commitment to until he is done
with committing to all of his values.

Besides controlling the messages that it sends in the left and right interactions, A has control
over their scheduling. In particular, it may delay the transmission of a message in one interaction
until it receives a message (or even multiple messages) in the other interaction. It can also arbitrarily
interleave messages that belong to different executions within an interaction.

The adversary A is trying to take advantage of his participation in the commitments taking
place in the left interaction in order to violate the security of the commitments executed in the



right interaction. The honest sender and receiver are not necessarily aware to the existence of the
adversary, and might be under the impression that they are interacting one with the other. We let
v1,..., Uy, denote the values committed to in the left interaction and o1, ..., 7, denote the values
committed to in the right interaction. The above scenario is depicted in Figure 1 (with no explicit
demonstration of possible interleavings of messages between different executions).

C A R
Com(v1) Com (1)
: N S
Com(v;) — — Com(%:)
: y N
Com(vnm) Com ()

Figure 1: A concurrent man-in-the-middle adversary.

The traditional definition of non-malleable commitments [15] considers the case when m = 1.
Loosely speaking, it requires that the left interaction does not “help” the adversary A in committing
to a value 77 that is somehow correlated with the value v;. In this work we focus on non-malleability
with respect to commitment [15], where the adversary is said to succeed if it manages to commit
to a related value (even without being able to later de-commit to this value). Note that this notion
makes sense only in the case of statistically-binding commitments.

3.2 Non-Malleability via Indistinguishability

Following the simulation paradigm [25, 26, 22, 23], the notion of non-malleability is formalized
by comparing between a man-in-the-middle and a simulated execution. In the man-in-the-middle
execution the adversary is simultaneously acting as a receiver in one interaction and as a committer
in another interaction. In the simulated execution the adversary is engaged in a single interaction
where it is acting as a committer.

The original definition of non malleability required that for any polynomial time computable
(non-reflexive) relation R, the value ¢ committed to by the adversary in the simulated execution
is no (significantly) less likely to satisfy R(v,0) = 1 than the value committed to by the adversary
in the man-in-the-middle execution [15].

To facilitate the formalization for m > 1, we choose to adopt a slightly different definitional
approach and will actually require an even stronger condition (which we are still able to satisfy
with our protocol). Specifically, we require that for any adversary in a man-in-the-middle execution,
there exists an adversary that commits to essentially the same value in the simulated execution. By
essentially the same value, we mean that the value committed to by the simulator is computationally
indistinguishable from the value committed to by the adversary in the man-in-the middle execution.

Since copying cannot be ruled out, we will only be interested in the case where copying is not
considered success. We therefore impose the condition that whenever the adversary has fully copied
a transcript of an interaction in which it acts as a receiver, the value v that he has committed to
in the corresponding execution is set to be a special “failure” symbol, denoted L.



3.3 The Actual Definition

Let (C,R) be a commitment scheme, and let n € N be a security parameter. Consider man-in-
the-middle adversaries that are participating in left and right interactions in which m = poly(n)
commitments take place. We compare between a man-in-the-middle and a simulated execution.

The man-in-the-middle execution. In the man-in-the-middle execution, the adversary A is
simultaneously participating in m left and right interactions. In the left interactions the man-in-
the-middle adversary A interacts with C receiving commitments to values vy,...,vy. In the right
interaction A interacts with R attempting to commit to a sequence of related values 01, ..., Um.
Prior to the interaction, the values v1, ..., v, are given to C as local input. A receives an auxiliary
input z, which may contain a-priori information about vy, ..., v,. Let mim4 (v, ..., v, 2) denote
a random variable that describes the values v1,...,7,, to which the adversary has committed in
the right interaction. (Since we are dealing with statistically binding commitments, o1,...,0n,
are (almost always) well defined. Whenever the value of the commitment is not uniquely defined
(which can happen with some negligible probability in case of statistically binding commitments),
the value of the commitment is defined to be L.) If the transcript of the i*" right commitment
is identical to the transcript of any of the left interactions (which means that adversary has fully
copied a specific commitment that has taken place on the left), the value 9; is set to be 1.°

The simulated execution. In the simulated execution a simulator S directly interacts with R.

As in the man-in-the-middle execution, the values vq,...,v,, are chosen prior to the interaction
and S receives some a-priori information about vy,...,v,, as part of its an auxiliary input z. We
let sim2(v1,...,VUm, z) denote a random variable that describes the values committeed to in the
output of S (which consists of a sequence of values 01, ..., 0y).

Definition 3.1 A commitment scheme (C, R) is said to be concurrent non-malleable with respect
to commitment if for every polynomial p(-), and every probabilistic polynomial-time man-in-the-
middle adversary A that participates in at most m = p(n) concurrent executions, there ezists a
probabilistic polynomial time simulator S such that the following ensembles are computationally
indistinguishable:

) {mimfom(vl, . ,vm,z)}

° {simfom (z)}

It can be seen that for m = 1 any protocol that satisfies Definition 3.1 also satisfies the original
(relation based) definition of non-malleability. Loosely speaking, this is because the existence of
a polynomial time computable relation R that violates the original definition of non-malleability
could be used to distinguish between the values of mim4 (v, z) and sim2_ (v, 2).

V1, Um €{0,1}7,2€{0,1}*

V1, 0m €{0,1}7,2€{0,1}*

3.4 One-Many Concurrent Non-Malleable Commitments

A seemingly more relaxed (and thus potentially easier to satisfy) notion of concurrent non-malleable
commitments is one in which the man-in-the-middle adversary A engages in only a single commit-
ment protocol in the left interaction (but still polynomially many in the right interaction). Such a

5This approach allows ¥; = v, as long as the man-in-the-middle does not fully copy the messages from one of
the left executions. This is in contrast to the original definition which does not handle the case of ¥ = v (as R is
non-reflexive). This means that the new approach takes into consideration a potentially larger class of attacks.

10



notion is a special case of Definition 3.1 in which the adversary A participates in only one commit-
ment sessions on the left hand side (instead of m sessions).

A commitment protocol that satisfies the relaxed definition is said to be one-many concurrent
non-malleable. As we argue below, the relaxed notion turns out to imply full-fledged non-malleable
commitments. In particular, in order to construct concurrent non-malleable commitments, it will
be sufficient to come up with a protocol that is one-many concurrent non-malleable.

Proposition 3.2 Let (C, R) be a one-many concurrent non-malleable commitment. Then, (C, R)
is also a (full fledged) concurrent non-malleable commitment.

Proof: Let A be a man-in-the-middle adversary that participates in at most m = p(n) concur-
rent executions. We show the existence of a simulator S such that the following ensembles are
computationally indistinguishable:

o {mimfom(vl, . ,vm,z)}

o fsimn ()}

The simulator S proceeds as follows on input z. S incorporates A(z) and internally emulates all
the left interactions for A by simply honestly committing to the string 0™ (i.e., in order to emulate
the i*? left interaction, S executes the algorithm C on input 0™). Messages from the right interac-
tions are instead forwarded externally, except for the following difference: If A wishes to send the
last message m in one right interaction, and if the complete transcript of this interaction (including
the messages m) would be identical to the transcript of one of the emulated left interactions (i.e.,
if A has fully copied one of the left interactions), S instead externally sends the message L (to
invalidate the right commitment).

We show that the values that S commits to are indistinguishable from the values that A commits
to. Suppose, for contradiction, that this is not the case. That is, there exists a polynomial-
time distinguisher D and a polynomial p(n) such that for infinitely many n, there exist strings
V1,0, € {0,117, 2 € {0, 1}* such that

7_}1,,,,7vm€{0,1}7l,26{0,1}*

1)17...7vm€{071}n,26{071}*

Pr [D(mimd (v1,. . vm,2) = 1] — Pr [D(sim&, (2)) = 1] > ﬁ

Fix a generic n for which this happens. We provide a hybrid argument that will contradict the
one-many non-malleability of (C, R). The “hybrid” random variable Hy(v1, ..., vy, 2) involves an
execution where A(z) is participating in m left and m right interactions, and is defined in the
following way:

e For j < k, the j' session in the left interaction consists of a commitment to 0™.
e For j > k, the ' session in the left interaction consists of a commitment to ;.
e Output the values 71, ..., ¥, committed to by A in the right interactions with an honest R.

Note that the values @1, ..., 0, are not efficiently computable, but are well defined nevertheless.
Just as in Definition 3.1, if a commitment can be opened to two (or more) different values, we set
its value to L. It can be seen that:

Hy(viy ... ,om,2) = mimé)m(vl, ey Uy Z)

11



Hm(’l)l, <oy Umy,y Z) = Simcsom(z)

If follows by a standard hybrid argument that there exists an ¢ such that

1
Pr[D H;,_1(vi,...,0m,2 :1} —Pr[D H;(vi,...,0m,2 :1} >
(21(1 m ) (2(1 m )) _p(n)m
Note that the only difference between the experiments H;_1(v1,...,Um,2) and H;(vi,...,0m, 2), 1S
that in the former A receives a commitment to v; in session ¢, whereas in the latter it receives a com-
mitment to 0”. Now, consider the one-many adversary A that when receiving zZ = (i,v1,...,vpm, 2)

as auxiliary input proceeds as follows. A internally incorporates A(z) and emulates the left and
right interactions for A.

1. A forwards messages in its j™ right session directly to A (as part of its 5" right session).
2. A forwards messages from its left session directly to A (as part of its i*® session).

3. A emulates all left sessions j # i, by committing to v; if j > 4, and committing to 0" otherwise.

Note that ~
mimA (v;,2) = Hi_1(v1, ..., Um, 2)

mimZ,.(0,2) = H;(vy, ..., Um, 2)

This contradicts the fact that there exists a simulator S for A such that both:

1. mim4  (v;, 2) and sim2

2m(Z) are indistinguishable, and

2. mim4 (0, %) and sim?

‘om 2m(Z) are indistinguishable.

We conclude that (C, R) is not one-many concurrent non-malleable. [l

4 The Protocol

Our construction of concurrent non-malleable commitments follows the paradigm introduced by
Pass and Rosen for obtaining (single execution) non-malleable commitments [38]. The commit
phase of the Pass—Rosen protocol consists of having the sender engage in a (standard) statistically
binding commitment with the receiver and thereafter also provide a mon-malleable ZIC proof of
knowledge of the value committed to (a step which we subsequently refer to as compilation).
The reveal phase consists of sending the de-commitment information of the statistically binding
commitment used in the commit phase.

The non-malleable ZK protocols that are used in our construction are identical to the ones
presented in [38]. The basic scenario in which the ZK protocols take place involves a man-in-
the-middle adversary A is simultaneously participating in two executions of the protocol. These
executions are called the left and the right interaction.

The left interaction is tagged by an identity string TaAG € {0,1}", and the right interaction
is tagged by an identity TAG € {0,1}". The instructions of the protocol executed in each of the
interactions depend on the corresponding identities. (The way in which the identity strings are
determined and used will become clear at a later stage.)

In the left interaction, the adversary A is verifying the validity of a statement x by interacting
with an honest prover Pr,g using a protocol (Prag, Viag). In the right interaction A proves the
validity of a statement Z to the honest verifier Vi;,. The statement Z is chosen by A, possibly
depending on the messages it receives in the left interaction. As in the case of concurrent non-
malleable commitments, A has control over the scheduling of the messages.

12



4.1 Non-Malleability and Simulation-Extractability

In [38] it is shown that a commitment is non-malleable as long as it is compiled using ZX proto-
cols that satisfy a simulation exractability property (a strengthening of non-malleability). Loosely
speaking, simulation extractability requires that for any man-in-the-middle adversary A, there ex-
ists a simulator-extractor that can simulate both the left and the right interaction for A, while
outputting a witness for the statement proved by the adversary in the right interaction.

For the purpose of the current work we will need to show that the ZX protocols used in the
compilation satisfy an even stronger property, which we call one-many simulation-extractability.
This is a strengthening of the simulation extractability property in that it guarantees simulation
and extraction (of all witnesses on the right) even if there is an unbounded number of concurrent
right interactions (but still with only one left interaction).

As we will show later, a (non-interactive) commitment scheme that is compiled with one-many
simulation-extractable ZK will result in a one-many concurrent non-malleable commitment protocol
(C, R). By Proposition 3.2, this implies that (C, R) is also concurrent non-malleable.

Let A be a man-in-the middle adversary that is simultaneously participating in one left inter-
action of (Prag, Viae) while acting as verifier, and an (unbounded) polynomial number of right-
interactions of (Prziq,, Vige,)ie, while acting as prover. Let view4(z, z, TAG) denote the view of
A(z, z) when verifying a left-proof of the statement x, using identity TAG, and proving on the right
interaction statements of its choice and using identities TAGq, ..., TAG,, of its choice.

Definition 4.1 (One-many Simulation-extractability) A family {(Prac, Vrac)}race{o,13n, 8
said to be one-many simulation extractable if for any polynomial p(-) and any man-in-the-middle
adversary A that participates in one left interaction and at most m = p(n) right interactions, there
exists a probabilistic polynomial time, S = (SIM,EXT) such that for every TAG € {0,1}", every
x € L and every auziliary input z € {0,1}*, the following holds:

1. SIM(z, z, TAG) is statistically indistinguishable from view 4(x, z, TAG).

2. EXT(x, z, TAG) contains witnesses w; for all statements x; proved in accepting right sessions
in the view SIM(z, z, TAG), for which TAG; # TAG (where TAG; is the identity string used in
the i™ session in the right hand side view of SIM(z, z, TAG) ).

We note that the above definition refers to protocols that are simulation extractable with respect to
themselves. A stronger variant (which is not considered in the current work) would have required
simulation extractability even in the presence of protocols that do not belong to the family.

4.2 A Simulation Extractable Protocol

We now turn to describe our construction of simulation extractable Z/C protocols. At a high level,
the construction proceeds in two steps:

1. Construct a family of n zero-knowledge protocols that are simulation-extractable with respect
to each other (i.e., with identity strings tag € [n]). These protocols are identical to the
protocols introduced by Pass in [36].

2. Transform the above protocol into a family of 2" protocols with the same property (i.e., with
identity strings TAG € {0,1}"). The technique used in the transformation is from [38].

For simplicity of exposition we will start by describing a “weak” version of our ZK protocols (which
is quite complicated by itself). We then turn to describe a stronger version, which enjoys statistical
(actually perfect) security, and is the one which is required for our proof to go through.
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4.2.1 A family of n protocols

The family of n protocols is denoted {(Prag, Viag) }rage[n): and relies on the ZK protocol of Barak [1]
(see also [1, 36, 38]). Let n € N, andlet T : N — N be a “nice” function that satisfies T'(n) = n®(1).
(Prag, Viag) relies on a “special” NTIME(T'(n)) relation, which we denote by Rsm. Let {Hy}, be
a family of hash functions where a function h € H,, maps {0,1}* to {0,1}", and let Com be a
statistically binding commitment scheme for strings of length n, where for any « € {0,1}", the

length of Com(«) is upper bounded by 2n. The relation Rgpm, is described in Figure 2.

Instance: A triplet (h,c,r)€ H, x{0,1}"x {0, 1}Pov(®)
Witness: A program IT € {0,1}*, a string y€{0,1}* and a string s € {0, 1}y,
Relation: Rsim({h,c,r),({Il,y,s)) =1 if and only if:

L |yl < |r| —n.

2. ¢ = Com(h(II); s).

3. II(y) = r within T'(n) steps.

Figure 2: The relation Rgm.

Similarly to [1], the protocol (Piag, Viag) makes use of a witness-indistinguishable universal
argument (WIUARG) [17, 16, 29, 31, 5]. Let L be any language in NP, let n € N, let x € {0,1}"
be the common input for the protocol, and let tag € [n]. (Prag, Viag) is described in Figure 3.

Common Input: An instance z € {0,1}"
Parameters: Security parameter 17, length parameter £(n)
Tag String: tag € [m].
Stage 0 (Set-up):
V — P Send h & H,,.
Stage 1 (Slot 1):
P — V : Send ¢; = Com(0™).
V — P: Send r; < {0,1}tegt(n),
Stage 1 (Slot 2):
P — V : Send ¢z = Com(0™).
V — P : Send ry < {0,1}(m+1-tag)L(n)
Stage 2 (Body of the proof):
P& V: A WI UARG (Pya, Vua) proving the OR of the following three statements:
1. 3w e {0, 1}pWz) st Ry (x,w) = 1.
2. 3(ILy,s) s.t. Rsim((h,c1,m1), (I, y,s))=1.
3. 3Ly, s) s.t. Rsim((h,ca,72),({Il,y,s))=1.

Figure 3: The Pass protocol — (Prag, Viag)-

What differentiates between two protocols (Pag, Viag) and (Pisg, Vizg

) is the fact that the length

of the verifier’s messages in (Pg, Viag) is a parameter that depends on tag. The length of verifier

messages is also dictated by the parameter ¢(n).
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4.2.2 A family of 2" protocols

For the zero-knowledge protocols to be useful, it will be required to handle identity strings of length
n, and in particular construct a family of 2" protocols, whereas the family of protocols described
above was of size n (or at most O(n)).

One approach for obtaining a family of 2" simulation-extractable protocols is to rely on an
“n-slot” version of the protocols in {(Prag, Viag) fnen) (this was suggested in [36]). An alternative
approach (from [38]), shows how to obtain a family of 2" constant-round protocols by running n
parallel executions of (Pag, Viag), using appropriately chosen tags. This new family of protocols is
denoted {(Prac, Vrac) fracefo,1}» and is described in Figure 4.

Common Input: An instance z € {0,1}"
Parameters: Security parameter 1" length parameter £(n)
Tag String: TAG € {0,1}". Let TAG = TAGq, ..., TAG,.
The protocol:
P~ V: Forallie{l,...,n} (in parallel):
1. Set tag; = (7, TAG;).
2. Run (Pyg,, Viag,) with common input = and length parameter £(n).

V' Accept if and only if all runs are accepting.

Figure 4: The Pass-Rosen protocol — (Prsa, Viag)-

4.2.3 Strengthening the protocols

The above protocols are not strong enough for our analysis go through. To strengthen the protocols
we make the following two modifications (cf. [38]):

Proof of knowledge. We require that the WIUARG (Pya,Via) that is used in Stage 2 of
(Prag, Viag) is of a special form (which we call a special purpose WIUARG). The main
distinguishing feature of the special purpose WIU ARG (which is not necessarily satisfied by
an “ordinary” WIU ARG) is that it satisfies the proof of knowledge property of Definition 2.9.
This was proved in [38] for a specific construction, which is described in Figure 11.

Perfect Zero-Knowledge. The current version of the protocols is computational zero-knowledge.
For the proof to go through, however, we need to required that the protocols are perfect zero-
knowledge. This it is obtained by:

1. Using a perfectly hiding commitment scheme Com in Stage 1 of the protocol, and

2. using a UARG that is perfectly witness indistinguishable (a.k.a. witness independent)
in Stage 2 of the protocol (this is achieved by using perfectly hiding commitments).

In the sequel we denote by (Piag, Viag) (resp. (Prac, Viac)) the protocols obtained by performing the
above modifications. As shown in [38], the second modification results in a perfect zero-knowledge
version of the protocols (Prag, Viag) (as well as (Prag, Viac )).6

6Ac'cua,lly (Prag, Viag) is known to be sound only assuming that the family {'Hk}n is collision resistant against
T'(n)-sized circuits. Nevertheless, using ideas from [5], it is possible to show how by slightly modifying the relation
Rsim, one can guarantee soundness under “standard” collision resistance. See [5, 38] for more details.
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Lemma 4.2 ([38]) Suppose that Com are perfectly hiding, that {H,}n is a family of collision-
resistant hash functions, that (Pya, Viya) is a witness independent UARG, and that £(n) > 2n% +n.
Then, for any TAG € {0,1}", the protocol (Prac, Viac) is a perfect zero-knowledge argument.

The main technical contribution of the current paper consists of proving that, as a result of the
above two modifications, the protocol {(Prac; Vrac) frace{o,1}» is one-many simulation extractable.

Lemma 4.3 (Main technical lemma) Suppose that Com are perfectly hiding, that {Hy}n, is a
family of collision-resistant hash functions, that (Pya, Vi a) is a special-purpose witness independent
UARG, and that £(n) > 2n*+n. Then, {(Prac, Viac) bracefo1}» is one-many simulation extractable.

Before we go on and prove Lemma 4.3, we turn to describe our commitment protocol and to
show how one many simulation extractability is used in order to establish its one-many concurrent
non-malleability. The full proof of Lemma 4.3 can be found in Section 5.

4.3 The Commitment Protocol

Using protocols from {(Prac, Vrac) frace{o,1}» as a subroutine, we present the construction of con-
current non-malleable commitments. Let {Com, },c(o,1)+ be a family of non-interactive statistically
binding commitment schemes (e.g., Naor’s commitment [32]). Let (Gen, Sign, Verify) be a one-time
signature scheme secure against a chosen-message attack. Consider the following protocol (which
is a variant of the non-malleable commitment of Pass and Rosen [38]).

Security Parameter: 1%
String to be committed to: v € {0, 1}*.
Commit Phase:
R — C: Pick uniformly r € {0,1}".
C — R: Let vk, sk «— Gen(1¥). Pick uniformly s € {0, 1}*.
Set TAG = vk and send ¢ = Com,(v; s), TAG.
C « R: Prove using (Prag, Vaaa) that there exist v,s € {0,1}* so that ¢ = Com,.(v; s).

C — R: Let T denote the transcript of the above interaction.
Compute o = Sign(sk,T) and send o.

R: Verify that (Prsg, Viag) is accepting and that Verify(vk, T, o) = 1.
Reveal Phase:

C — R: Send v and s.
R: Verify that ¢ = Com,(v; s).

Figure 5: Concurrent non-malleable commitment - (C, R).

As argued in [38], the statistical binding property of (C, R) follows directly from the statistical
binding of Com. The computational hiding property follows from the computational hiding of Com,
as well as from the (stand alone) ZK property of (Prag, Viac) (see Lemma 4.2). Hence, we have.

"The difference between the this protocol and the protocol of [38] is that here we also employ a signature scheme.
We note that the important difference, nevertheless, lies in the analysis of the protocol.
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Proposition 4.4 ([38]) Suppose that {Com,},cio1y+ 45 a family of non-interactive statistically
binding commitment schemes, and that all members in the family {(Prac,Viac)}racefo,13r are
(stand-alone) zero-knowledge. Then, (C, R) is a statistically-binding commitment protocol.

4.4 Concurrent Non-Malleablity

Relying on the one-many simulation extractability of (Prag, Viag), we next argue that (C, R) is
one-many non-malleable.

Theorem 4.5 Suppose that {Com, },.cqo,1}+ i5 a family of non-interactive statistically binding com-
mitment schemes, and that {{Prac, Vrac)}race{o,)» 8 one-many simulation extractable. Then,
(C,R) is a one-many concurrent non-malleable commitment.

Proof: Consider a man-in-the-middle adversary A that participates in one left execution and
m = m(n) right executions. We assume without loss of generality that A is deterministic (this is
w.l.o.g since A can obtain its “best” random tape as auxiliary input).

Consider the simulator S that proceeds as follows on input z. S incorporates A(z) and internally
emulates the left interactions for A by simply honestly committing to the string 0" (i.e., S executes
the algorithm C' on input 0™). Messages from the right interactions are instead forwarded externally,
with the following exception: If A wishes to send the last message m in one right interactions, and
the if the complete transcript of this interaction (including the messages m) would be identical to
the transcript of the emulated left interaction (i.e., if A has fully copied the left interactions), S
instead externally sends the message L (to invalidate the right commitment).

We show that the following distributions are indistinguishable.

o {mimfom(v,z)}
o {sim&m(2)}
Suppose, for contradiction, that this is not the case. That is, there exists a polynomial-time

distinguisher D and a polynomial p(n) such that for infinitely many n, there exists strings v €
{0,1}™, 2z € {0,1}* such that

ve{0,1}m,2€{0,1}*

ve{0,1}7,2e{0,1}*

1
. A _ 41 _ P _
Pr {D(mlmcom(v,z) = 1} Pr [D(smcom(z)) 1} > o)
Fix a generic n for which this happens. We show how this contradicts the simulation-extractability
property of (Prag, Viag). We start by providing an (oversimplified) sketch. On a high-level the proof
consists of the following steps:

1. We first note that since the commit phase of (C, R) “essentially” only consists of a statement
¢ (i.e., the commitment) and a proof of the validity of ¢, A can be interpreted as a one-many
simulation-extractability adversary A’ for (Prag, Viag)-

2. Tt follows from the simulation-extractability property of (Prya, Viag) that there exist a com-
bined simulator-extractor S’ for A’ that outputs a view that is statistically close to that of
A’, while at the same time outputting witnesses to all accepting right proofs.
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3. Since the view output by the simulator-extractor S’ is statistically close to the view of A" in the
real interaction, it follows that also the values committed to in that view are are statistically
close to the values committed to by A’. (Note that computational indistinguishability would
not have been enough to argue the indistinguishability of these values, since they are not
efficiently computable from the view.)

4. Tt also follows that except with negligible probability, the simulator-extractor S’ will output
also the witnesses to all accepting right executions.® We conclude that S’ additionally outputs
the values committed to in the right executions.

5. We finally note that if D can distinguish between the values committed to by A and by S,
then D can also distinguish the second output (which consists of the committed values) of S’
when run on input a commitment (using Com) to v, and the second output of S” when run
on input a commitment to 0. This contradicts the hiding property of Com.

We proceed to a formal proof. One particular complication that arises with the above proof
sketch is that in the construction of (C, R) we are relying on the use a family of commitment schemes
{Com, },¢40,13+ and not a single non-interactive commitment scheme. To address this issue we make
use of non-uniformity to show the existence of particular “prefix” of right-interactions such that A
always chooses the instance Com, in its left interaction, yet A commits to different values when
receiving a commitments to v (as in mim) and 0 (as in sim).

More precisely, since in both experiments mim and sim the right executions are generated
identically, there must exists some fized prefix transcript 7 of A’s right interactions such that

1. A sends its first message r, in its left interaction directly after receiving the messages in 7
(as part of its right executions).

2. D distinguishes between mimZ (v, z) and sim3 () with probability p(n), conditioned on

the event that the right executions are consistent with 7.

c A R
DR — } the prefix 7
rr -1

Figure 6: The prefix 7.

Note that in particular 7 contains all first messages r sent by R in all right executions. Let
committed, (which is a subset of [m]) denote the set of executions ¢ such that A(z) has sent its
first message in the ’th execution in 7. (Recall that the first message sent by A, playing the “role”
of the C, consists of a commitment using Com.) For each i € committed;,, let value,(i) denote the
value committed to in the first message of execution 4 in 7. (If this value is not uniquely defined,
set value,(i) = L).

We next define a one-many simulation-extractability adversary A’ for (Pryq, Viag). On input
2, TAG', 2/ = (2,7, committed,, value,, sk), A’ proceeds as follows. A’ internally incorporates A(z)
and emulates the left and right interactions for A as follows.

8More precisely, the simulator-extractor only outputs witnesses to all right-executions that use a different tag than
the left interaction. We rely on the use of the digital signature to handle the case when A copies the tag of the left
interaction.
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1. It starts by feeding A all messages in 7 as part of its right executions.

2. For each i € committed,, A’ internally emulates the (rest of the) i’th right execution for A by
honestly following the strategy of R. (Note that this is possible, given any partial transcript
T, since R only uses public coins.)

3. For each i € [m],i ¢ committed,, A" externally forwards messages in the i’th right interaction.
(Note that since i ¢ committed,, A has not yet sent any messages in execution ¢. Thus A
is expected to produce a statement c, a tag vk and a proof of the statement ¢, as part of its
i'th execution.)

4. Messages in A’s left interaction are forwarded externally as part of A”’s left interaction. Once
A’ has feed A the last external message, A’ signs the transcript of the left interaction using sk
(received as auxiliary input) and feeds the signature to A. (Recall that whereas A’ receives
only a proof as part of its left interaction, A expects to see a commitment using (C, R). It is
therefore essential that A" adds a signature to the proof.)

Now, define the hybrid experiment H(v'):
1. Pick vk, sk < Gen(1¥), and pick uniformly s € {0,1}".

2. Let 7, denote the first message sent by A(z) in its left execution, when feed the messages in
7 (as part of its right interaction) and let ¢ = Com,._ (v, s).

3. Let 2’ = ¢, TAG' = vk, 2’ = (2,7, committed,, value,, sk). Emulate an execution for A’(z’, TAG', 2’)
by honestly providing a proof of 2’ (using tag TAG' and the witness (v/,s)) as part of its left
interaction, and honestly verifying all right interactions.

4. Finally, given the view of A’ in the above emulation, reconstruct the view of A in the emulation
by A’. Output the pair (view,?) where view denotes the reconstructed view of A and o
denotes the values committed to in the view of A. (As in definition 3.1, if a commitment
is undefined, invalid, or if the transcript of the commitment is identical to the transcript of
the commitment received by A’ on the left, its value is set to L). Note that although the
values committed to are not necessarily efficiently computable from the view of A, they are
determined.

Note that H is not efficiently samplable, since the last step in the description of H is not efficient.
However, except for that last step, every other operation in H is indeed efficient. (This will be
useful to us at a later stage). We start by showing the following claim.

Claim 4.6 D distinguishes the second output of H(0) from the second output of H(v) with proba-
bility p(n).

Proof: Note that by the construction of A" and H it directly follows that:

1. The first output of H(v) is identically distributed to the view of A in mim4 (v, z), conditioned
on the event that the right interactions are consistent with 7.

2. The first output of H(0") is identically distributed to the view of S in sim3.(2), conditioned
on the event that the right interactions are consistent with 7.

Since the second output of H is determined by the first output, it thus holds that:
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1. The second output of H (v) is identically distributed to the output of mim4 (v, z), conditioned

on the event that the right interactions in the view of A are consistent with 7.

2. The second output of H(0") is identically distributed to the output of sim2,, (v, z), conditioned
on the event that the right interactions in the view of S are consistent with 7.

Zom(2) with
probability p(n), conditioned on the event that the right interactions are consistent with 7. |

The claim now follows from the fact that D distinguishes between mimZ (v, z) and sim2

We next define an additional hybrid experiment H’, that proceeds just as H, except that instead
of emulating the left and right interactions for A’, H runs the combined simulator extractor S’ for
A’ to generate the view of A’.

Claim 4.7 For any string v', the output of H(v) is statistically close to the output of H'(v').

Proof: It following directly from the statistical indistinguishability property of S’ that the first
output of H is statistically close to the first output of H’. The claim is concluded by observing
that the second output is determined by the first output. WM

Remark: Note that the proof of Claim 4.7 inherently relies on the statistical indistinguishability
property of S’. Indeed, if the simulation had only been computationally indistinguishable, we would
not have been able to argue indistinguishability of the second output of H and H". This follows
from the fact that the second output (which consists of the actual committed values) is not efficiently
computable from the view alone.

We define a final hybrid experiment H” that proceeds just as H' with the exception that instead
of setting its second output ¥ to the actual values committed to in the view of A, H” efficiently
computes values ¥ = vy, .., v, as follows. Recall that the combined-simulator extractor S’ outputs
both a view and witnesses to all accepting right interactions. For each accepting right interaction
i in the reconstructed view of A, H” lets v; = value (i) if i € committed, and otherwise set v; to
be consistent with the witness output for execution ¢ by the combined simulator-extractor S’. For
all right execution j for which the reconstructed view of A is rejecting, set v; = 1.9

Note that in contrast to H', H” is efficiently computable. Furthermore it holds that:

Claim 4.8 For any string v, the output of H'(v) is statistically close to the output of H"(v').

Proof: Recall that the first output of H' and H” are identical. We show that except with negligible
probability, the second output of H” consists of the values committed to in the first output of H'.

We start by noting that it directly follows that the procedure by H” finds the correct values
for all rejecting right-executions and all accepting right-executions 4 such that i € committed,.
We proceed to consider accepting right-executions ¢ such that i ¢ committed,. Recall that for
these executions v; is obtained from the witnesses output by the combined simulator-extractor
S’. Also, recall that the combined simulator-extractor outputs witnesses for all accepting right
interactions that use a different tag than the one used in the left interaction. Namely, values for
all (non-rejected) right-commitments that use a verification key vk for the signature scheme that
is different from the one used in the left-commitment, are extracted. Also, note that values for
right-commitments that have exactly the same transcript as the left-commitment are “trivially”
extracted (as they are just L).

9Note that an interaction that is accepting in the view of A’ can still be rejecting in the view of A, since in the
latter we additionally require a valid signature.
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It only remains to analyze what happens to right-commitments that use the same verification
key as the left-commitment, but different transcripts. In this case, the values committed to are not
extracted. However, based on the unforgeability of the signature scheme, this event only happens
with negligible probability.'?

We conclude that except with negligible probability H” computes the actual values of the
commitments in the view of A, and thus the output of H' and H” are statistically close.

By combining the above claims we obtain that D distinguishes the second output of H”(v)
and H”(0™). However, since H” is efficiently samplable, we conclude that this contradicts the
(non-uniform) hiding property of Com,_. More formally, define a third hybrid experiment H"” that
proceeds as follows on input a commitment ¢’ using Com,_. H"” performs the same operations as
H" except that instead of generating the commitment c, it simply sets ¢ = ¢. It directly follows
from the constructions that H"”'(¢/) is identical to H”(0™) when ¢ is a commitment to 0", and
identical to H” (v) when ¢ is a commitment to v. We conclude that D together with H” (both of
which are efficient) can be used to distinguish commitments (using Com,._) to 0" and v. [

5 Simulation-Extractability

We now turn to prove Lemma 4.3. We start by proving an analogous lemma for the “small”
family {(Prag, Viag) }tage[n) Of 7 protocols. Then we show how to extend the analysis to the family
{<PTAG= VTAG>}TAG€{0,1}”'

Recall that one-many simulation-extractability (Definition 4.1) means that there exists a com-
bined simulator-extractor S = (SIM,EXT) that is able to simulate both the left and the right
interactions for a man-in-the-middle adversary A, while simultaneously extracting witnesses to the
m statements proved in the right interaction. The construction of S is fairly complex. To keep
things simple, we decompose the description of the simulator into three simulation procedures,
where each procedure relies on the previous (simpler) ones:

Basic simulator. This consists of the simulator that is used for establish the traditional (stand-
alone) zero-knowledge property of (Prag, Viag). The simulator is similar to the one used in
Barak’s original protocol [1].

Alternative simulator. This consists of the simulator that is used for establishing the “simu-
lation soundness” (cf. [39]) of (Piag, Viag). The simulator is designed to work in the presence
of a man-in-the-middle adversary that is conducting a single left interaction of (Piag, Viag)
concurrently with a single right interaction of (P,, Visg). It guarantees that an adversary

whose left view consists of a simulated execution of (Prag, Viag) cannot break the soundness

of (Pyzg; Visg)- The simulator is essentially identical to the one used by Pass [36].

Simulator-extractor. The description of the simulation extraction procedure S = (SIM, EXT)
relies on the previous two simulators. The simulator SIM relies on the basic simulator to
generate, whereas the extractor EXT (which also employs a simulation of the left interaction)
makes use of the alternative simulator.

We turn to provide a description of the above simulation procedures. (We only provide a brief
sketch of the basic and alternative simulators, and assume familiarity with the protocols of [1] and
[36]. For completeness, the description of the simulator-extractor is nevertheless self-contained.)

1ONote that even though the adversary has only seen one signed message using vk, we still need to rely on signature
scheme that is secure against a chosen message attack. This follows from the fact that the adversary can influence
the choice of this message (since the message is the transcript of the interaction).
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5.1 Basic Simulator

Given the program, Vii,, of an adversary verifier, the basic simulator acts as follows. In Stage

1 of the protocol (i.e., in Slots 1 and 2), the simulator proceeds by committing to the program

e v

tag- Let s1,52 the randomness used for the commitments.

In Stage 2 of the protocol, the simulator proves that it committed to the program of the verifier
in Slot 1. More concretely, the simulator uses the tuple (I, ¢1, s1) as a witness for (h,c1,71) € Lgim
(where Lgm is the language that corresponds to Rgm). This is a valid witness, since: (1) by
the definition of IT it holds that II(c;) = r1, and (2) as long as ¢(n) > 3n, for every tag € [n],

il = leil = £(n) — |ei| = n.

5.2 Alternative Simulator

The alternative simulator is constructed having a man-in-the middle adversary A in mind. Consider
an A that manages to violate the soundness of protocol (Pyz,, Vi54), while verifying a simulated proof
of (Prag, Viag). We show how to construct a cheating prover P* for a single instance of (P34, Vizg) by
forwarding A’s messages in (P54, Vi5) to an external honest verifier V and internally simulating the
messages of (Prag, Viag) for A. The problem that arises in the attempt to simulate is that the code of
the external verifier V' is not available to the simulator. This means that a stand-alone simulation
of the protocol (Piag, Viag) cannot be completed as it is, since it explicitly requires possession of a
“short” program II that would have generated the corresponding verifier messages.

On a high-level, the prover P* simulates the left interaction in the following way (see Sec-
tion 5.3.2 for a more detailed description). In Slot 1 of the protocol, the simulator proceeds by
committing to the program II; = A. So far its instructions are just like the basic simulator. In
Slot 2, however, the simulator commits to a program IIs which consists of both the code of A and all
messages A has received from Vi3, in the right interaction. In Stage 2 of the protocol, the simulator
attempts to prove that it committed to the program of the verifier in either Slot 1 or Slot 2. Note
that the simulator will succeed in this task if there exists a “short” message y (the actual required
length of y is determined by the tag tag and the slot number) such that II;(y) = r1 or IIa(y) = o,
where 71,79 denotes the challenges receives in Slot 1 and 2 respectively (of (Prag, Viag))-

Now, except for the “long” challenges 771,72 sent by the verifier of (Pt;;g,Vtgg> we do have a
description of all messages sent to the adversary A that is shorter than ¢(n) — n (since ¢(n) =
¢'(n) + n, where ¢'(n) upper bounds the total length of both prover and verifier messages, except
for the challenges r1,72). In order to show that we can still perform a simulation, even in the
presence of these messages (for which we do not have a short description), we use the fact that it
is sufficient to have a short description of the messages sent in one of the slots of (Piag, Viag). As

in [36], we separate between two different schedulings:

There exist one “free” slot j in (Prg, Viag) in which neither of 71, 7 are contained. In
this case the “free” slot j in (Piag, Viag) can be used to perform a basic simulation (since in
this case the simulator did indeed produce a commitment ¢; to the code of a machine that
on input ¢; outputs the challenge r; in slot j).

The messages 71,72 in (P, Vi5,) occur in slot 1, 2 respectively in (Prag, Viag). By con-
struction of the protocols, the length of either the first or the second challenge in (Pi5,, Vizg)
is at least £(n) bits longer than the corresponding challenge in (Prag, Viag). Thus there exist a
slot j in (Prag, Viag) such that even if we include the verifier’s challenge 7; from the protocol

(Pisgs Viag) in the description y, we still have £(n) — n bits to describe all other messages.
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Remark 1 As shown in [36], the protocols (Prag, Viag) retain both their zero-knowledge and simu-
lation soundness properties even if the adversary is allowed to participate in an a-priori bounded
number of concurrent executions.'* This additional property is useful to us in order to construct a
family of 2™ protocols (see Section 5.5 and [38] for more details).

5.3 Simulator-Extractor

Consider a man-in-the-middle adversary A. We assume without loss of generality that A is de-
terministic and has the auxiliary input z hardwired in. Let k& denote the number of rounds in
(Prags Viag), and let m be an upper-bound on the number of right interactions that A participates
in. We describe a combined simulator-extractor S = (SIM, EXT), that proceeds as follows on input
z (and auxiliary input z).

5.3.1 Simulation of view

We start by describing a machine SIM that simulates the view of A. This requires simulating all
the left and the right interactions for A. In the right interactions SIM acts as a verifier. Thus,
simulation is straightforward, and is performed by simply playing the role of an honest verifier in
all the executions of the protocol. In the left interaction, on the other hand, SIM is supposed to act
as a prover, and thus the simulation task is more involved. Towards its goals, SIM acts as follows.

1. For all i € [m], pick random 7; = (rj1,...,7;}) honest verifier messages for the right in-
teractions. Messages in the right interactions are then emulated by playing the role of the
honest verifiers with the fixed random messages 71,..., 7. That is, in order to emulate the

7™ message in the i*® right interaction, SIM forwards the message rij to A.

2. The left interaction is simulated as follows. SIM views the execution of A and the emulation
of the right interactions (with the fixed messages 71,...,7,,) as a stand-alone verifier for the
left interaction and applies a close variant of the basic simulator to this interaction. Let II(-)
denote the joint code of A and the emulation of the right interactions (including the coins
T1,...,7m). Whereas the basic simulator would have committed to II(-), we instead let SIM
commit to a program IT'(b,-) that is defined as follows:

(a) if b =0, execute II(+);
(b) if b =1, execute II(-) with the exception that messages 7; = (r;1,...,7ix) (i.e., messages
of the i*" right interaction) are not emulated, but rather received externally as input.

Thereafter, SIM proceeds exactly as the basic simulator, by additionally using both b = 0 and
IT" as a witness in stage 2 of the protocol. More concretely, SIM starts by computing h = II(-).
It then generates prover commitments ¢; = Com(h(IT'); s1) and co = Com(h(IT'); s3), where
1,89 & {O,l}pOIY(k). Using ¢; and cg, it computes 71 = II(h,c1), and ro = II(h,cq, c2).
Combining the messages together, this results in a Stage 1 transcript 7 = (h, ¢1,71, 2, 72).
By definition of (Piag, Viag), the transcript 7 induces a Stage 2 WIU ARG with II(h, ¢1, ¢2)
as verifier and (x, (h,c1,71), (h,ca,72)) as common input. Using (II', (0, h,c1), s1) as witness
for the statement (h,c1,71) € Lgim, the SIM follows the prescribed prover strategy of the
WIUARG and produces a convincing stage 2 transcript 72. Since r1 = I(h,¢1) = II'(0, h, ¢1)
and since |0] + |h| + |e1| < £(k) it follows that SIM can always succeed in this task.

Figure 7 demonstrates the definition of SIM, as well as of the program II'(b,-) (for simplicity
the various sessions are depicted as if they were executed sequentially).

"YWe mention that this requires adjusting the length parameter £(n) in a way that depends on the a-priori bound.
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Figure 7: The simulator SIM and the program IT'(b, -).

5.3.2 Extraction of witnesses

Once the view of A has been simulated, we turn to the extraction of witnesses to the statements
proved by A. Note that we need to extract witnesses to all concurrent right interactions. Towards
this goal we rely on a variant of Lindell’s concurrent extraction technique [30], combined with the
alternative simulator technique described in Section 5.2. In a sense, this can be seen as a (non-
trivial) extension of the method of Pass and Rosen [38] (which was used to show a similar property
for the simpler case of only one right interaction).

The machine EXT fixes the random coins of the simulator SIM and iteratively extracts witnesses
for each of the right interactions. More specifically, EXT starts by sampling a random execution of
SIM, using random coins 3,7. Let x1,...,Z;, be the inputs corresponding to the m sessions that
have taken place in the right interaction.

For each i € [m] such that the i*" right session was not accepting, EXT will assume that no
witness exists for the corresponding statement x;, and will refrain from extraction. For all i € [m]
so that the " right session is accepting in this execution of SIM, and for which the tag of the 7"
session is different from the tag of the left session, EXT will attempt to extract a witness for the
statement x; being proved in the corresponding session.

To do so EXT constructs a stand-alone prover P; for the i'" right interaction (Ptggi, Vtggi>, and
from which it will later attempt to extract the witness (see Figure 8). In principle, the prover P;
will follow SIM’s actions using the same random coins 3,7 used for initially sampling the execution
of SIM. However, P;’s execution will differ from SIM’s execution in the following important ways:

1. Messages in the i*® right session are no longer emulated internally, but forwarded externally.

2. In the simulation of the left protocol, use the alternative simulator from Section 5.2 in order
to complete stage 2 of the protocol.
P, v
P A v

1" session

—_— —_—t } -th

Figure 8: The prover F;.
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The reason for using the alternative simulation instead of the basic one is that the latter might
not be able to commit to the external messages of the i*! right interaction (as it might not know
these messages at the time it commits). Note that the way the simulation within P; is defined, the
program committed to in Stage 1 is II'. To enable the alternative simulation with a commitment
to II' in Stage 1, we let the simulator additionally provide the input b = 1 to II' as part of the
witness in Stage 2 (this enables II' to depend on the external messages in the it right session). The
alternative simulation technique, combined with the fact that there is only one external interaction

on the right hand side, are what eventually enables the simulation to go through.

The actual witness used by the simulator in Stage 2 depends on the scheduling of the messages.
We distinguish between the following cases, depending on where the i session has started with
relation to the messages ¢1,co in the left hand side protocol (see Figure 9).

(a)

(b)

()

c1
co

A

Vv

session ¢

C1

C2

A

Vv

session @

A

C1
C2

V

session 1

Figure 9: Three possible “starting points” for session i.

In each corresponding case, EXT acts as follows:

Both ¢; and ¢; have been sent before session i begins (Figure 9.a). In this event Slot 1
has no external messages and the basic simulation can be performed, i.e., EXT can use II’ as

a witness for (h,c1,71) € Lgim in Stage 2 (just as in SIM).

c1 has been sent but not ¢y (Figure 9.b). Let M;, Ms denote the “external” messages A
receives on the right hand side in Slot 1 and Slot 2 of the left interaction, respectively (see
Figure 10 for two "representative” schedulings). In this case, we define IT5(b,-) = IT'(b, My, -)
and let EXT send ¢o = Com(II5; s) (whereas ¢; is defined just as in SIM).

(a)

C1

T1
C2
T2

A

T1
C2

T2

Figure 10: Two “representative” schedulings.

Consider a Stage 1 transcript 71 = (h, ¢1,71, c2, r2) of the left interaction. By the construction
of (Piag, Viag), and from the fact that tag; is different from tag, it must be the case that either
Thus, either |M;| + |h| + |ci| + n < |ri| —n or
| Mo |+ |h|+|c1|+n < |ra] —n (see [36, 38] for more details). Furthermore, ¢1 is a commitment
to IT" and ¢ is a commitment to 115, and 7 = II'(1, (h, ¢y, My)) and ro = IT5(1, (h, ¢1, Ma)).

|Mq| < |r1| = €(n) or [Ma] < |ra] — £(n).
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Thus, either wy = I, 1, (h,c1, My),s1 is a valid witness for (h,c¢1,71) € Lgm or we =
15, 1, (h, ca, M3), s2 is a valid witness for (h,ca,79) € Lgim. If the former is true, EXT fol-
lows the prescribed prover using wj as witness, and otherwise uses wy as witness.

Neither of ¢; or ¢; have been sent (Figure 9.c). In this case EXT first generates a commitment
c1 just as SIM would, i.e., lets ¢; be a commitment to II', and then performs the same
operations as in the previous case.

It follows from the description above that the simulation employed by P; on the left interaction
is always able to convince A in the validity of the statement proved on the left interaction (a
very similar analysis appears in [38]). Moreover, this will hold even in case that the simulator is
“rewound” and new external messages are sent over in the right hand side interaction (the ability
to simulate while rewinding is necessary for the extraction to succeed).

Once P, is constructed, EXT can apply the (stand-alone) extractor, guaranteed by the proof of
knowledge property of (Piag, Viag), to P; and extract a witness to the statement x;. In the unlikely
event that the extraction failed in any of the m executions, EXT outputs fail, and otherwise it
outputs all the extracted witnesses.

Remark 2 It is important to have a P; for the entire protocol (P, Vizg.) (and not just for
(Pya,Vua)). This is because in order to arque that the witness extracted is a witness for x; and
not a witness to (h,c1,7m1) € Leim or to (h,co,73) € Lgim (which could indeed be the case if we fized
the messages (h,c1,71,c2,72) in advance).

The output of S. Finally the combined simulator-extractor S outputs fail whenever EXT does.
Otherwise, S outputs whatever SIM outputs, followed by whatever EXT outputs.
5.4 Correctness of the simulation-extraction

We proceed to show the correctness of the combined simulator-extractor S = (SIM, EXT). We start
by showing the correctness of simulation part of the above-described simulator-extractor.

Claim 5.1 The view of A in the simulation by SIM is identically distributed to its view in an actual
interaction with P and V.

Proof: The claim follows from 1) the perfect zero-knowledge property of (Piag, Viag), and 2) the
fact that the emulation of the right interactions by SIM is perfect. More precisely, consider the
following hybrid experiments.

1. Let Hy denote the view of A in the simulated execution.

2. Let H; denote the view of A in a simulated execution when letting the simulator use the true
witness w for x in the WIU ARG in Stage 2 (instead of using the “fake” witness”). Thus the
only difference between Hy and H; is the choice of the witness used in the WIU ARG.

3. Let H, denote the real execution. Note that the only difference between Hy and Hs is that in
H; A receives commitments ci, co to a program II', whereas in Hs it receives a commitments
to the string 0F.

Sub Claim 5.2 Hj is identically distributed to Hq
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Proof: The claim follows from the witness independent property of the WIU ARG used in Stage
2. More precisely, assume for contradiction that Hg is not identically distributed to Hi. Then there
must exists some Stage 1 transcript, such that the proofs generated in Stage 2 in Hy and H; are
not identically distributed, in contradiction to the witness independent property of stage 2. W

Sub Claim 5.3 H; is identically distributed to Ho

Proof: The claim directly follows from the perfect hiding property of the commitments used to
generate ¢; and co. W

This completes the proof of Claim 5.1. W

Claim 5.4 EXT outputs fail with negligible probability.

Proof: Note that EXT outputs fail only in the event that extraction from one of the left inter-
actions i € [m] fails. It follows from the POK property of (Prag, Viag) that for each i the extraction
fails with negligible probability. Since the extraction procedure is repeated at most m time (at
most once per left-interaction), we conclude (by the Union Bound) that the probability that the
extraction fails for any of the left interactions is negligible. [l

By combining Claim 5.1 and 5.4, we conclude that,
Claim 5.5 The first output of S is statistically close to A’s view in a “real” interaction.

Proof: By claim 5.1 if follows that the first output of S is identically distributed to a “real”
interaction, conditioned on the event that S does not output fail. However, since this event only
happens when EXT outputs fail, which by claim 5.4 only happens with negligible probability, the
claim follows. B

We proceed to show the correctness of the extraction.

Claim 5.6 For each i € [m], it holds that if the i™™ right interaction was accepting in first output
of S, and if the tag of the it interaction is different from the tag of the left interaction, then EXT
outputs a witness to the statement proved in the i™ right interaction.

Proof: We start by noting that since S outputs fail whenever the extraction by EXT fails, the
claim trivially holds in the event that the extraction by EXT fails.

Secondly, note that EXT performs extraction for all right-executions which satisfy the properties
described in the hypothesis (i.e., accepting proofs and different tags). Finally, note that for each
such interaction ¢, the stand-alone prover P; constructed by EXT uses the same random coins as
SIM in order to emulate all the interactions before session i begins. In addition, the prescribed
actions for the simulation of EXT are identical to the prescribed actions for the simulation of SIM.

This means that the statement proved by P; will be identical to the statement proved in the
view output by SIM. Since the extraction by EXT proceeds until a witness is extracted (or until the
extraction fails in which case, we are already done), EXT always outputs a witness to the statement
proved in the i*" right-interaction. Il

We conclude the proof by bounding the running time of the combined simulator-extractor S.

Claim 5.7 S runs in expected polynomial time.
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Proof: We start by noting that the running time of SIM is polynomial. Recall that that the
program II' committed to by SIM is of size poly(k). It thus directly follows that simulation of
Stage 1 messages can be done in polynomial time. Furthermore, it follows that the verification
time of Rgm on the instance (h,c1,r1) is polynomial in k. Finally, by the relative prover efficiency
of (Pya, Vua) it holds that the simulator can generate also Stage 2 message in polynomial time.

It now only remains to show that the ezpected running time of EXT also is polynomial. Recall
that EXT proceeds by first sampling a view using SIM and then proceeds to extract witnesses in
all accepting right executions. We show that for every right execution 7, the expected running-time
needed to extract a witness from that execution is polynomially bounded. Since the number of
right interactions is polynomially bounded, we conclude by linearity of expectations that the total
expected running time of the combined simulator-extractor SIM, EXT is polynomially bounded.

Let view; denote the partial view for A in a emulation by SIM up until A is about to start
its i right execution. Let p;(view;) denote the probability that A produces an accepting proof
in i*M right execution in the simulation by SIM, given that SIM has fed to A the view view;. Let
pl(view;) denote the probability that A produces an accepting proof in the i" right execution in
the simulation by P; (constructed in EXT), given that EXT has feed A the view view;.

Sub Claim 5.8 Let view; denote the partial view for A in a emulation by SIM up until A is about
to start its i'™ right execution. Then, p;(view;) = pl(view;).

Proof: The claim follows from the perfect indistinguishability of the “standard” simulator used
by SIM, and the alternative simulator used by EXT (this is proved similarly to Claim 5.1). i

Note that if we only assume that (Prg, Viag) is statistical zero-knowledge, we could only conclude
that p}(view;) is negligibly close to p;(view;). This would not be sufficient to bound the running-
time of the simulator (as this would have introduced difficulties similar to the ones discussed in [20]).

By the POK property of (Piag, Viag) it holds that for any partial view view; up until A is about
to start its i*" right execution, the expected running-time of the extractor is bounded by

poly(n)
pi(view;)

Since the probability of invoking the extraction procedure given this partial view is p;(view;), the
expected number of steps used to extract a witness is'?

M— i(view; ) ————— = poly(n
p;(viewi) _pl( 1) ( . ) P ly( )

pi(view;)
We conclude that the expected time needed to extract the witness in the 7" right execution is
polynomially bounded. The claim follows. W

5.5 Constructing a Family of 2" Protocols

Relying on the proof from Section 5.3 we now argue that the family {(Prac, Vrac)racefo,13n 18
also one-many simulation extractable. The key for demonstrating this is to show that the pro-
tocols (Piag, Viag) are simulation-extractable as long as there is at most a bounded number of left
interactions (as opposed to one as in Def. 4.1), and an unbounded number of right interactions.

121t is here that complications arise in the case when p} # p;. Note that the expected number of steps is no longer
guaranteed to be polynomial in this case, even if p) is negligibly close to p;.
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Specifically, consider a man-in-the middle adversary A that is simultaneously participating in k
left interactions of (Piag, Viag), acting as verifier, and an (unbounded) polynomial number of right-
interactions of (Piag, Viag), acting as prover. Let view(z, z,tag) denote the view of A(x,z) when
receiving left-proofs of statements = = x1,...,xx, using identity strings tag = tag,,...,tag;, and
proving statements of its choice in the right interaction (using tags of its choice).

Definition 5.9 (Bounded-many Simulation-extractability) A family {{Pag, Viag) fraceln]s 5
said to be k-bounded-many simulation extractable if for any polynomial p(-) and any man-in-the-
middle adversary A that participates in k left interactions and at most m = p(n) right interactions,
there exists a probabilistic polynomial time, S = (SIM,EXT) such that for every tag € [n]*, every
T € L* and every auziliary input z € {0,1}*, the following holds:

1. SIM(Z, z,tag) is statistically indistinguishable from view 4(Z, z,tag).

2. EXT(Z, z,tag) contains witnesses w; for all statements x; proved in accepting right sessions
in the view SIM(Z, z,tag), for which tag; # tag; for all j (where tag, is the identity string
used in the it session in the right hand side view of SIM(Z, z, tag)).

Lemma 5.10 Suppose that Com are perfectly hiding, that {Hy}, is a family of collision-resistant
hash functions, that (Pya,Vua) is a special-purpose witness independent UARG, and that ¢(n) >
2n3 +n. Then, {(Piag, Viag) brageln] 8 n-bounded-many simulation extractable.

Proof: The proof is essentially identical to the proof of one-many simulation-extractability of
(Prags Viag). The only difference is that in the simulation by SIM (and EXT), the message r1 in the
ith left execution can no longer be computed as II(h, c¢;), but in fact it is defined as II(M) where
M denotes all left-hand side prover messages that have occurred before r1. This creates a potential
problem when simulating the Stage 2 messages in the j* left protocol.

The key observation is that the total length of all prover messages on the left interaction does
not exceed 2n> (here we assume w.l.o.g. that the length of all prover messages in a session is upper
bounded by n?). Thus SIM (as well as EXT) can include all left-hand side prover messages sent to
A before the message r1 (or ro depending on what “slot” the simulator uses) as part of the witness
for either (h,c1,71) € Lgim or (h,c2,72) € Lsim- W

Corollary 5.11 Suppose that Com are perfectly hiding, that {Hy}n is a family of collision-
resistant hash functions, that (Pya,Vua) is a special-purpose witness independent UARG, and
that £(n) > 2n® +n. Then, {(Prac, Viac) fracefo1}» @5 one-many simulation extractable.

Proof: Consider a man-in-the-middle adversary that is verifying a statement x with identity string
TAG = TAG1,...,TAG, in the left interaction while proving m statements Zi,...,Z,, in the right
interaction, where for i € [m] the i*" right session has identity string TAG" = TAG, ..., TAG,. We
show how to construct a simulator-extractor S = (SIM,EXT) that simulates the view of A while
extracting all the witnesses for statements ; for which TAG' # TAG. ‘

Observe that for any i € [m] so that TAG" # TAG, there exist 49 € [n] for which (i, TAG; ) #
(4, TAG;) for all j € [n] (just take the ig for which TAG::O # TAG;,). Let tag, = (lo, TAGfO).

Given a one-many adversary A for (Prag, Viac), it is then possible to construct an n-many
adversary A’ for (Prg, Viag) that runs n parallel sessions in the left interaction and mn concurrent
sessions in the right interaction. The inputs and identity strings for the various sessions are defined
as follows:
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Left sessions. For j € [n] the common input of the 5 left session is z; = v and the identity
string is tag = (J, TAG;).

Right sessions. For (i,j) € [m] x [n], the input to the (i, )"

string is tag; = (j, TAG)).

right session is Z; and the identity

By Lemma 5.10 there exists a simulator S’ = (SIM’, EXT’) that produces a view that is statisti-
cally close to the real view of A’, and outputs witnesses to all right executions for which the tag is
different from all of (1, TAG1),. .., (n, TAG,). As observed above, and by construction of A’, for any
i € [m] so that TAG' # TAG, the identity tag; that A’ uses in the proof of the i*? right interaction is
different than all identities (1, TAGq),...,(n, TAG,) used in the n left interactions. Thus, for every
i € [m] so that TAG! # TAG, the procedure EXT will successfully extract a witness for the statement
x;. The extractor EXT will output the extracted witnesses for all such i’s. Finally, observe that
the output of SIM actually consists of a simulated view of A. Hence, we can define the output of
SIM to simply the messages generated by SIM’ and output them as the view of A. [l
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Appendix

A The ”Special-Purpose” Universal Argument

We construct a special-purpose WIUARG. Using this W1 UARG in the protocol (Piag, Viag), will
allow us to obtain a protocol (Prag, Viag) with the following two extra properties:

° (f’tag, XA/tag> is a proof of knowledge (while (Piag, Viag) only is a weak proof of knowledge).'3

° (f’tag, XA/tag> is perfect ZIC (while (Piag, Viag) only is computational Z/C). We note that in order
to achieve this we also need to instantiate the commitment scheme used in (Piag, Viag) with a
perfectly hiding commitment scheme.

Both these properties will be useful to us when using the zero-knowledge protocol as part of other
protocols. Let Com be a perfectly hiding commitment scheme. The specialized WIUARG is
depicted in Figure 11.

Protocol - Specialized-WIU ARG
Parameters: Security parameter 1*.
Common Input: = € {0,1}", and (h, ¢y, ca,r1,72) € {0, 1}V % {0, 1}Polv(k) x {0, 1}poly(k),
Stage 1 (Encrypted UARG):

V & P: Send o < {0, 1}*.
P < V: Send § = Com(0F).
V o P: Send v & {0,1}*.
P« V: Send § = Com(0%).

Stage 2 (Body of the proof):

P« V: A witness independent POK proving the OR of the following two statements:
1. There exists w € {0, 1}P°¥(2) 5o that Ry (x,w) = 1.
2. There exists (3,9, s1, s2) so that:
. B: Com(f; s1).
¢« 5= Com(d; s2).
e (a,B,7,9) is an accepting transcript for the UARG proving the statement:
— there exists a tuple (i, I, y, s) so that Rsim({h,c;, i), (IL,y,s))=1

Figure 11: The “special-purpose”’-WIU ARG

3In a proof of knowledge the extractor is supposed to succeed with probability negligibly close to the success
probability of the prover. In a weak proof of knowledge, on the other hand, it is sufficient that the extractor succeeds
with polynomially related probability
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