
On Robust Combiners for Oblivious Transfer
and Other Primitives

Danny Harnik1⋆, Joe Kilian2, Moni Naor1⋆, Omer Reingold1†, and Alon Rosen3

1 Dept. of Computer Science and Applied Math., Weizmann Institute of Science,
E-mail: {danny.harnik, moni.naor, omer.reingold}@weizmann.ac.il

2 Yianilos Labs, Email: joe@pnylab.com
3 CSAIL, MIT. Email: alon@csail.mit.edu

Abstract. A (1,2)-robust combiner for a cryptographic primitive P is
a construction that takes two candidate schemes for P and combines
them into one scheme that securely implement P even if one of the
candidates fails. Robust combiners are a useful tool for ensuring better
security in applied cryptography, and also a handy tool for constructing
cryptographic protocols. For example, we discuss using robust combiners
for obtaining universal schemes for cryptographic primitives (a universal
scheme is an explicit construction that implements P under the sole
assumption that P exists).
In this paper we study what primitives admit robust combiners. In ad-
dition to known and very simple combiners for one-way functions and
equivalent primitives, we show robust combiners for protocols in the
world of public key cryptography, namely for Key Agreement(KA).
The main point we make is that things are not as nice for Oblivious
Transfer (OT) and in general for secure computation. We prove that
there are no “transparent black-box” robust combiners for OT, giving an
indication to the difficulty of finding combiners for OT. On the positive
side we show a black box construction of a (2, 3)-robust combiner for OT,
as well as a generic construction of (1, n)-robust OT-combiners from any
(1, 2)-robust OT-combiner.

At the mouth of two witnesses ... shall the matter be established

Deuteronomy Chapter 19.

1 Introduction

Not putting all your eggs in one basket is commonly considered good advice and
this should be no different in cryptography. Suppose that we have a two cryp-
tographic schemes that we generally trust to be secure for some task. It makes
a lot of sense to try and combine these two into one scheme that is guaranteed
to be secure even in case that one of the two original schemes was broken. For
example, we have several encryption schemes that are based on various unproven
number theoretic assumptions, such as the hardness of factoring or of computing

⋆ Research supported in part by a grant from the Israel Science Foundation.
† Research supported by US-Israel Binational Science Foundation Grant 2002246.

discrete logarithms. We would like to combine these into one encryption scheme
that is secure if at least one of these unproven assumptions happens to be true.
We call such a construction a Robust Combiner.4 This is a scheme that combines
two different schemes and is robust to the failure of just one of them.

Definition 1.1 ((k, n)-Robust Combiner (Informal)) A (k, n)-Robust Com-
biner for a cryptographic primitive P is a construction that takes n candidate
schemes for P and combines them into one scheme such that if at least k of the
candidates indeed implement P then the combiner also implements P.

In general, the most interesting combiners are (1, 2)-robust combiners as they
are essential and at times sufficient for constructing (1, n)-robust combiners (n
is some parameter, typically related to the security parameter). For ease of no-
tations we will sometimes write just robust combiner or simply combiner when
we actually mean a (1, 2)-robust combiner.

Robust combiners are by all means not new in cryptography. Several practi-
cal constructions try to combine several primitives to achieve stronger security
guarantees. For example, Asmuth and Blakely [1] suggest a method of combining
two encryption schemes of which only one can be trusted. Another example is the
widely used idea of repeatedly encrypting a message several times with different
keys in order to enhance security, an idea that dates back as far as Shannon and
found in many applications since. This relates to combiners as security holds in
the case that the integrity of some of the keys is compromised, but at least one
remains secure. Also, Herzberg [15] discusses the notion of combiners explicitly
(see the related work section, Section 1.2).

There are plenty of other practical motivations for combiners, we briefly give a
few: For example, using software from a few sources that are not entirely trusted
(e.g., when running an election and using electronic ballots from a few vendors).
Combiners can also be used to avoid bugs in software, rather than checking the
correctness of a software (as in [5]), combine several different versions, hoping
that at least one is correct. One can also consider physical sources used for
cryptography (e.g. noisy channels) that cannot necessarily be trusted.

From the point of view of theoretical cryptography robust combiners are also
valuable. Combiners are useful tools in constructions and reductions between
cryptographic primitives. This happens in scenarios where it is guaranteed that
one of several constructions exist. We give two examples:

– Levin [21] (see exposition in [13]) introduced a Universal-one way funcion
(OWF) which is an explicit construction that is guaranteed to be a OWF
under the sole assumptions that one-way functions exist at all. The property
of one-way functions that allows for this universal constructions is the fact
that they admit robust combiners.

– In the construction of pseudo-random generators (PRG) from OWFs by
Hastad et al. [14] a polynomial number of candidates for PRG are given, one
of which is guaranteed to be a PRG. These are then combined (the combiner
is a simple XOR of the output) into one PRG construction.

4 This notion is called a Tolerant Construction in [15].

1.1 Our Contributions

In this paper we study what cryptographic primitives have or don’t have robust
combiners. We start by showing that simple robust combiners exist for OWF
(this is common knowledge) and its equivalents (such as private key encryption,
pseudo-random generators, functions and permutations, digital signatures and
bit commitment). We then present a robust combiner for Key Agreement (KA)
and, similarly, Public Key Encryption (PKE).

On Robust Combiners for Oblivious transfer: The abundance and relative sim-
plicity of robust combiners may lead to the belief that all primitives have simple
combiners. However, this is not the case for the fundamental oblivious transfer
primitive (OT) and thus for any non trivial task of secure computation. We de-
fine the notion of black-box combiners, giving several refinements to this notion.
Our main result shows the following:

Theorem 1.2 (informal) There exists no “transparent black-box” construction
of a robust OT-combiner.

Transparent black-box combiners are black-box combiners with a specific prop-
erty. In general, it is required that every time a party calls one of the candidates,
then the other party learns about this call (all messages generated by the can-
didate are actually sent to the other party).

Theorem 1.2 can be viewed as an indication of the hardness of the problem
of constructing combiners for OT. The point being that most of the known
examples of combiners are transparent black-box combiners. More precisely, this
indicates that achieving a combiner for OT will likely use the OT protocol outside
of its context (and perhaps not as an interactive process).

A good example and an exception to the generally simple combiners is the
combiner for bit commitments. This combiner uses the commitment candidates
in a non interactive manner in order to generate a OWF. It then uses the HILL
reduction [14] together with [22] to build a commitment from a OWF. Such a
strategy seems hard for OT since there are black box separations of OT from
simpler and less structured primitives such as OWFs and KA [18, 12].

Positive results for OT: On a more positive note, we show a very efficient black
box construction of a (2,3)-robust OT-combiner. We also point out that it is
easy to construct an OT protocol based on the assumption that at least one of
the assumptions regarding factoring or the discrete logarithms is correct. This
is because there are known constructions of OT from such assumptions (and in
general from any trapdoor permutation [11]) that have perfect (and guaranteed)
security for the receiver, in which case constructing combiners is simple.

(1,n)-robust combiners and universal schemes: We discuss the notion of a univer-
sal scheme for a cryptographic primitive (following Levin’s [21] universal OWF)
and show that primitives that admit (1,n)-robust combiners also have universal
schemes. We then study cases where (1,2)-combiners are sufficient for (1,n)-
combiners. Among others, it is shown that a (1,2)-robust combiner for OT also
gives a construction of a universal scheme for OT (the construction makes use
of the efficient (2,3)-robust combiner for OT shown here).

Other points: A delicate point when discussing combiners for a primitive P is
the question of functionality. In some settings, while one of the input candidates
is guaranteed to be secure, the other one is not even guaranteed to have the func-
tionality of P, making things more involved. In general, one way to overcome this
is by first testing the functionality of a possibly faulty candidate. For instance,
the combiner for KA first constructs a KA where the two parties agree only with
reasonably high probability, and then reduces the probability of disagreement to
a negligible one using an error correcting code.

1.2 Related Work

As mentioned before, robust combiners have already been used and studied. In
particular the work of Herzberg [15] focuses on robust combiners in cryptogra-
phy. This work puts more emphasis on efficiency and specifically the use of the
parallel and cascade constructions as combiners and shows combiners for various
primitives including OWF, signatures, MACs and others.

Implicit use of combiners is abundant. For example, the idea of using multiple
encryptions is widely used in practice. This practice is in fact advocated in the
NESSIE consortium recommendations [23]. Also the TLS (Transport Layer Se-
curity) specification [17] combines two hash functions (SHA1 and MD5) to give
better assurance of security. We quote from [17]: “ In order to make the PRF as
secure as possible, it uses two hash algorithms in a way which should guaran-
tee its security if either algorithm remains secure.”5 Lately Dodis and Katz [10]
studied the use of multiple encryptions with respect to CCA2 security, giving
a robust combiner for CCA2 secure encryption schemes using signatures. Ho-
henberger and Lysyanskaya [16] discuss how to securely combine two potentially
insecure software implementations. Another related concept is given in Brickell
and McCurley [6] and Shoup [25] that show schemes that achieve two different
types of security based on two different number theoretic assumptions.

The work of Damgard, Kilian and Salvail [9] is somewhat relevant to the
OT-combiner. This work discusses a weak version of OT called (p, q)-OT that
has probability p of compromising the sender’s security and probability q of com-
promising the receiver’s. It is shown that a fully secure OT can be constructed
from a (p, q)-OT if and only if p + q < 1. In our setting where two candidates
for OT are given, one can obtain a (p, q)-OT with p = q = 1

2 simply by choos-
ing one of the candidates at random. Therefore, the impossibility result of [9]
for p + q ≥ 1 gives some intuition for the impossibility of OT-combiners. How-
ever the result for p + q ≥ 1 relies heavily on the fact that the errors p and q

are assumed to be uncorrelated events, which is not the case in the setting of
combiners. On the other hand, for (2,3)-robust combiners, we can get an OT
protocol with p = q = 1

3 and use the reduction from [9] (although the (2,3)-
robust OT-combiner presented here is much more efficient, a property that is
used in Section 5.1).

5 Note that the concatenation of hash functions as suggested in the TLS [17] is indeed
a combiner in the sense that it is guaranteed to be as secure as the candidate that
remains secure. This does not however guarantee an increase of the security in case
that candidates are secure, as was shown by Joux [19].

2 Notations and Definitions

We denote by PPTM a probabilistic polynomial time Turing machine. In general,
our definitions view adversaries as uniform machines, though all results in this
paper also apply for definitions of security against non-uniform adversaries. An
Oracle PPTM is a PPTM that also has access to one or more oracles.

2.1 Cryptographic Primitives

The notion of a cryptographic primitive ranges from basic non-interactive con-
structs such as one-way functions, digital signatures and encryption to more
“high-level” interactive protocols such as secret key exchange and oblivious
transfer. Due to lack of space and the difficulty of actually giving a complete def-
inition to this notion, we refrain from presenting a full definition of a primitive,
and only highlight the key issues (see [24] for a formal definition).

In principle, the definition of a primitive P includes a description of the func-
tionality of the primitive (computable in polynomial time), along with a defini-
tion of security. The functionality defines what the primitive should do, whereas
the security deals with the ability of an adversary of a certain class (e.g., all
PPTMs) to learn something from an implementation of the functionality. This
ability is captured by a relation between possible machines (modelling the adver-
sary) and functions (modelling the implementation). The relation defines when a
machine breaks an implementation. For an implementation to be secure, it is re-
quired that no machine in the class of adversaries can break this implementation.

In the special case of interactive primitives, the functionality of the prim-
itive can be divided into two parts: (1) The next message function M , which
determines the next message to be sent by a party (given its partial view of the
interaction). (2) An output function O, which determines a party’s local output
(given the view of the entire interaction). A protocol is then obtained by let-
ting each of the sides alternately generate their next message by applying the
function M to their own local inputs, randomness and partial view (up to that
point in the interaction). At the end of interaction each side feeds its view to
the function O to get its local output.

2.2 Robust Combiners

Combiners receive as input candidates for implementing a primitive P. In prin-
ciple, the candidates can be either given as the code of a PPTM, or via an oracle
that implements it. The basic definition of a combiner does not take this issue
into consideration and admits any kind of usage of the candidate implementa-
tions.

Definition 2.1 ((k, n)-Robust Combiner) Let P be a cryptographic primi-
tive. A (k, n)-Robust Combiner for P is a PPTM that gets n candidate schemes
as inputs, and implements P while satisfying the following two properties:

1. If at least k candidates securely implement P then the combiner also securely
implements P.

2. The running time of the combiner is polynomial in the security parameter
m, in n and in the lengths of the inputs to P.6

Note that in general a combiner could completely ignore the candidate imple-
mentations and implement P directly. However, we are interested in combiners
whose security relies on the security guarantees of the candidates. It thus makes
sense to consider a more restrictive notion of a combiner, in which both the
construction and its proof are conducted in a “black-box” manner.

Definition 2.2 (Black-Box Combiner) A (1,2)-robust combiner is said to be
black-box if the following conditions hold:

1. Black-box implementation: The combiner is an oracle PPTM given access
to the candidates via oracle calls to their implementation function.

2. Black-box proof: For every candidate there exists an oracle PPTM RA (with
access to A) such if adversary A breaks the combiner, then the oracle PPTM
RA breaks the candidate.7

In the case of interactive primitives several additional restrictions on the usage
of the underlying candidate implementations make sense. One natural restric-
tion that comes into mind is to require that the combiner totally ignores the
implementation and simply relies on the functionality and security of one of the
candidates (e.g., the combiner for KA presented in Section 3.3).

Definition 2.3 A third party black-box combiner is a black-box combiner
where the candidates behave like trusted third parties. The candidates give no
transcript to the players, but rather take their inputs and return outputs.

In some situations the above notion is too restrictive and a transcript is actually
needed for enabling the construction of a combiner (for example, constructing a
OWF cannot be done from a third party implementation for OT). In this paper
we also discuss a relaxation of third party black-box combiners, that allows access
to the transcripts of the protocols as well.

Definition 2.4 A transparent black-box combiner is a black-box combiner
for an interactive primitive, where every call to a candidate’s next message func-
tion M is followed by this message being sent to the other party.

This notion can be thought of as allowing the use of the primitive only in the
context of the protocol (rather than allowing free off-line use of its oracles).
Note that the notion of black-box combiners (considered in Definition 2.2) is
less restrictive than the third party and transparent ones. A black-box combiner
is given unlimited off-line access to the oracles that generate the protocol whereas
the other combiners are not. Note that in the case of non-interactive primitives
the three notions defined above are equivalent.

6 Here we make the implicit assumption that the candidates themselves run in poly-
nomial time. See a further discussion in Section 3.1.

7 In the case of (k,n)-robust combiners then there are at least n − k + 1 candidates
that can be broken in this manner.

3 Positive Results

3.1 The General Framework for Robust Combiners

Cryptographic primitives are mainly about security. So naturally the emphasis
when constructing robust combiners will be that these primitives indeed remain
secure in face of the unfortunate case that one of the candidates actually breaches
security. However, there are some subtleties that need to be discussed. In some
settings, hardly anything is known about the candidates at hand other than the
fact that one of them is good. Specifically, only one candidate is guaranteed to
have the intended functionality. For example, a faulty candidate for a OWF,
may not only be easy to invert, but might also be hard to compute in the easy
direction (computing the function might be impossible for all PPTM). Other
primitives might have additional functionalities (other than running time) that
should be taken into consideration. For example, in the KA (key agreement) both
parties should output the same key (the agreement). In this section we present
approaches for dealing with these issues, dealing separately with running time
and other functionalities.

Running time: In general, one cannot expect to be able to check that a candidate
for a cryptographic primitive always halts in polynomial time unless the specific
polynomial bound on the running time is known in advance. We therefore assume
that the polynomial bound is given as input to the scheme. For example, a robust
OWF-combiner gets as input a polynomial p(·) and the security parameter 1m

along with the two candidates fA, fB . Now, when a combiner invokes a candidate,
it allows it to run for at most p(m) steps, and if it does not halt then the output
of the candidate is set to some fixed value (e.g. to the all zero string).8

Functionality Test: A possible approach for testing the functionality of a candi-
date (such as agreement in key agreement or the transfer of the chosen secret in
oblivious transfer) is presented. This method may sometimes be helpful but at
other times impossible, depending on the specific primitive at hand. The idea is
to have each party simulate n2 random off-line executions of the candidate, and
accept only if the candidate always satisfies its defined functionality. For exam-
ple, in key agreement, each party simulates a random execution by playing the
roles of both players and checking whether they agree. After passing the test we
are assured that with probability 1−O(2−n) the candidate does what it is sup-
posed to with probability at least 1 − 1

n
. While this is a rather weak guarantee,

it is sometimes sufficient (as in the case of KA-combiners, see Section 3.3).

Note: The functionality and time tests may not be always necessary. For exam-
ple, when trying to combine two constructions based on two different computa-
tional assumptions, the functionality and running time are usually guaranteed
by the design of these constructions. These tests are necessary however in the
general case where nothing is known (e.g., in universal schemes, see Section 5.1).

8 Unless relevant, we omit the parameter p(·) from the text and simply assume that
the running time of all candidates is polynomial (a fact that is essential for most
proofs of security).

3.2 Robust Combiners for OWFs and Equivalents

It is has long been known that one-way functions (OWF) have simple robust
combiners. For example, as pointed out in [15], simple concatenation of the OWF
candidates on independent inputs suffices . More precisely, given candidates fA

and fB , let F (x, y) = fA(x)|fB(y) (where fA and fB run in polynomial time).

Lemma 3.1 F is a robust OWF-combiner.

Lemma 3.1 (proof omitted) implies that all the primitives that are known to
be equivalent to OWF have robust combiners. By equivalent we mean, primitives
that have reductions to and from OWFs. Some of the more noteworthy equiv-
alent primitives are semantically secure private key encryption, pseudo-random
generators, functions and permutations, digital signatures and bit commitments.
The combiners for these primitives follow since given two candidates for prim-
itive P (from the list above), one can use the reduction from OWF to P to
create two candidates for OWFs. These two are then combined using the OWF-
combiner, which in turn is used to construct the primitive P from a OWF (with
the opposite reduction from P to OWFs).

Note, however, that for most of these primitives going via the reductions
to and from OWF is an overkill, and much more efficient and direct combiners
can be found. For example a combiner for pseudo-random generator is simply
one that XORs the outputs (thus the heavy reduction of [14] from pseudo-
random generators to OWFs may be avoided). An exception is the case of bit
commitments for which we are only aware of the combiner via the OWF. Unlike
the non-interactive primitives in the list (that have very simple combiners), the
suggested combiner for commitment is highly inefficient (this issue is further
discussed in Section 6).

3.3 Robust Key Agreement Combiner

Theorem 3.2 There exists a robust KA-combiner. The combiner reaches agree-
ment with all but a negligible probability. Furthermore, its round complexity is
at most that of the candidate with the higher number of rounds.9

Observe that a KA-combiner can be easily achieved if the functionality of both
candidates is guaranteed. The KA-combiner simply outputs an XOR of the out-
puts in the two candidates. If the functionality is not guaranteed, then the com-
biner for KA is constructed in two stages. First a KA-combiner with relaxed
agreement is constructed (a protocol in which the parties agree with all but a
polynomially small fraction). Then this is turned into a KA were the agreement
happens with overwhelming probability using an error correction code.

We note that the KA-combiner is a third party BB combiner. Also, since a 2
message KA protocol is equivalent to semantically secure (against chosen plain-
text attacks) Public Key Encryption (PKE), and since the KA-combiner main-
tains the same round complexity, we also get for free a robust PKE-combiner.

9 By round complexity we mean the worst-case round complexity.

4 On Robust Combiners for Oblivious Transfer

4.1 Impossibility of Black Box Robust OT-Combiner

In contrast to all the other primitives mentioned here that had robust combiners
(and usually very simple ones), the situation of OT is left open. We do not know
of any OT-combiner, simple or complicated. The main result in this section
indicates that this is indeed a much harder problem.

We start by giving some intuition: Suppose that a combiner does exist for
OT, then this combiner works for every two candidates that we plug in, as long
as one of them is actually secure. The idea is to show that the OT-combiner will
work just as well when given two faulty candidates where one candidates is secure
only for Alice while the other is secure only for Bob. But this immediately yields
a contradiction, since two such faulty candidates can be naively constructed
under no assumptions at all, giving rise to an OT protocol based on no hardness
assumptions, which is impossible. An actual proof of this idea shows that any
attack on the combined OT taking the two faulty candidates, can be translated
to an attack on the combined OT that takes one truly secure candidate (and
one faulty candidate), thus breaking the security of the combiner. This intuition
is formalized in the following theorem:

Theorem 4.1 There exists no construction of a transparent black-box robust
OT-combiner.

We note that it is simpler to show the impossibility for third party BB
combiners. However, we work a bit harder in order to capture the notion of
transparent BB combiners, and in particular combiners that can also use the
transcript of the protocol. Recall that a transparent black-box combiner (defined
in Section 2) is one in which the candidates are given via a “next message” oracle
and an output oracle. Whenever one of the parties calls a next message oracle
it is required to send the message generated to the other party.

Proof: Similarly to many black box impossibility results (starting with the
seminal paper of Impagliazzo and Rudich [18]), Theorem 4.1 is proved by trying
to show a “world” in which OT exists, but OT-combiners do not. The argument
however must be changed, since in every world that has OT, an OT-combiner
does exists, simply by running the correct OT protocol. Instead, the actual proof
shows two worlds such that every transparent black-box OT-combiner is insecure
in at least one of them (we show this even in the semi-honest model10).

We define two oracle worlds: World1 and World2. Both worlds contain a
PSPACE-complete oracle and an implementation of two OTs: OTA and OTB .
The implementation is rather straightforward and each OT is composed of three
oracles (presented below). In each world one of the implementations is made
flawed by adding an inverter for some of the oracles. Specifically, in World1 OTA

10 Recall that in the Semi-Honest model the parties follow the protocol as prescribed,
but perhaps later try to learn more information than intended.

is insecure and OTB is secure and in World2 OTA is secure and OTB is insecure.
We now consider the application of the combiner on candidates OTA and OTB in
these two worlds. Let us denote the resulting protocol by OTcmb. Note that OTA

and OTB look identical from the point of view of the combiner in both worlds.
Since in each of the worlds one of the OTs is secure, then by the definition of the
combiner, OTcmb should be secure in both worlds. We claim that OTcmb fails in
at least one of these worlds, thus contradicting the existence of a combiner

To prove our claim, we appeal to a “bare” world containing solely a PSPACE-
complete oracle (this oracle already exists in World1 and World2 and we will
explain its significance shortly). In the bare world we simulate OTcmb. Note that
OTcmb is well defined once we plug in an implementation for OTA and OTB .
Therefore, in order to implement OTcmb we give a naive implementation of both
OTA and OTB in the bare world. For this the sender (of OTcmb) simulates OTA

and the receiver (of OTcmb) simulates OTB . Meaning for example that whenever
OTcmb requires the receiver (of OTcmb) to query one of the functions of OTA

(either as a receiver or as a sender of this invocation of OTA), the receiver will
ask the sender (of OTcmb) this query (in the clear) and the sender will return the
answer (again in the clear). These simulations of OTA and OTB are obviously
insecure and therefore the resulting implementation of OTcmb is also be insecure
(in fact, no implementation of OT can be secure in the bare world since with
the PSPACE oracle no crypto is possible).

So what is the point of considering this naive implementation of OTcmb in a
world where this implementation is bound to fail? The point is that the failure
of OTcmb in the bare world translates to a failure of OTcmb either in World1 or in
World2. This is exactly what we need to complete the proof. Assume for example
that the receiver of OTcmb in the bare world learns both secrets. In this case,
the receiver of OTcmb in World2 can also learn both secrets. This is because the
receiver of in the bare world gains precisely the same knowledge as the receiver
of in World2: Both learn all inputs to OTB . In the bare world the receiver learns
it as it simulates OTB and in World2 the receiver learns it through the inverter
for OTB . We next give a formal proof.

We present an oracle that enables the execution of an OT protocol. This
oracle is composed of a triplet of functions OT = (f1, f2, R) as follows:

– f1 is a length tripling random function11 that takes the receiver’s choice bit c

and randomness rR and outputs m1 = f1(rR, c) that is used as the receiver’s
message.

– f2 is also a length tripling random function that takes the sender’s inputs
s0, s1 and randomness rS and the receiver’s message m1 and outputs the
sender’s message m2 = f2(rS , s0, s1,m1).

– R is called by the receiver, it takes m2 along with rR and c and outputs the
secret sc (if the inputs are consistent).

Using the above oracle it is possible to implement a secure OT protocol in a
straightforward manner. Notice that the receiver learns the secret of his choice.

11 A length tripling random function is a function f : {0, 1}n → {0, 1}3n that sends
each input value to an independently chosen random value in the output domain.

On the other hand since the parties cannot invert the random functions, then
the messages give them essentially no additional information. Moreover, this is
true even in the presence of a PSPACE-complete oracle as stated in the following
claim (given here without a proof):

Claim 4.2 The procedure defined by the oracle (f1, f2, R) is a secure OT pro-
tocol even in the presence of a PSPACE-complete oracle.

In addition to the functions enabling an OT oracle, we may add another oracle
for breaking such an OT. This oracle simply inverts the functions f1, f2, and
thus leaks both secrets to the receiver and the choice bit to the sender.12

The two worlds: We can now define the two oracle worlds.

– World1, contains:

1. A PSPACE-complete oracle.

2. Two OT oracles OTA = (fA
1 , fA

2 , RA) and OTB = (fB
1 , fB

2 , RB).

3. The oracle InvA for inverting OTA.

– World2, contains:

1. A PSPACE-complete oracle.

2. Two OT oracles OTA = (fA
1 , fA

2 , RA) and OTB = (fB
1 , fB

2 , RB).

3. The oracle InvB for inverting OTB .

Now consider a robust OT-combiner that takes OTA and OTB as candidates
and call this protocol OTcmb. By the definition of a combiner, OTcmb should
securely implement an OT protocol in each of the two worlds, since in both
worlds one of the two candidates remains secure. We achieve a contradiction by
showing that if the OT-combiner is transparent black-box then there exists an
attack on the protocol OTcmb in at least one of the two worlds.

The Bare World and Simulating OTcmb: To show the attack on OTcmb, we turn
to the “bare” world that contains just the PSPACE oracle but not the OT
oracles. For every instantiation of OTcmb in worlds 1 and world 2, we give a
matching protocol called OTbare in the bare world. The new protocol in the bare
world imitates OTcmb with the exception that the sender of OTcmb simulates the
oracle OTA (we explain below what we mean by simulating an OT oracle) and
the receiver of OTcmb simulates OTB . Note that the sender of OTcmb simulates
OTA whether he acts as sender or receiver in the specific invocation of OTA (and
likewise for the receiver of OTcmb simulating OTB).

A party simulates an oracle by answering every query to the functions f1 or
f2 by a random value. In addition, the party records all the answers he gave to
queries during the protocol’s execution. When the function R of the OT oracle

12 This inverting oracle is possible since with overwhelming probability f1 and f2 are
one-to-one functions (as they are random function and by a simple birthday argu-
ment are not likely to have any collisions).

is queried, the party simply inverts the functions using the records he stored in
memory, allowing him to reply with the proper answer.13

The first thing to notice is that OTbare indeed has the functionality of an
OT protocol (perhaps up to a negligible error). This is since the simulations of
OTA and OTB are consistent with actual OT implementations. On the other
hand, OTbare cannot be a secure OT protocol. This is simply due to the known
fact that there exists no unconditional construction for OT (this may be traced
back to [7] or even [4]). We give a more precise interpretation of this claim:
An OT protocol is defined by the parties inputs s0, s1 and c, along with their
respective random coins rS and rR. Denote by viewOT

S (and viewOT
R) the view

of the sender (receiver) in this protocol (including the party’s input, randomness
and the messages in the transcript).

Claim 4.3 For every implementation of OT, there exist poly-time procedures AS

and AR with access to the PSPACE-complete oracle such that for every choice of
s0, s1, c, rS , rR we have that either AS(viewOT

S) = c or AR(viewOT
R) = (s0, s1).

In particular, there exist two procedures AS and AR as above that constitute a
break of OTbare. Claim 4.3 is given here without a proof.

The attack on OTcmb: To conclude the proof, we show that the attack AS on
OTbare can be equally successful when applied in World1 on OTcmb. Likewise,
the attack AR, can be used on OTcmb in World2.

The attack of the sender of OTcmb in World1 is achieved as follows: Let the
sender simulate the view of the sender in OTbare, and run AS on this view. Denote
the simulated view by viewWorld1

S , which is generated as follows: The sender
runs OTcmb as prescribed (recall that OTbare follows the same prescription),
but whenever the oracle OTA is called (by either side), the sender calls the
inverting oracle InvA and records the inputs and outputs to the oracle. Here it
is crucial that the sender is aware of all the answers that the receiver got for his
queries to OTA, which is guaranteed by the transparent black-box structure of
the combiner.

The way OTbare was constructed ensures that every choice of oracles OTA and
OTB is consistent with some randomness of the sender and receiver in OTbare.
Thus for every execution of OTcmb with inputs s0, s1 and c, there exists an
execution of OTbare with the same inputs, for which viewWorld1

S is identical to
the view in OTbare (denoted viewbare

S). Thus whenever AS(viewbare
S) = c in the

bare world, then is also AS(viewWorld1
S) = c in World1. Respectively, in World2,

for the exact same execution of OTcmb, the receiver can simulate the view in the
same corresponding execution of OTbare. Now whenever AR(viewbare

R) = (s1, s2)
in the bare world, then is also AR(viewWorld2

R) = (s1, s2) in World2. Combining
this with Claim 4.3 we get that there exist procedures A′

S and A′
R, such that

for every execution of OTcmb, either A′
S breaks it in World1 or A′

R breaks it in
World2. ⊓⊔
13 We assume here that the OT oracle answers a ⊥ whenever an illegal input is given.

The simulator simply does the same when he gets a query with an input that was
not previously in his memory (and thus not a legal input).

4.2 (2,3)-Robust OT-Combiner

The results of the previous section indicate that (1,2)-Robust OT-combiners
seem out of our reach at this point. We can however give a solution to the
slightly more modest task of (2,3)-Robust OT-combiner. This solution is a third
party black-box combiner and relies on some often used techniques of Crépeau
and Kilian [8] for amplifying the security in weak versions of OT protocols.

Claim 4.4 There exists a (2,3)-robust OT-combiner scheme.

Furthermore, the (2,3)-combiner is very efficient, making just 6 calls to the can-
didates. The efficiency is essential for the application Section 5. Due to space
limitations we give here only a description of the construction and defer the
proof of its security to the full version of this paper. For simplicity we will dis-
cuss OT on single bits, although everything can be generalized for strings in a
straightforward manner.

Consider 3 candidates for oblivious transfer OTA, OTB , OTC . We first use a
construction that takes 2 OT candidates and always maintains the security of
the receiver.
R(OTA, OTB)(s0, s1; c) is defined as follows:

1. The sender chooses a random bit r

2. The receiver chooses random bits c0, c1 such that c0 ⊕ c1 = c

3. The parties run OTA(r, r ⊕ s0 ⊕ s1; c0) and OTB(r ⊕ s0, r ⊕ s1; c1)
4. The receiver outputs the XOR of his outputs in both executions.

We next present another construction that takes 3 candidates for OT and
strongly protects the sender. Define S(OTA, OTB , OTC)(s0, s1; c) as follows:

1. The sender chooses random bits rA
0 , rB

0 , rC
0 and rA

1 , rB
1 , rC

1 subject to rA
0 ⊕

rB
0 ⊕ rC

0 = s0 and rA
1 ⊕ rB

1 ⊕ rC
1 = s1.

2. The parties run OTA(rA
0 , rA

1 ; c), OTB(rB
0 , rB

1 ; c) and OTC(rC
0 , rC

1 ; c).
3. The receiver outputs the XOR of his outputs in the three candidates.

Finally, define OTAB = R(OTA, OTB), OTAC = R(OTA, OTC) and OTBC =
R(OTB, OTC). The (2,3)-robust OT-combiner is defined as S(OTAB , OTAC , OTBC).

An alternative construction is to create an OT that is secure with probabil-
ity 2

3 simply by first randomly choosing one of the three candidates and then
applying it. In [9] it was shown how such an OT can be amplified to one that is
secure with all but a negligible probability. However the construction presented
here is much more efficient, a fact that is later used in Section 5.

5 From (1,2)-Combiners to (1,n)-Combiners

(1,2)-robust combiners are essential for the existence of (1,n)-robust combiners.
It is interesting to study under what conditions (1,2)-combiners suffice for the
construction of (1,n)-combiners.

For some primitives, (1,k)-combiners can be reached as a simple extension
of the construction of (1,2)-combiners (for instance, the KA-combiner presented
in Section 3.3 extends easily). However, this is not clear for all combiners, and
depends on the specific primitive at hand. We try to give more generic answers
to the question posed above.

The natural construction takes the k candidates and organizes them as leaves
of a binary tree, and applies the (1,2)-Robust P-combiner scheme for every in-
ternal node (in a bottom up fashion). Now, by the properties of the combiner,
for every node that securely implements P, its ancestor must also securely im-
plement P. The output of the whole tree must therefore also securely implement
P since the root is an ancestor to all leaves. This construction is indeed a (1,k)-
combiner provided that the running time is polynomial. However, the depth of
the tree is logarithmic in k, and if the running time of the (1,2)-combiner is m

times that of its candidates, then the running time of the whole construction
is mΩ(logk). Thus, in order for the running time to be polynomial, m must be
a constant. We distinguish between general (polynomial time) combiners and
very efficient ones. A combiner is said to be very efficient if its running time
is bounded by a constant times the running time of its candidates (for example,
the combiners for OWFs and pseudorandom generators are very efficient).

Lemma 5.1 For any P and for all k, any very efficient (1, 2)-Robust P-combiner
can be turned into a (1, k)-Robust P-combiner.

As suggested above, the tree construction is not efficient when the running
time of the (1,2)-combiner is polynomial time. This is troubling since if a (non-
BB) OT-combiner is eventually found, it is not very likely that it will be a very
efficient one. Nevertheless, it will still suffice for constructing (1,n)-combiners
for OT. We show that given a very efficient (2,3)-combiner, one can construct
(1,n)-combiners from any (not necessarily very efficient) (1,2)-combiner. This
result along with the very efficient (2,3)-combiner for OT (Section 4.2) allow us
to focus our attention on constructing (1,2)-combiners for OT.

Theorem 5.2 Any (1,2)-robust combiner for OT, can be used to construct a
(1, k)-Robust combiner for OT.

Proof: The construction of the (1,k)-combiner makes use of the (2,3)-robust
OT-combiner presented in Section 4.2. The crux being that the (2,3)-combiner
for OT is very efficient (in fact it makes just 6 calls to its candidates, though
we simply use the multiplicative constant c). Divide the k candidates into three
groups of size 2

3k such that each candidate appears in at least two of the groups.
For instance, take the first two thirds as group 1, the second two thirds as group
2 and the first and last thirds as group 3. The construction recursively computes
a (1, 2

3k)-combiner on each of these groups. The 3 outcomes of these combiners
are given as input to the (2,3)-combiner.

Since one candidate is guaranteed to be secure, at least 2 of the combiners on
the 3 groups implement secure OT protocols. Therefore the outcome of the (2,3)-
combiner securely implements OT. Let t(k) be the running time of the (1,k)-
combiner. The base of the recursion is a (1,2)-combiner that takes a polynomial

time (say t(2) = nd for constant d). The recursion gives us running time t(k) =
3c · t(2k

3). Altogether this gives t(k) = (3c)log3/2
k · nd which is polynomial.

Note that the (1, n)-combiner can be made to work even if the OT func-
tionality14 of the candidates is not guaranteed. This is achieved by testing the
functionality of all candidates in advance and using an error correcting code as
well. ⊓⊔

5.1 Universal Schemes for Primitives

Definition 5.3 (Universal Schemes) A universal scheme U for a cryptographic
primitive P is an explicit construction with the property that if the primitive P
exists, then U is a secure implementation of P.

Levin [21] introduced such a scheme for OWFs. He showed an explicit function
which is a OWF under the sole assumption that OWFs exist. In a sense, the
meaning of such a universal scheme U for P is that any proof of existence for P is
guaranteed to be a constructive one, since, once P is proved to exist then U is an
explicit implementation of P. The property that allowed Levin’s universal-OWF
schemes is the existence of robust combiners for OWFs. We try to formalize this
connection for other primitives as well.

Lemma 5.4 For any cryptographic primitive P, a Universal-P scheme can be
provided if:

1. There is a known polynomial p(·) such that if there exists an implementation
for P then there also exists an an implementation for P with running time
bounded by p(n).

2. P admits (1, k)-robust combiners (for k a super-constant (ω(1)) in the secu-
rity parameter n).

Proof: The general idea of the universal scheme is to go over all possible im-
plementation programs, hoping that at least one of them will fulfill our need.
Then use the combiner to unite all of the programs into one that implements
the primitive P. More precisely, the universal scheme U with security parameter
1n goes over all of the Turing machines15 of description length at most log n and
unites them into one program using the (1,n)-Robust P-combiner with polyno-
mial p(n) as a time bound. So if a program implementing P exists then for some
large enough n, this program is included in the n programs that U executes, and
by the robustness of the P-combiner we have that U is also an implementation
of P. ⊓⊔

Lemma 5.4 requires two properties of a primitive, the first asks that a time
bound will be known on some implementation of P. This property is very likely
to be true about cryptographic primitives due to a padding argument similar

14 The OT functionality is that the receiver gets the bit of his choice.
15 This step depends highly on the nature of the primitive P. For example, if P is

an interactive protocol (like key agreement), then we enumerate interactive Turing
machines.

to the one used for universal OWF in [13] (omitted her due to space limitations).
The padding argument works for most of the primitives we can think of. However
care needs to be taken with primitives such as pseudorandom generators where
padding of the input must also involve padding of the output. In the case of
pseudorandom generators, for instance, it is easy to find a slightly modified
argument that will work.

As corollaries of the above claims we get explicit constructions of many cryp-
tographic primitives such as Universal-OWF and Universal-KA. Due to Theorem
5.2 We further get:
Corollary 5.5 Any (1,2)-robust combiner for OT, can be used to construct a
universal-OT scheme.
Note that in a computational setting, a (1,2)-combiner for OT can simply ignore
the candidate and run a universal-OT scheme (this is a non-black-box combiner).
Thus, in this setting we can say that (1,2)-combiners for OT exist if and only if
universal schemes for OT exist.

6 Open Problems

The most intriguing question that rises from this paper is whether robust OT-
combiners exist or not. Black box impossibility results have already been by-
passed in the past, for instance, in the work of Barak [2]. We believe however,
that solving this problem will require an altogether new technique. The tech-
niques of [2, 3] do not seem to help here. The reason being that this technique
makes use of an explicit description of the adversary’s program, which is of im-
portance when dealing with malicious behavior. However our problem is inter-
esting also in the semi-honest model, where such a program is constant. Another
direction would be to try and reach a full impossibility result for general (rather
then transparent) black-box combiners.

An interesting question about combiners regards the bit commitment prim-
itive. For computationally hiding and statistically binding bit commitments we
know how to build robust combiners, via the reduction to OWFs (given a OWF,
commitments can be constructed using the reductions of Naor [22] and Hastad
et al. [14]) which gives an inefficient combiner. It would be interesting to find
a direct and more efficient combiner for commitments. For statistically hiding
(computationally Binding) commitments the question of combiners is altogether
open. 16 It is worth noting that no third party BB combiners for commitments
exist (for both types of commitments). This can be shown using the same tech-
nique from our impossibility result for OT (Theorem 4.1). On the positive side,
there is a very efficient (2,3)-robust combiner for commitments (shown in [15]).
Also, if the security of one of the party’s is guaranteed then constructing com-
biners for commitments is easy. An example for such a case is commitments to
strings where the commitment is much shorter than the secret (as in [20]).

Acknowledgements: We thank the anonymous referees for their helpful com-
ments.
16 A reduction of statistically hiding commitments to OWFs would suffice for con-

structing combiners, however, at this point such a reduction is not known.

References

1. C.A. Asmuth and G.R. Blakely. An efficient algorithm for constructing a cryp-
tosystem which is harder to break than two other cryptosystems. Computers and

Mthematics and Applications, 7:447–450, 1981.
2. B. Barak. How to go beyond the black-box simulation barrier. In 42nd FOCS,

pages 106–115, 2001.
3. B. Barak. Constant-round coin-tossing with a man in the middle or realizing the

shared random string model. In 43rd FOCS, pages 345–355, 2002.
4. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In 20th STOC, 1988.
5. M. Blum and S. Kannan. Designing programs that check their work. In 21st ACM

Symposium on the Theory of Computing, pages 86–97, 1989.
6. E. Brickell and K. McCurley. An interactive identification scheme based on discrete

logarithms and factoring. Journal of Cryptology, 5(1):29–39, 1992.
7. B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM Journal

on Disc. Math., 4(1):36–47, 1991.
8. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security

assumptions. In 29th FOCS, pages 42–52, 1988.
9. I. Damgard, J. Kilian, and L. Salvail. On the (im)possibility of basing oblivious

transfer and bit commitment on weakened security assumptions. In Eurocrypt ’99,
pages 56–73, 1999.

10. Y. Dodis and J. Katz. Chosen ciphertext security of multiple encryption. In TCC

05, pages 188–209, 2005.
11. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.

Communications of the ACM, 28(6):637–647, 1985.
12. Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The re-

lationship between public key encryption and oblivious transfer. In 41st FOCS,
pages 325–335, 2000.

13. O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.
14. J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator

from any one-way function. SIAM Journal of Computing, 29(4):1364–1396, 1999.
15. A. Herzberg. On tolerant cryptographic constructions. ECCC, TR02-135, 2002.
16. S. Hohenberger and A. Lysyanskaya. How to securely outsource cryptographic

computations. In TCC 05, pages 264–282, 2005.
17. IETF. The tls protocol, version 1.1. www.ietf.org, 2002.
18. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way

permutations. In 21st ACM STOC, pages 44–61, 1989.
19. A. Joux. Multicollisions in iterated hash functions. application to cascaded con-

structions. In CRYPTO ’04, volume 3152, pages 306–316. Springer.
20. J. Kilian. A note on efficient zero-knowledge proofs and arguments. In 24th STOC,

pages 723–732, 1992.
21. L. A. Levin. One-way functions and pseudorandom generators. Combinatorica,

7:357–363, 1987.
22. M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,

4(2):151–158, 1991.
23. Nessie. Recommended cryptographic primitives. www.cryptonessie.org, 2003.
24. O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between crypto-

graphic primitives. In TCC ’04, pages 1–20, 2004.
25. V. Shoup. Using hash functions as a hedge against chosen ciphertext attack. In

Advances in Cryptology – EUROCRYPT ’ 2000, volume 1807, pages 275–288, 2000.

