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Abstract. We present the first constant-round protocol for Oblivious
Transfer in Maurer’s bounded storage model. In this model, a long ran-
dom string R is initially transmitted and each of the parties stores only a
small portion of R. Even though the portions stored by the honest par-
ties are small, security is guaranteed against any malicious party that
remembers almost the entire string R (but not all of it). Previous con-
structions for oblivious transfer in the bounded storage model required
polynomially many rounds of interaction. In contrast, our protocol uses
only 5 messages. In addition we also improve other parameters, such as
the number of bits transferred and the probability of immaturely abort-
ing the protocol due to failure.

Our techniques utilize explicit constructions from the theory of de-
randomization. In particular, we achieve the constant round complexity
of our oblivious transfer protocol by constructing a novel 4-message pro-
tocol for Interactive Hashing, in place of the well-known protocol by Naor
et al. (known as the NOVY protocol) which involves many rounds of in-
teraction. Our 4-message interactive hashing protocol is constructed by
use of t-wise independent permutations, and may be of independent in-
terests. For achieving constant round complexity we also construct a new
subset encoding scheme that is dense, namely guarantees that almost ev-
ery strings in the image of the encoding function has a preimage. Other
tools we employ include randomness extractors and averaging samplers.
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1 Introduction

Oblivious transfer (OT) is one of the fundamental building blocks of modern
cryptography. First introduced by Rabin [42], oblivious transfer can serve as
a basis to a wide range of cryptographic tasks. Most notably, any multi-party
secure computation can be based on the security of OT. This was shown for vari-
ous models in several works (cf. [47, 26, 33]). Oblivious transfer has been studied
in several variants, all of which were eventually shown to be equivalent. In this
paper we consider the one-out-of-two variant of OT by Even, Goldreich ad Lem-
pel [21], which was shown to be equivalent to Rabin’s variant by Crépeau [10].
One-out-of-two OT is a protocol between two players, Alice holding two secrets
s and s1, and Bob holding a choice bit ¢. At the end of the protocol Bob should
learn the secret of his choice (i.e., s.), but learn nothing about the other se-
cret. More precisely, the latter means that the receiver Bob (malicious or not)
learns information about at most one secret, that is, if he obtains any (partial)
information about one of the two secret, then he learns nothing about the other
secret. Alice, on the other hand, should learn nothing about Bob’s choice c.

Traditionally, constructions for OT have been based on strong computational
assumptions, either specific assumptions such as the hardness of factoring or
Diffie-Hellman problems (cf. [42, 3, 37]), or generic assumptions such as the
existence of enhanced trapdoor permutations (cf. [21, 24, 22]). In contrast, OT
cannot be reduced in a black box manner to presumably weaker primitives such
as one-way functions [31]. This state of affairs motivates the construction of
OT in other types of setups. Indeed, protocols for OT have been suggested in
different models such as under the existence of noisy channels [11] or quantum
channels [5, 13].7 In this work we follow a direction initiated by Cachin, Crépeau
and Marcil [7] and construct OT in the Bounded Storage model.

1.1 The bounded storage model

In contrast to the usual approach in modern cryptography, Maurer’s bounded
storage model [35] bounds the space (memory size) of dishonest players rather
than their running time. In a typical protocol in the bounded storage model
a long random string R of length N is initially broadcast and the interaction
between the polynomial-time participants is conducted based on a short portion
of R.® What makes such protocols interesting is that, even though the honest
players store only a small fraction £ < N of the string R, security is guaranteed

7 We note that it is impossible to construct unconditionally secure oblivious transfer
protocols in the original model for quantum cryptography (See references in [13]).
Recently in [13], combining ideas from both the bounded storage model and the
quantum model for cryptography, Damgard et al. introduced the so-called bounded
quantum storage model, and constructed a very efficient non-interactive protocol for
Rabin’s original OT in this new model.

8 One possible implementation is that R is broadcast at a very high rate by a trusted
party. Another possibility is to have R transmitted from a satellite. We remark that
in our protocol (as in many previous ones) one of the parties can transmit these bits.



even against dishonest players with space K where k << K < N. Moreover,
dishonest players are not restricted to be computationally bounded (This is
formalized by allowing dishonest players to choose an arbitrary memory function
g*: {0,1}" — {0,1}%, and store ¢g*(R). From that moment on, they are not
bounded in any way). Naturally, we’d like to maximize K and minimize k. In
this paper we have K = v N for an arbitrary constant v < 1 and k will be about
K2,

The bounded storage model has two appealing properties: (1) The security
obtained is information theoretic and thus everlasting in the sense that secu-
rity is guaranteed even if adversaries acquire infinite space after the protocol
is executed. (2) Protocols in the bounded storage model need not rely on any
assumption except the limitation on the storage capabilities of the adversary.
The latter property should be contrasted with traditional works in cryptogra-
phy in which, besides bounding the adversary’s computational capabilities, it is
also required to rely on unproven hardness assumptions (such as the existence
of enhanced trapdoor permutations, or the hardness of factoring large integers).
We mention that most of the previous work on the bounded storage model con-
centrated on private key encryption [35, 8, 2, 1, 18, 20, 34, 46] and key agreement

8.

1.2 Oblivious transfer in the bounded storage model

The first protocol for OT in the bounded storage model was given in [7]. This
protocol requires k ~ K?/3 and allows K = vN for an arbitrary constant v < 1.
The error € in this protocol is rather large e = k=90, (Loosely speaking the
error € measures the probability that a dishonest receiver with storage bound
K learns information of both secrets.) A modified protocol with a smaller error
e and smaller space k was given in [17]. For every constant ¢ > 0, it achieves

k= KY?t¢ and e = 2_’“Cl where ¢ > 0 is a constant that depends on ¢. We
mention that the security of [17] is proven in a slightly different (and weaker)
model, where it is assumed that two random strings Ri,Ro of length 6K are
transmitted one after the other and a malicious storage bounded receiver chooses
what to remember about Ry as a function of what he remembers about R;. The
work of [17] was subsequently extended to deal with one-out-of-k OT for any
small constant k > 2 in [29].° All protocols mentioned above require a lot of
interaction. Specifically, for ¢ = 2*’“0(1), they require the exchange of k(1)
messages between the two players.

1.3 Our results

We give a constant round OT protocol in the bounded storage model. Our pro-
tocol uses b messages following the transmission of the random string R. We

Furthermore, the assumption that R is uniformly distributed can be relaxed and it
is sufficient that R has high min-entropy.
% We note that a similar extension can be easily applied to our work.



achieve parameters k and e similar to that of [17] (that is, for every ¢ > 0 there

exists ¢/ > 0 such that our protocol has k = K'/27¢ and ¢ = 2_’“6/) while work-
ing in the stronger model of [7]. Similar to [7] we can achieve K = vN for an
arbitrary constant v < 1. In addition to being constant-round, our protocol also
achieves the following improvements over [7, 17]:

— The previous protocols are designed to transfer secrets in {0, 1}. Thus, trans-
ferring long secrets requires many messages. Our protocol can handle secrets
of length up to £“(") in one execution.'”

— The previous protocols abort unsuccessfully with probability 1/2 even if both
players are honest. Our protocol aborts only with probability 9=k,

— For error € = 2_’“0(1), the number of bits communicated in the two previ-
ous protocols is at least K'/2. In contrast, for error € = 27 our protocol

communicates only O(k®) bits.

We also give a precise definition for the security of oblivious transfer in the
bounded storage model, and point out difficulties arising when trying to consider
the more standard notion of a simulation-based definition.

1.4 Interactive Hashing

As an essential building block of our OT protocol, we construct a novel constant-
round 2-to-1 interactive hashing protocol for unbounded parties. Loosely speak-
ing, in such a protocol Bob holds an input W € {0,1}™, and Alice and Bob
want to agree on a pair Wy, Wi such that Wy = W for some d € {0, 1}, yet Alice
does not know d. It is also required that a dishonest Bob cannot “control” both
Wo and Wi. In the context of this paper, for the latter it suffices that for any
fixed “bad” set S that is sufficently small, a dishonest Bob cannot force both
Wy and Wi to be in S (See Section 5 for a precise definition). As observed in
[7], the protocol of Naor, Ostrovsky, Venkatesan and Yung [36] (known as the
NOVY protocol, originally used in the context of perfectly-hiding commitments)
achieves 2-to-1 interactive hashing. One major drawback of the NOVY protocol,
however, is that it requires m — 1 rounds of interaction. In this paper, relying
on an explicit construction of almost t-wise independent permutations, such as
the constructions presented in [32] and references therein, we construct a new
4-message protocol for 2-to-1 interactive hashing that can replace the NOVY
protocol in the context of oblivious transfer in the bounded-storage model.

It is worth noting that since the security guarantees of this interactive hash-
ing protocol hold against unbounded parties, the protocol is not restricted to the
bounded storage model alone and may be of independent interest. On the other
hand, our new 4-message interactive hashing protocol cannot replace the NOVY
protocol in the original context in [36], that is, for constructing perfectly hiding

10 Tt is also clear that OT of strings immediately implies OT of bits.



bit commitment schemes from arbitrary one-way permutations.!! The NOVY
protocol achieves a stronger simulation-based security for interactive hashing
than the one defined here (see further details in Section 8). Another slight draw-
back of our interactive hashing protocol compared to the NOVY protocol is that
it requires the knowledge of the size of the “bad” set S (this is true only when
the set S is relatively large and contains a polynomial fraction of the all inputs).
In the context of OT in the bounded storage model this requirement translates
to knowledge of the storage bound of the malicious receiver, which is a standard
requirement in the bounded storage model.

Organization. In Section 2 we present an overview of the techniques that were
utilized to achieve our results. Some preliminaries are given in Section 3. Sec-
tion 4 provides a precise definition of OT in the bounded storage model. In Sec-
tion 5 we define the notion of “interactive hashing” and give a constant round
protocol for interactive hashing. The OT protocol is presented in Section 6. Sec-
tions 6.1 and 7 are devoted to proving the correctness of the protocol. Finally,
we conclude and mention some open problems in Section 8.

2 Overview of the technique

As motivation for our protocol, we begin by suggesting a simple protocol for OT
in the bounded storage model which is bad in the sense that it requires large
storage from the honest parties: Alice is required to store all of the string R
and Bob is required to store half this string. We partition the N bit long string
R into two equally long parts Ro, R1 of length N/2. Recall that Alice has two
secrets Sp,s1 and Bob has a “choice bit” ¢ and wants to obtain s.. Bob will
choose which of the two parts Rg, R1 to store depending on his “choice bit” c.

Intuitively, even if Bob is dishonest and has storage bound v N then there is
an I € {0, 1} such that Bob “does not remember” (1—v)N/2 bits of information
about R;. This can be formalized by saying that the conditional entropy of R;
given the memory content of Bob is roughly (1 —v)N/2. (Actually, in this paper,
as in [7, 17], we need to work with a variant of entropy called min-entropy).
Let Ext(X,Y") (Ext for extractor) denote a function such that whenever X has
sufficiently high min-entropy and Y is uniformly distributed then Ext(X,Y) is
close to being uniformly distributed. (The reader is referred to [40, 45] for surveys
on extractors). To complete the protocol, Alice sends Z; = s; @ Ext(R;,Y;) for
both i = 0 and ¢ = 1. Note that an honest Bob can compute Ext(R.,Y.) & Z.
and obtain s.. However, if Bob is dishonest then Z; is close to uniform from
Bob’s point of view and reveals no information about s;.'? Note that even an

' We remark that constant-round perfectly hiding bit commitment schemes are known
[39, 16, 25], but require seemingly stronger assumptions than the one-way permuta-
tions used in [36].

2 We mention that the argument above is imprecise. Given the memory content of
Bob, the strings Zp, Z1 are no longer independent. Thus, to prove security it is not



Input of Alice: Secrets so, s1.

Input of Bob: Choice bit: ¢ € {0,1}.

A random string R = (Ro, R1) is transmitted.

Alice: Store all of R.

Bob: Store R..

Alice: For 7 € {O7 1}7 send a uniformly chosen seed Y;, compute V; = Ext(R;,Y;)
and Z; = V; ® s;. Send Y;, Z;.

Bob: Compute V. = Ext(R., Y.) and obtain s = V. ® Z..

Fig. 1. A naive protocol for OT

unbounded dishonest Alice cannot learn anything about Bob’s choice bit ¢, as
Bob does not send any messages during the protocol.

Using a setup stage before the naive protocol. The naive protocol above
requires very large storage bounds from the honest parties. In order to instantiate
it in a more efficient manner we will first apply a carefully designed setup stage.
Our goal is that at the end of the setup stage the two players will agree on two
small subsets Cy, C; C [N] of size £ < N, such that Alice stores Ry = R¢, and
R1=TRe,. (We use R¢ to denote the |C| bit long string obtained by restricting
R to the indices in C.) Bob remembers only one of Rg, R and cannot remember
too much information about the other string. Furthermore, Alice does not know
which of the two strings is not known to Bob. Following the setup stage, the two
parties can perform OT by using the naive protocol. We call this second stage
the transfer stage. As the sets Cy, C; are of size £ < N the storage required by
the honest parties at the transfer stage is much smaller than before, and honest
players can follow the naive protocol with space O(¢) < N.

Implementing the setup stage. An implementation for such a setup stage
was suggested in [7, 17]: Alice and Bob each choose a random subset of [N] of
size n = v2N/{. We denote them by A and B respectively. When the string R
is transmitted Alice and Bob store R4 and R p respectively. Alice then sends A
to Bob. By the birthday paradox, with high probability C' = AN B is of size at
least £. Note that Bob remembers R¢, and Alice does not know C. To complete
the setup stage, Alice and Bob play an interactive hashing protocol where Bob
uses W = (C as input. We give a precise definition of “interactive hashing”
later on. Following the interactive hashing protocol, Alice and Bob obtain sets
Co, C1 C A such that C' = Cy for some d € {0, 1}. The security of the interactive

sufficient to prove that Z; is uniformly distributed given the memory content of Bob.
In the technical proof we prove that Z; is uniformly distributed given the memory
content of Bob, Z1_; and Yp, Yi.



A long random string R of length N is transmitted.

Alice: Choose random A C [N] of size n and store R4.

Bob: Choose random B C [N] of size n and store Rp.

Alice: Send A to Bob.

Bob: Verify that C' = ANB is of size at least £ = n?/2N. If C is large then randomly
truncate it to size exactly £.

Alice and Bob: Play an interactive hashing protocol where Bob’s input is C. Both
Alice and Bob obtain Cy, C1 C A such that C € {Cy, C1}.

At this point, Alice and Bob use the naive protocol with Ro = R¢, and R1 = Rc; .

Fig. 2. The protocol for the setup stage

hashing protocol guarantees the following properties: (1) Alice does not know
d. (2) Bob “does not remember a lot of information” about one of the strings
Rcy, Ro,- Thus, the two sets Cp, C; satisfy the properties required above and
the parties can complete the OT protocol by using the naive protocol.'® Note
that the setup stage requires the honest parties to store only k = n = O(v/N¥)
bits. In this presentation, we did not discuss the security of Bob, however it is
easy to see that even an unbounded Alice, who remembers all of R, cannot learn
any information about c.

Previous protocols. The protocols of [7, 17] both use the setup stage described
above. They implement interactive hashing using the NOVY protocol from [36)
which takes ¢ = k**(D-rounds. Following the setup stage they perform what can
be seen in retrospect as variants of our naive protocol. (Both papers do not
use extractors explicitly, however their strategies can be viewed as some (weak)
implementations of extractors.)

Our improvements. Our main improvement comes from replacing the NOVY
protocol for interactive hashing by a new 4-message protocol. This protocol is
based on explicit constructions of almost ¢-wise independent permutations. Some
of the additional improvements are given by using competitive explicit construc-
tions of extractors for the naive protocol above. Another source of improvement
comes from allowing Alice to choose the set A using an averaging sampler (The
reader is referred to [23] for a survey on samplers). Choosing the set A us-
ing a competitive averaging sampler reduces the memory requirements of Alice
and Bob, as well as the overall communication. We note that using a sampler
to choose the set B as well, we can further improve the total communication

13 A subtlety is that Bob has no control whether C = Cy or C' = (4. In the actual
protocol we allow Bob to ask Alice to “switch” between the roles of Co,C1 in order
to receive the desired secret.



and memory requirements. We remark that the usefulness of extractors in the
bounded storage model was demonstrated in [34] and [46], and that of averag-
ing samplers was demonstrated in [46].'% Our paper is another example of the
usefulness of ideas from the theory of derandomization in the bounded storage
model.

2.1 The improved interactive hashing protocol

In an interactive hashing protocol Bob holds an input W € {0,1}" and at the
end of the protocol both parties should agree on Wy, Wj. It is required that there
is a d € {0,1} such that W = W, and that a dishonest Alice cannot learn d.
The main requirement is that a dishonest Bob cannot “control” both W, and
W7. This is captured by the following condition: For every strategy of Bob and
every set S of size 2° (where s is a parameter), if Alice is honest then with high
probability Bob cannot force that both Wy and W; are in S.

A naive solution. A naive solution to this problem is that Alice sends a random
2-to-1 “hash function” h : {0,1}™ — {0,1}™~! and Bob replies with z = h(W).
Then the two parties compute the two preimages Wy, Wi of z under h. Note that
for s > m/2 this protocol fails even if Alice sends a completely random function
h:{0,1}™ — {0,1}™~! (By the birthday paradox, for every S of size 2° > 2™m/2
with high probability over h there are Wy, W7 € S such that h(W7) = h(W2)).

The NOVY protocol. The NOVY protocol [36] for interactive hashing can be
thought of as a variant of the naive solution described above in which Alice does
not send “all” of the hash function at once. Alice chooses a random (m —1) x m
matrix A with entries in {0, 1} subject to the restriction that all the m — 1 rows
of A are linearly independent. Every such A defines a function ha(z) = A - z,
which is clearly 2-to-1. The protocol consists of m — 1 rounds. In round i, Alice
sends A; (the i’th row of A), and Bob replies with the z; = (4;, W) = ha(W),.
Intuitively, revealing h 4 slowly in return to bits z; restricts Bob in the sense that
he has to “choose at least part of his input” before seeing all of h 4.

The new protocol. In contrast to the naive protocol which sends all of the
2-to-1 hash function at once, the NOVY protocol sends m — 1 hash functions
which together form a 2-to-1 function. Our improved protocol will use two hash
functions that together form a 2-to-1 hash function. The first hash function is
chosen from a family of permutations over {0,1}™ with stronger independence
properties. Namely, Alice chooses 7w at random from a family of m-wise inde-
pendent permutations. She then sends 7 to Bob and in exchange Bob sends
at once z1,---,2, where z; = m(W); and v is close to m. We can show that

4 Tt should be noted that the seminal paper of Nisan and Zuckerman [41] which defined
extractors, already used them in a very related context to construct pseudorandom
generators against bounded space machines.



the strong independence properties of m “protect Alice” and allow the par-
ties to engage in a new interactive hashing protocol for sending the remaining
m — v — 1 bits. It turns out that by choosing the parameters appropriately,
the two parties can use the naive solution (with a pairwise independent hash
function g : {0,1}™7Y — {0,1}™v~1) after the first round. As a result of that
we obtain a 2-round (4-messages) protocol. The precise protocol is described in
Section 5.4.

Unfortunately, we are not aware of any explicit construction of a small sample
space of exact t-wise independent permutations for ¢ > 3. Nevertheless, it has
been shown how to construct a sample space of permutations in which every ¢
elements are close to being independent (see [32] and references therein), and we
can carry out the argument with this weaker property.

3 Preliminaries

We use [N] to denote the set {1,...,N}. We use X < S to denote uniformly
choosing X from S. For a set A C [N] and a string R € {0,1}" we let Ra
denote the substring of R consisting of the bits indexed by A. For a set S and
£ <|S|, we use (f) to denote the set of all subsets 7' C S with |T| = ¢.

Definition 3.1 (2*-to-1 functions) A function h: {0,1}™ — {0, 1}k js 2k-
to-1 if for every output of h there are exactly 2% pre-images. That is, |h=1(2)}| =
2k for every z € {0,1}mF.

3.1 Encoding subsets.

We use a method of encoding sets in (“g]) into binary strings. The following
method was used in [7]:

Theorem 3.2 ([9]) For every integers £ < n there is a one to one mapping
F ([7;]) — [(})] such that both F and F~' can be computed in time polynomial
inn and space O(log (})).

Using Theorem 3.2 we can encode ([’g]) by binary strings of length [log (7)].
However, it could be the case that images of subsets constitute only slightly
more than half of the strings above. This is exactly what causes the protocols of
[7, 17] to unsuccessfully abort with probability 1/2 (and is solved by repeating the
protocol until the execution succeeds). Since in this work we are aiming for low
round complexity, it would be beneficial to have the probability of unsuccessful
abort to be significantly smaller than 1/2. To achieve this, we will use a more
redundant encoding. This encoding is more ”dense” than the original one and
thus guarantees that most strings can be decoded.

Definition 3.3 (Dense encoding of subsets) For every integers { < n let
F be the mapping from Theorem 3.2. Given an integer m > [log ()] we set
tm = [2™/(})]. Define the mapping Fy, : ([75]) X [tm] — [2™] as Fn(S,i) =
(i = 1)(}) + F(S) (every subset S is mapped to t,, different m bit strings).



We now have the following Lemma.

Lemma 3.4 For every { < n and m > [log ()], the encoding Fy, is a one-to-
one mapping. Furthermore: (1) F,, and F,;* are computable in time poly(n,logm)
and space O(log (7)) 4+ logm. (2) Let D be the image of F, (D contains all m

bit strings that are legal encodings of subsets), then ‘Q?n‘ >1-— (Z)/T”.

Proof: The encoding F, is one-to-one since its inverse is given by F-1(W) =
F~Y(W mod ()). Property (1) follows from this simple formula for F,;' and
the formula for F, (in definition 3.3). Also, the number of distinct encodings in
D equals tm, - (3) = [27/()] - (3) = 2™/(}) —1)- (}) = 2™ — () and property
(2) follows.

3.2 Min-entropy and Extractors.

Min-entropy is a variant of Shannon’s entropy that measures the randomness of
a probability distribution or a random variable in the worst case. A distribution
has high min-entropy if the probability mass it assigns to every element of the
probability space is small.

Definition 3.5 (Min-entropy) For a distribution X over a probability space
2 the min-entropy of X is defined as Hoo(X) = mingecp log(1/ Pr[X = z]). We
say that X is a k-source if Hoo(X) > k, that is, for every x € £2, Pr[X = z] <
27k,

Definition 3.6 (Statistical distance) Two distributions P and Q over §2 are
e-close (also denoted P = Q) if for every A C 2, | Pryp(A) — Pro.g(A)| <e.

Thus, that two distributions P and @ are e-close means that the maximum
advantage of any unbounded distinguisher in distinguishing between P and @,
is at most €.

An extractor is a function that “extracts” randomness from arbitrary distri-
butions which “contain” sufficient (min)-entropy [41].

Definition 3.7 (Strong extractor) A function Ext : {0,1}"# x {0,1}95 —
{0,1}™# is a (kg,eg)-strong extractor if for every kg-source X over {0,1}"?
the distribution (Ext(X,Y),Y), where Y is uniform over {0,1}95 is ep-close
to (Umy,Y), where Up,, is uniform over {0,1}™F and independent of Y.

We remark that a regular (non-strong) extractor is defined in a similar way, with

the random variables (Ext(X,Y"),Y) and (U, ,,Y) above replaced by Ext(X,Y)
and U,,, respectively.

10



3.3 Averaging Samplers and Min-Entropy Samplers.

A fundamental lemma by Nisan and Zuckerman [41] asserts that given a dv-
source X on {0,1}", with high probability over choosing a subset T' C [v] of
size t, Xp is roughly a dt-source. Or in other words, that sampling a random
piece from a source preserves the “min-entropy rate” of the source. As shown in
[41, 44, 46] the lemma does not require a uniformly chosen subset. It is sufficient
that T is chosen using a “good averaging sampler”.

Definition 3.8 (Averaging sampler) A function Samp : [L] — [v]" is a
(u, 8,7)-averaging sampler if for every function f : [v] — [0,1] with average
value 3. f(i) > p,

1
) <
pg&] n E f(Samp(p);) < u— 06 ~

1<i<t

The function Samp is said to have distinct samples if for every p € [L], the t
outputs of Samp(p) are distinct.

Averaging samplers have been a subject of a line of studies starting with [4]. For
a survey of averaging samplers, see [23]. The following Lemma asserts that using
an averaging sampler to sample a subset from a source with min-entropy rate §
roughly preserves the min-entropy rate of the source.

Lemma 3.9 [46] Suppose that Samp : [L] — [v]" is a (i, 0, y)-averaging sampler
with distinct samples for p = (0 — 27)/log(1/7) and 6 = 7/log(1/7). Then for
every dv-source X on {0,1}", the random variable (P, Xsamp(p)) where P is
uniform over [L] is v 4+ 272" _close to a random variable (P, Q) such that for
every p € [L], the random variable Q|p=p is a (6 — 37)t-source.

It will be convenient for us to state Lemma 3.9 in different form. For this purpose
we introduce the notion of a min-entropy sampler.

Definition 3.10 (Min-entropy sampler) A function Samp : [L] — [v] with
distinct samples is a (8,8, ¢, €)-min-entropy sampler if for every dv-source X
over {0,1}Y there is a set G C [L] of density 1 — ¢ such that for every p € G the
distribution Xgamp(p) 5 €-close to a 0't-source.

With this notation we can restate Lemma 3.9 as follows:

Corollary 3.11 Suppose that Samp : [L] — [v]t is a (u, 0, 7)-averaging sampler
with distinct samples for = (6 —27)/log(1/7) and 8 = 7/log(1/7). Then there
is a constant ¢ > 0 such that for every 0 < o < 1, Samp is a (6,6 — 37, (v +
2-cTv)l=a (4 27TV ) miin-entropy sampler.

Proof: Let ¢ be the constant hidden in the statement of Lemma 3.9. That
is, (Ur, Xsamp(v,)) 18 7 + 27¢""~close to a random variable (P, Q) where P is
uniform over {0,1}" and for every p € {0,1}", the random variable Q|p=, is a

11



(6 — 37)t-source. Let B be the set of p € {0,1}" such that the Xgamp(p) is not
(v + 27°™")*-close to a (6 — 37)t-source. It follows that the density ¢ of B is at
most (y+277V)1=, This is because otherwise the statistical distance between
(Ur, Xsamp(u,)) and any (P,Q) that satisfy the condition in Lemma 3.9 is at
least ¢(y +27°7Y)* > 4 4 277", Let G be the complement of B. The Lemma
follows. W

3.4 The random subset sampler

An averaging sampler is a way of choosing a set with certain "random proper-
ties”. Naturally, choosing a set uniformly at random gives an averaging sampler.
We now state the parameters of this sampler.

Definition 3.12 (The random subset sampler) Given integers v > t, fiz a
mapping E from [(})] to ([v]), let RS : [(})] — ([Z]) be RS(p) = E(p).

t

The following lemma about random subset samplers is standard. We give a proof
for completeness.

Lemma 3.13 There és a constant ¢ such that for everyv >t and every u, A > 0,
RS is a (p, M\, 2¢~ (N _qveraging sampler with distinct samples.

Proof: Consider the following probability space for choosing a subset S C [v].
For every i € [v] we independently choose whether ¢ € S with probability ¢ /v.
For every i € [v] we define X; to be f(i) if i € S and zero otherwise. Note
that F(X;) = f(i)t'/v. Let X =" X;, by linearity of expectation E(X) = ¢ p.
By Chernoff’s inequality, there is a constant ¢ > 0 such that Pr[|X — ¢'u| >
ot'u) < e= o tn, Furthermore, another application of the inequality gives that
Pr[||S| — /| < 6t'] < e="t". We now randomly add indices to S to give a subset
of size t = (1 + §)t'. Note that this sample space is e~ _close to the sample

space of choosing a random subset 7" of size ¢. Consider X' = % > icg f(i) for the

enlarged S. It follows that X’ > X. We have that Pr[X’ < t/pu—6t'p] < e=<0°t'n.

We now want this event to hold whenever {X’ < ¢ — tAp} holds. A calculation

shows that A > 2§/1 + 4, which is satisfied for § = A/2. Thus, when choosing a
A2tp

random subset T of size ¢, Pr[+ >, o1 f(i) < p— Ay < 26T/ < 2e~ 2V tw)

where the last inequality follows because A < 1. [l

Corollary 3.14 For every v > t, and 6 > 0, RS is a (8,0/2, ¢, €)-min-entropy
sampler, for ¢ = e = 3. 2725t/ log(1/9))

Proof: Let7=4§/6, u= (6—27)/log(1/7) = 46/610og(6/6) and 6 = 7/ log(1/7).
We choose A = 0/ = 1/4 and apply Lemma 3.13. It follows that there exists
a constant d such that RS is a (u,6,~)-averaging sampler for v = 2e~9#. By
applying Corollary 3.11 with a = 1/2, there is a constant ¢ > 0 such that RS is

12



a (0,8, ¢, €)-min-entropy sampler for 6’ =6 — 37 = §/2 and

¢ —c= (’Y+ 2767’1})1/2 < ,71/2 + 2767”0/2
<2. 2—9(615/ log(1/4)) + 2—9(51})
< 3.2~ 92(3t/1og(1/9))

where the last inequality follows because t <v.

3.5 Some useful technical Lemmas

The following two lemmata measure the min-entropy in a k-source X when
conditioned on the event {Y = y} where Y is a (dependent) random variable
over short strings. It is very useful for us as we often consider the information in
the long random string R from the point of view of a bounded storage machine
that stores only few bits of information about R.

The following lemma is standard. We include a proof for completeness, and
it may be instructive for understanding the proof of the next related yet much
more complicated lemma.

Lemma 3.15 If X is a k-source andY is over {0,1}" then with probability 1— 3
(over the choice of y — Y ) (X |Y =vy) is a (k —r —log(1/5))-source.

Proof: Let B = {y | Pr[Y = y] < 277108(1/B)} Tt follows that Pr[Y € B] <
or . 2—r—108(1/B) < B For every y ¢ B and z,

Pr[X = z] 2~k

_ o (k—r—log(1/))
Pr[Y =] = a-rs1/B) 2 :

PriX=z|Y =y <

The next Lemma is a strengthening of Lemma 3.15 and handles the case in
which X is only close to having high min-entropy.

Lemma 3.16 If X is {-close to a k-source and Y is over {0,1}" then with
probability 1 — 3 — /2 (over the choice of y — Y ) (X | Y =) is v/2E-close to
a (k—r—1log(1/8) — 1)-source.
Proof: Let T = {z | Pr[X = z] > 2= (=D} We first show that

PriX eT| <2 (1)

Let X’ be a k-source that is &-close to X, and let Px = Pr[X € T] and Px/ =
Pr[X’ € T]. We have that |Px — Px/| < & On the other hand we have that
Px > |T|2-*=Y and Py. < |T|27*. Therefore,

Px — Px: > |T|2= " =Y —|T27F = |T|27% > Py,
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Thus, Px: < &. We now conclude that Px < Px/ + & < 2¢. Thus, equation (1)
follows. Let H = {(z,y) | Pr[X = 2,Y =y] > 2= * "D} and H, = {z | (z,y) €
H}. Note that if a pair (z,y) € H then « € T. Thus,

Pr[(X,Y) € H < PrlX e T) <2

Let vy, = Pr[X € H, | Y = y]. Let A = {y | v, > v2&}. We now bound the
probability that {Y € A}. We have that

2> Pr((X,Y) € H| =Y Pr[(X,Y) € H|Y = y|Pr[Y =y

Y

= PrX € Hy|Y =y|Pr[Y =y

=Y oy PrY =y > ) 0, Prly = y] > PrlY € A]\/2¢.

yeA

Thus, we have that Pr[Y € A] < /2€. Let B = {y | Pr[Y = y] < 27" "1ee(1/A)},
It follows that Pr[B] < 27 .27""1e(1/f) < 3. Let C = AU B. We have that
Pr[Y € C] € B+ +/2&. Finally, we show that for every y ¢ C, the distribution
(X |Y =y)is v/2&close to a k — 1 —r — log(1/3)-source. To see this we check
that for every such y and « ¢ H,,

Pr[X — 2, =y 26D e
Pr[y B y] — 9—(r+log(1/p)) ’

PrX=z|Y =y]=

The Lemma follows as Pr[X € H, | Y = y] = v, < /2§ and the weight of heavy
elements is small. W

The following Lemma asserts that running a strong extractor on a k-source gives
a distribution which is close to uniform for most choices of y € {0,1}92. We will
use this to argue that if a random variable has high min-entropy from the point
of view of some bounded storage machine B*, then for most seeds y applying an
extractor gives a distribution which is (close to) uniform from the point of view
of B* even if y is revealed to B*.

Lemma 3.17 If Ext : {0,1}"# x {0,1}42 — {0,1}™® is a (kg,eg)-strong ex-
tractor then for every k-source X over {0,1}™E, with probability 1 — 2,/€g over
the choice of y < {0,1}%= the distribution E(X,y) is \/eg-close to uniform.

Proof: Assume by contradiction that for at least a 2,/eg-fraction of y’s, there
were a distinguisher D, which distinguishes E(X,y) from U,,, with advan-
tage greater than /eg. W.l.o.g. assume that for at least a \/eg-fraction of y’s,
Pr[Dy(E(X,y)) = 1] =Pr[Dy(Uy,,) = 1] > \/eg. It follows that there is a distin-
guisher for distinguishing (E(X,Y),Y) from (U,,,,Y) with advantage greater
VEE - \/€g = €g, a contradiction. [l
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4 Oblivious Transfer in the Bounded Storage Model

We now turn to formally define oblivious transfer in the bounded storage model.
The following definitions characterize malicious strategies for Alice and Bob.
Note that in the definitions below the malicious strategies are asymmetric. We
restrict malicious strategies for Bob to have bounded storage while no bounds
are placed on malicious strategies for Alice. Clearly, if a protocol is secure against
unbounded strategies for Alice, it is also secure against bounded strategies. Thus,
the security defined here is even stronger than that explained in the introduction.

Definition 4.1 (Malicious Strategy for Alice) A (malicious) strategy A*for
Alice is an unbounded interactive machine with inputs R € {0,1} and s¢,s1 €
{0,1}*. That is, A* receives R and so,s1, and interacts with B. In each stage,
it may compute the next message as any function of its inputs, its randomness
and the messages it received thus far. The view of A* when interacting with B
that holds input ¢ (denoted Viewfé*’B> (s0,s1;¢)) consists of its local output. 15
The following definition captures a bounded storage strategy with storage bound
K. Loosely speaking, the only restriction made on a bounded storage strategy
B* is that it has some (possibly probabilistic) memory function g* : {0,1} —
{0,1}% and its actions depend on R only through g*(R). This formally captures
that B* remembers only K bits about R.

Definition 4.2 (Bounded storage strategy for Bob) A bounded storage strat-
eqy B* for Bob with memory bound K is a pair (g%, B*) where:

—g* :{0,1} x {0,1}¥ — {0,1}¥ is an arbitrary (not necessarily efficiently
computable) probabilistic function with input ¢ and R.
— B*is an unbounded interactive machine with inputs c€{0,1} and b* €{0, 1} %

The behavior described by a strategy B* with input c is the following: When given
the string R € {0,1}, B* computes b* = g*(c, R). B* then interacts with A
using the interactive machine B* receiving inputs ¢ and b*. The view of B* with
input ¢ when interacting with A with inputs so, s1 (denoted Viewéé’B*>(so, $1;¢))

is defined as the view of B* when interacting with A.

We now turn to the definition of oblivious transfer in the bounded storage model.
The security of Bob asks that for any malicious strategy for Alice, its view is
identically distributed whether Bob inputs ¢ = 0 or ¢ = 1. The definition of
Alice’s security is a bit more complex because one of her secrets is passed to
Bob. For this definition, we partition every protocol that implements OT into
two stages. The first stage is called the Setup Stage, and includes the transmission
of the long string R and all additional messages sent by Alice and Bob until the
point where Alice first makes use of her input sg, $1. The remaining steps in the
protocol are called the Transfer Stage. We also need the following definition.

15 The view of A may be thought of as also containing the party’s randomness, inputs
and outputs, as well as the messages received from B. This more intuitive “view” is
possible since w.l.o.g. the malicious party may copy this view to his output.
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Definition 4.3 Two pairs $=(so, s1) and § = (s, s}) are c-consistent if sc=s..

The security of Alice asks that following the setup stage (which does not depend
on the secrets), there is an index I' (possibly a random variable which depends
on R and the messages sent by the two parties in the setup stage) such that
Bob’s view is (close to) identically distributed for every two I'-consistent pairs.
In other words, Bob’s view is (almost) independent of one of the secrets (defined
by 1 — I'). We next present the actual definition.

Definition 4.4 (Oblivious Transfer) A protocol (A, B) is said to implement
(1 — €)-oblivious transfer (OT) against storage K if it is a protocol in which Alice
inputs two (secrets) sg,s1 € {0,1}*, Bob inputs a choice bit ¢ € {0,1}, and that
satisfies:

Functionality : If Alice and Bob follow the protocol then for any sg,s1 and c,

1. The protocol does not abort with probability at least 1 — €.
2. If the protocol ends then Bob outputs s., whereas Alice outputs nothing.

Security for Bob: The view of any strategy A* is independent of c. Namely,
for every so, s1:

{Viewfﬁ*’m(so, s1;¢) | e= 0} = {Viewfﬁ*’m(so, s1;¢) | e= 1}

(K, e)-Security for Alice: For every bounded storage strategy B* for Bob with
memory bound K and input ¢ there is a random variable I' defined by the end
of the setup stage such that for every two pairs § and 8 that are I'-consistent:

{Viewg_fﬁ"B*> (5; c)} = {Viewéﬁ"B*> (5 c)}

It is instructive to first consider an adversary Bob that is “semi-honest”. Such
an adversary follows the protocol, yet he stores additional information on R and
tries to use this information to learn both secrets. In this case, the definition
above can be simplified and the random variable I" can be replaced by the choice
bit c¢. However, in general Bob may ignore ¢ and decide to play using a choice bit
I that is chosen as a function of R and the messages in the setup stage. Thus,
letting I" depend on R and the messages in the setup stage is unavoidable. The
definition above guarantees that no matter how Bob decided to play there is
always a secret which he does not learn. We stress that the security achieved in
this definition is information theoretic. We remark that the definition would be
meaningless if I" was allowed to depend on the secrets sg, s1, and indeed, this
is the reason we partition protocols into a setup stage and a transfer stage. We
require that the random variable I" is defined at the end of the setup stage and
therefore it does not depend on sg, s1.
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4.1 Using OT in the bounded storage model as a sub-protocol

We remark that it does not immediately follow from the definition above that
all the “standard” applications of OT can be performed in the bounded storage
model (this is also the case for the previous protocols in this model [7, 17]).
Nevertheless, we now explain how this protocol can be used as a sub-protocol
to perform other cryptographic tasks. For example, our OT protocol can be
used in the construction of Kilian [33], to give a protocol for secure two-party
computation in the bounded storage model. The security achieved guarantees
that an unbounded party learns nothing about the input of the other party. In
order to use our protocol as a sub-protocol inside other protocols we note that
our security definition implies security by a simulation argument (although the
simulator is not necessarily efficient). Loosely speaking, the simulation paradigm
requires that any attack of a malicious party can be simulated in an ideal setting
where the parties interact only through a trusted party. This insures that the
protocol is as secure as an interaction in the ideal setting. The ideal setting for
OT is that both players send their inputs (sg, s1;¢) to a trusted party, and the
trusted party sends s. to Bob. We need to show that any malicious bounded
storage adversary in the bounded storage model can be simulated in a way that
gives him the same information when interacting through the trusted party. A
weakness of the argument we are about to present is that the simulation we give is
not necessarily efficient. We stress that typically one requires that the simulators
should run with essentially the same efficiency as the attack being simulated, and
that this would provide a stronger notion of security. We now give a sketch of
the simulator for a malicious receiver strategy B*. (likewise, a simulator for
a malicious sender can be given). The simulator plays the roles of both B*
and A in the protocol up to the transfer stage. At this point the simulator
computes the random variable I" and calls the trusted party asking for secret
sr. It continues by simulating A with inputs sp as received from the trusted
party and a random s;_r. By our security definition this turns out to be a valid
simulation. We remark that the protocol presented in this paper does not suggest
how to efficiently compute I' and this is why the simulation is not necessarily
efficient. It now follows that any application of OT in which security of the
protocol is proven using a simulation argument (as the aforementioned secure
two-party computation of [33]) can be performed in the bounded storage model
with information theoretic security. Nevertheless, as our simulator is not efficient
it does not follow that one can “mix” OT in the bounded storage model with
cryptography based on computational hardness assumptions. It is an interesting
open problem to come up with a protocol that can be efficiently simulated. A
related problem is pointed out by Dziembowski and Maurer [19].16

16 In [19], Dziembowski and Maurer showed that using a computationally secure key
agreement protocol in order to agree on a secret key for a private-key encryp-
tion scheme in the bounded storage model (BSM), does not necessarily yield an
information-theoretically secure combined (hybrid) scheme. Dziembowski and Mau-
rer proved this by giving an explicit computationally secure key agreement protocol
and a secure BSM private-key encryption scheme for which the resulting hybrid
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5 Interactive Hashing

One of the main tools we use in this paper is the interactive hashing proto-
col. While useful in the bounded storage model, it is important to note that
interactive hashing is not necessarily related to this model. As a matter of fact,
the definitions and protocols given here achieve security against all powerful
adversaries with no storage bounds at all.

5.1 Definition of Interactive Hashing

Interactive hashing is a protocol between Alice with no input and Bob with an
input string. At the end of the protocol Alice and Bob should agree on two
strings: One should be Bob’s input and intuitively the other should be random.
Moreover, Alice should not be able to distinguish which of the two is Bob’s input
and which is the random string.

Definition 5.1 (Interactive Hashing) A protocol (A, B) is called an inter-
active hashing protocol if it is an efficient protocol between Alice with no input
and Bob with input string W € {0,1}™. At the end of the protocol both Alice
and Bob output a (succinct representation of a) 2-to-1 function h : {0,1}™ —
{0,1}™=1 and two walues Wy, W1 € {0,1}™ (in lexicographic order) so that
h(Wy) = h(Wy1) = h(W). Let d € {0,1} be such that Wy = W. Furthermore,
if the distribution of the string Wi_q over the randommness of the two parties
18 n-close to uniform on all strings not equal to Wy, then the protocol is called
n-uniform interactive hashing (or simply uniform interactive hashing if n = 0).

Definition 5.2 (Security of Interactive Hashing) An interactive hashing pro-
tocol is secure for B if for every unbounded strateqgy A*, and every W, if
h, Wy, Wy are the outputs of the protocol between an honest Bob with input W
and A*, then

{viewg’f"‘3> (W) | W = WO} = {viewg’i*’m (W) | W = Wl} ,
where VieWXY"B> (W) is A*’s view of the protocol when B’s input is W. An
interactive hashing protocol is (s, p)-secure for A if for every S C {0,1}™ of

size at most 2° and every unbounded strategy B*, if Wy, W1 are the outputs of
the protocol, then

PI‘[W(),Wl S S] <p

where the probability is taken over the coin tosses of A and B*. An interactive
hashing protocol is (s, p)-secure if it is secure for B and (s, p)-secure for A.

Remark. The definition above does not deal with the case that dishonest players
abort before the end of the execution. Intuitively, such a definition is sufficient
for our purposes since in our OT protocol, the interactive hashing is used before
the players send any message that depends on their secrets, and thus their secrets
are not compromised.

scheme is insecure.
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5.2 t-wise Independent Permutations and Hash Functions

In our interactive hashing protocol we would like to use a random permutation
on m bit strings. However, a description of such a permutation would be expo-
nentially long since there are (2™)! such permutations. The solution is to use a
permutation that falls short of being truly random but still has enough random-
ness to it. Specifically we want to efficiently sample a permutation 7 out of a
small space of permutations such that when applied on any ¢ points in {0,1}™,
7 behaves as a truly random permutation. Such a space is called a t-wise in-
dependent permutation space. Unlike in the case of functions, where there are
extremely randomness efficient constructions of ¢-wise independent functions,
we are unaware of such constructions for permutations. Instead we further relax
our demands and ask the construction to be almost t-wise independent, that
is, the distribution induced by the permutation 7 on any ¢ points is statistically
close to the distribution induced on these points by a truly random permutation.
Formally:

Definition 5.3 An n-almost t-wise independent permutation space is a proce-
dure that takes as input a seed of | bits and outputs a description of an efficiently
computable permutation in Sym ,\7 with the property that a uniformly chosen
seed induces o distribution Iy, on permutations such that for any t strings
x1,... 2 € {0,1}™:

{m(z1),...m(x¢)}

=

{m(z1),...w(xe)}

R R
eIl T—Som

Such a construction was presented by Gowers [28] based on simple 3-bit permu-
tations (another approach is based on a Feistel structure, see [38]). Recently, the
efficiency of such constructions was improved in Hoory et al. [30] and Brodsky
and Hoory [6] and ultimately by Kaplan et al. [32].

Theorem 5.4 ([32]) There exists an n-almost t-wise independent permutation

space Iy, witht =m, n = (Q}n)t and seed length | = O(tm—l—log(%)) = 0(m?).

Furthermore, Il; , Tuns in time and space polynomial in the seed length.

Pairwise Independent Permutations. A widely used tool is a pairwise in-
dependent permutation of strings of m bits. This is simply a 2-wise independent
permutation as defined above (i.e., a 0-almost 2-wise independent permutation).
The construction that we use identifies {0, 1} with the field GF'(2™). A permu-
tation is sampled by randomly choosing two elements a,b € GF(2™) with the
restriction that a # 0. The permutation is then defined by g,.»(z) = ax+b (where
all operations are in the field). A pairwise independent permutation is therefore
specified by 2m random bits. We note that to construct a pairwise independent
2-to-1 hash function, one simply takes a pairwise independent permutation and
omit the last bit of its output.

17 Sym denotes the family of all permutations on m bit strings
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5.3 Partial Result: A Two Message Interactive Hashing

We start by showing that when the bad set S is small enough then the following
naive protocol is sufficiently good. In this 2 message protocol called 2M-IH, Alice
sends a random 2-to-1 hash function A : {0,1}™ — {0,1}™~! and Bob replies
with z = h(W).

Claim 5.5 For all u, the 2M-TH protocol is a (s,2~("=25% D) secure uniform
interactive hashing.

Proof: The 2M-IH is clearly an interactive hashing protocol, and since h is
pairwise independent, then it is also uniform (W;j_4 is uniformly distributed
over all strings barring Wy). The 2M-IH is also secure for B since all that Bob
sends to Alice is h(W), which is the exact same view whether Bob has input
W =Wy or W = Wy. On the other hand, since h is a pairwise independent hash
function, then the probability over the choice of h for any two strings Wy, Wi to
be mapped to a certain cell z € {0,1}™~! is perfectly random, that is:
Pry [Rh(W, h(W: 2 L L
(W) = (W) = 2] =2 o oo

Denote X, = 1 if both strings mapped to cell z are from the set S and X, =0
otherwise. Then:

23 25 2% —1 2%s
Prp[X, =1 < Pr,[h —h < 2. <
X =1 < (5 )Prove) = nw) = < 20 220 < 20
Denote by X the number of cells z such that both values mapped into z are
from the set S, then:

2s
E(X) = E(ZXZ) = ZE(XZ) < 2m—1 . 222m < 2—(m—2s+1)

The protocol is insecure only if Bob finds a cell z with two bad values, that is
only if X > 1. But using Markov’s inequality we have that Pr[X > 1] < EF(X) <
2~ (m=2s+1) Thus this protocol is (s,2~("~2*1))-secure for Alice. Wl

5.4 A Four Message Protocol for Interactive Hashing

The two message protocol is useful when the bad set S is very small. However,
if S is large (for example, if S| > 2™/2) then this protocol does not suffice.
We need to deal with a large set S in our application for OT in the bounded
storage model. It was observed in [7] that the protocol of [36] can handle large
sets. However, the interactive hashing protocol of [36] requires m — 1 rounds of
communication. We present a 4 message protocol in Figure 3.

Theorem 5.6 For all s,m such that s > logm + 2, the 4M-IH protocol is

n (s,2-(m=s)+00oem)y_gecyre 1 ~uniform interactive hashing protocol for v/ =
1 m —m

(W) <27m.
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4M-TH (4 Message Interactive Hashing)

Common Input: Parameters m and s.
Let v = s — logm.
A family IT of n-almost t-wise independent permutations 7 : {0,1}™ — {0,1}™

Set t =m and n = (2%))5
A family G of 2-wise independent 2-1 hash functions g: {0,1}" "—{0,1}™ !
A family H (induced by II,G) of 2-1 hash functions h : {0,1}™ — {0,1}™*
defined as:

hz) S w(@)1, .. 7 (@), g (T(@)osr ..o, 7(T)m)
where 7(x); denotes the i*" bit of 7(x).
Input of Alice: L.
Input of Bob: W € {0,1}™.
— Alice: Choose m < II. Send 7 to Bob.
— Bob: Compute z1,. ..z, = ©(W). Send 7' (W) = z1,...,2, to Alice (let 7’
denote 7 when truncated to its first v bits).
— Alice: Choose g &£ G. Send g to Bob.
— Bob: Send g(zy+1,-..,2m) to Alice.
— Alice and Bob: Output Wo, Wi s.t. h(Wo) = h(W1) = h(W).

Fig. 3. The four message protocol for interactive hashing.

Proof: We start by noting that the protocol is efficient for both parties due to
the efficiency of the permutations used. Furthermore, they can run in small space.
This is an 7’-uniform interactive hashing protocol since h is 7 close to pairwise
independent. Therefore for any value w’ and input W, the distribution of the pair
(h(W), h(w")) is n-close to that of a random permutation. The probability that
Wi_4 = w' is therefore n-close to ﬁ Summing the distance to uniformity
over all possible values w’, we get that Wi_,4 is distributed ' = 2™ - 5 close
to uniform. The 4M-IH protocol is secure for B since no matter what strategy
A* Alice uses, the messages that Bob sends are identical whether his input is
W =Wy or W = W (recall that h(Wy) = h(W7)). This protocol has two stages
of question and answer (4 messages), and in order to prove the security for A we
view each of these two parts separately. In the first part, all strings W € {0,1}™
are divided by 7’ into 2V cells (according to the value of ©/(W)). Our goal is to
show that no cell 2z’ € {0,1}" has too many strings from the bad set S mapped
to it. The second part of the protocol can then be viewed as implementing the
2M-IH protocol on strings in the cell 2/, yielding the security of the combined
protocol (the portion of bad strings in the cell z’ is reduced to less than a square
root of the strings in the cell). We start by bounding the probability that a
specific set of ¢ strings are mapped by 7’ to the same cell z.

21



Claim 5.7 For every z € {0,1}" and all x1,...,2, € {0,1}™ we have that:

p= Prﬂ_eﬂ[ﬂl(qjl) = FI(,TQ) =...= 7T/(£L't) = Z] < (%) +n.

Proof: Suppose that m were a t-wise independent function (and not permuta-
tion), then for every x; € {0,1}™ we have that the probability that #’(z;) = =z
is exactly 2% and the probability that this is the case for ¢ different values is

exactly (2%)15 But since 7 is a permutation, this probability is smaller since for
every i we have Pr[r’(z;) = z | n/(z1) = 7(22) = ... 7' (z;-1) = 2] < 5. But
as 7 is actually an almost t-wise independent permutation, the probability on
t elements may deviate by up to n from the truly random permutation, and

therefore p < (%)t +7. N
Let us focus on a specific cell z € {0,1}”. For every set of ¢ elements

x1,...,x¢ € S, denote by Y (z1,...,2;) the indicator random variable that
indicates whether or not all x; are mapped to z by «’. That is:

- 1l Ad(z)=a () =...=7"(xy) = 2
Y@y, m) = {O otherwise.

Let Y denote the number of strings from .S mapped to cell z by 7’. Let E = g—v,

which is the expected number of strings from S in each cell, if the cells were
divided uniformly among all strings in S. We claim that with high probability,
YT does not deviate much from E.

Lemma 5.8 Lett — 1 < E. Then for all z € {0,1}",
Prrep [Y7 > 3E] <2707V,

Proof: Consider the table of all possible Y (z1, ..., x:), where each row stands
for a specific set {x1,...,2:} where each z; € S, and each column stands for
a choice of m. By Claim 5.7, the fraction of ones in each row, and hence the

fraction of ones in the whole table, is at most (2%)75 + n. On the other hand,

for each 7 such that Y7 > 3E there are at least (?f) sets of ¢ elements for
which Y (21,...,2;) = 1, therefore the fraction of ones in the table is at least
PrrenlY > 3E] - (3f)/(2t) Therefore we get that:

()

Recall that n = (%)t and using the fact that (‘cl)/(b) < (#)C we get:

C

2° ¢ 1\
Prrep Y] 23E]|<|——— ) ‘2:-| =) .
rren Y ] <3E—t+1> (2”)

Proer [Y7 > 3E] <
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Sincet—lgEandEzg—z,

PrwGH [}/zﬂ- > 3E]

IN

N
2. 2
2E2v

This completes the proof of Lemma 5.8. W

As a corollary of Lemma 5.8 we get that with high probability there is no cell
that contains a large number of bad elements. Applying a union bound gives:

Prrep [3z s.t. Y[ > 3E] < 27 (¢=17v),

Recall that ¢t = m and v = s —logm. So the condition ¢ — 1 < F in Lemma 5.8
holds, and thus the probability of error here is 2~ (%) ~logm+1  Assuming that
indeed for all cells z we have Y < 3F, then the second part of the protocol is
actually running the 2M-IH on the strings in a specific cell z’. This cell contains
all the possible extensions of z’ into an m bit string. Therefore, the 2M-IH is run
on strings of length m’ = m—wv. There are no more than 25" = 4.957v strings that
belong to the bad set S. According to Claim 5.5 the second part of the protocol
is an (¢, 2_(7”/_25/“))—interactive hashing protocol. The probability that Bob
can choose a cell with two string from the bad set is therefore 9~ (m'=2s"+1) —
92— (m—v=2(s—v+2)+1) — 9—(m—s)+logm+3  Comhined with the probability that
there exist a z with Y7 > 3E we get that the probability that any strategy

B* that Bob plays succeeds in choosing both Wy and W in the set S is at most
27(m75)+0(10gm)' .

6 The Oblivious Transfer protocol

Our BS-OT protocol is presented in figure 4. The protocol relies on three ingredi-
ents: An extractor, a min-entropy sampler, and an interactive hashing protocol.
The precise requirements from the ingredients are presented in figure 5.

In our suggested implementation of BS-OT we choose Samp 4 to be the sam-
pler from [46], Ext to be an extractor from [43] and use the 4M-IH interactive
hashing protocol from the previous section. The precise choices of parameters
for these ingredients appear in Section 6.1. These choices meet the requirements
of figure 5 with ¢ = 27%® The main theorem of this paper asserts that this
implementation of BS-OT is a constant round protocol for oblivious transfer
in the bounded storage model. At first reading, the reader may safely ignore
the sampler and assume that the set A is chosen uniformly at random. That is
assume that Samp 4 is the identity mapping on ([JX ]).18

18 Using different samplers allows choosing a “random” set A which has a shorter
description. Specifically, using the sampler from Section 6.1 reduces the description
size of A from log (5) = O(nlogn) to O(L).

23



Input of Alice: Secret strings so, s1 € {0,1}".
Input of Bob: Choice bit ¢ € {0, 1}.
Setup Stage:
Subsets Stage: Alice and Bob store subsets of the string R € {0,1}".

— Alice: Choose P & [L4]. Compute A C [N] of size n by A = Samp ,(P)
and store the bits Ra.

— Bob: Choose random B C [N] of size n and store the bits R .

— Alice: Send A to Bob by sending P.

— Bob: Determine C = AN B. If |C| < £ abort. If |C| > ¢, randomly
truncate it to be of size £.

— Bob: Compute t,, as in Definition 3.3. Choose @ L [tm] and compute
W =Fn(C,Q)."

Interactive Hashing Stage: Interactively hash W.

— Bob: Input W into the interactive hashing protocol.

— Alice and Bob: Interactively obtain h and Wy, Wi s.t. h(Wy) =
h(W1) = h(W). Compute the subsets Co, C1 encoded by Wy, Wi. If Wy
or Wi isn’t a valid encoding then abort.

Choice Stage:
— Bob: Let d € {0, 1} be such that Wy =W. Send e = c® d.
— Alice: For i € {0,1} send Y; < {0,1}?7.
Transfer Stage:

— Alice: Set Xg = R¢, and X1 = R¢;, -

— Alice: Send “encrypted” values of s and s1: For ¢ € {0,1}, Send Z; =
Sige @ EXt(,Xi7 3/1)

— Bob: Compute X = R¢. Bob’s output is given by Ext(X, Yege) @ Zege

* The range of F,, is [n] and not A = Samp 4 (P). For simplicity, we treat C as a subset of A.

Fig. 4. Protocol BS-OT for 1-2 OT in the bounded storage model.

Theorem 6.1 There is a constant o > 0 such that if N,n and £ satisfy logn <
£ < n® then for every constant v < 1 let protocol BS-OT wuse the ingredients
described in Section 6.1. Protocol BS-OT is a (1 — €)-oblivious transfer protocol
against storage K = vN, with € = 2=%©) | Purthermore:

— The protocol has 5 messages.
The strategies for Alice and Bob runs in time poly(n) and space k = O(nlogn).
The protocol passes secrets of length u = §2(£).

The overall number of bits exchanged is TC' = O(¢°M).

The constants kidden in €, s, u and TC above depend on v.'°

The results mentioned in the introduction can be obtained by choosing n =
N1/2%a/log N for some small constant a > 0. Note that if a is sufficiently
small then the space of honest players satisfies k = O(nlogn) = O(N/?+2) <
O(K'/?%4), where the last inequality follows for every constant fraction v < 1.

9 Tracing this dependency gives that for § = (1 — v): ¢ = 220/ 108(1/9)) g — p —

0(64/10g(1/9)), and w = £2(6¢). This holds even when v isn’t a constant as long as
n > £/5*. That is, the Theorem holds even for v ~ 1 — (£/n)*.
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Parameters:
— N - the length of the long random string R.
— n - the number of bits honest players remember about R.
— u - the length of the secrets.
— £ =n2/2N - the size of the intersection set.
— v - the dishonest receiver remembers at most v /N bits about R.
€ - the error of the protocol. The protocol works as long as € is not too small.
See the precise requirement on € under “additional requirements” below.
Ingredients:
— A (64,0%,¢4,€a)-min-entropy sampler Samp 4 : [La] — [N]" with:
oa<(1-v)/2.
(514 = (5,4/8.
pa < €/20.
ea < (e/20)%.
L4 determines the length of the first message sent by Alice.
— A (kg, eg)-strong extractor Ext : {0, 1}"# x {0,1}%% — {0,1}™F with:
ng = l
dg < 840/12
me =u < §,0/12.
ke < 844/6.
er < (¢/20)%
— An (s, p)-secure (27™)-uniform interactive hashing protocol for strings of
length m = 10¢logn with:
o s <m—crud,¥l/log(1/8’y) + 1 (cra > 0 is a universal constant chosen
in the proof).
o p<e¢/20.
Additional requirements:
—€> 9784t/ 108(1/5%) where ¢ > 0 is a universal constant chosen in the proof.

Fig. 5. Ingredients and requirements for Protocol BS-OT.

As £ = n?/2N we have that £ = n2?/2log N > k for large enough n, and
we have that e = 27 = 2=2(") The remainder of the paper is devoted to
proving Theorem 6.1. In Section 6.1 we explain how to choose the ingredients
in a way that satisfies the requirements in Figure 5. In Section 7 we prove the
functionality and security of the protocol. The most challenging part is proving
Alice’s security.

6.1 Choosing the ingredients

We now turn to choose the ingredients for BS-OT to get the parameters guar-
anteed in Theorem 6.1. Given n, N, u, v, we shoot for ¢ = 272(®) We need to
show an extractor, a sampler and an interactive hashing protocol that satisfy
the conditions specified in figure 5.
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The extractor. In [43] it was shown how to construct a (kg, €g)-strong extrac-
tor, Ext:{0,1} x {0,1}42 — {0, 1}, for every kg, u < kg —2log(1/eg) — O(1),
and dg = clog(1/eg) for some constant ¢, as long as log(1/¢) > log" £. Setting
kg = 0',€/6, we can get u = 6,¢/12 for dg < ¢/,¢/6 and eg = 2-<'34¢ for some
constant ¢ > 0 (which depends on ¢). This choice satisfies the requirements in
figure 5. We note that the above extractor can be computed in time and space
polynomial in /.

The sampler. In [46] it was shown how to construct a (u,0,)-averaging
sampler Samp : [L] — [v] with distinct samples for every u > 6 > 0 and
v > 0 as long as t > 2(log(1/v)/6?). This sampler has seed length log L <
log(v/t) +log(1/7)(1/6)°M. Let v = N and t = n. By Corollary 3.11, for every
8, such that log(1/7)/6* < n, this sampler yields a (8, /2, (y+2~2ON)/2 (44
2-CONN/2) min-entropy sampler Samp, : [La] — [N]™. Setting v = 27¢
we have that as long as n > £/6*, this sampler has ¢ = ¢ = 272 and
logLa < log(N/n) + £(1/6)°M) < logn + £(1/6)°M) for n > +/N. Note that
the condition n > £/§* is satisfied when v is a constant (as in this case § = Ja
is also a constant).?? We also note that the above sampler can be computed in
time polynomial in n and space O(n).

The interactive hashing protocol. We need to show that protocol 4M-
IH satisfies the requirements of figure 5. It is required there that 4M-IH is
(5,2 204t/ 108(1/5%) ) secure for s < m — crpdyl/log(1/8"y) + 1 where ¢;z > 0
is some universal constant and ¢’y = a(1 — v) for some a > 0. By Theorem 5.6,
we have that

p< 2—(m—s)+0(logm) < 2—01H5'A€/ log(1/6’4)+O(log m) < 2—9(5'A€/ log(1/68%))

as m = 10¢logn and ¢ > logn. When v is a constant, ¢/, is also a constant and
we have that p = 272 as required. We note that Protocol 4M-IH requires time
and space polynomial in /.

7 Proof of Main Theorem

7.1 The functionality of the OT protocol

The following Lemma asserts that protocol BS-OT indeed implements oblivious
transfer.

Lemma 7.1 For every choice of ingredients for BS-OT and every sy, s1,c, if
Alice and Bob follow protocol BS-OT then

— With probability 1 — 2=2® the protocol does not abort.

20 We remark that we don’t have to require that v is a constant. Our protocol also
works for v = 1 — o(1) as long as the condition above (n > £/§%) is satisfied.
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— If the protocol does not abort then Bob’s output is indeed s..

Proof: We first show that with high probability |A N B| > ¢. This is because
for every fixed A, as B is a random set the expected size of AN B is n?/N > 2/.
A standard Lemma (see for example Corollary 3 in [17]) can be used to show
that there exists a constant 0 < « < 1 such that probability that |[AN B| < ¢
is at most 2e~*¢. We now show that the probability that one of Wy, W is not
a valid encoding of a subset is small. W; was chosen by Bob and is certainly a
valid encoding. By the definition of Interactive Hashing, the other string Wi_4
is n-close to uniformly distributed in {0,1}™, for n < 27"™. By Lemma 3.4 the
probability that a random string W € {0, 1} is not a valid encoding is at most
(;})2_’” < tlogn=m < 9=l=1 a5 1 = 10¢logn. It follows that the probability
of abort is bounded by 2™ 4+ 27¢~1 < 27 To see that whenever the protocol
does not abort Bob indeed outputs s., we observe that X = R¢ is known to
Bob (since C = AN B C B and Bob has stored all the bits Rp). In particular,
Bob is always able to compute Ext(X, Y.q.) and subsequently use it in order to
“decrypt” the value Z.q.. By the definition of the protocol we then have:

Ext(X, Vige) @ Zoge = Ext(X,Yy) @ (s. ® Ext(Xy,Yy))
— Ext(X, Ya) @ (s ® Ext(X, Yy)) (2)

= Se.

where Eq. (2) follows from the fact that Xy equals R¢ (= X), which in turns
follows from the fact that Cqy = C (since Wy = W and the encoding F,, is
one-to-one). The lemma follows. [l

We next verify that the protocol indeed meets the promised efficiency properties.

Lemma 7.2 Let Ext, Samp, and IH be chosen as in Theorem 6.1. Then the
properties in the itemized list in Theorem 6.1 are satisfied by protocol BS-OT.

Proof: It is easy to verify that the protocol has 5 messages (not including
the transmission of R). By section 6.1 the extractor and sampler run in time
polynomial in n and space £9(1) 4+ O(n). Protocol 4M-IH runs in time and space
polynomial in m = 10¢logn. Thus, both parties run in time polynomial in n.
Both parties require space n to store R4 and Rp and space m©®) to play 4M-
IH. Alice’s set A is chosen by a sampler with seed length log L4 = O(¥), thus it
can be stored in space O(¢). Overall, Alice’s space is bounded by O(n) -+ poly(£).
Bob’s set B is a random set, and thus takes O(nlog n) bits to store. We conclude
that both players can run their strategies in space O(nlogn) + poly(¢) which is
bounded by O(n) for sufficiently small « as required. The protocol passes secrets
of length mg where mg = 2(¢). Finally, the longest message sent in the protocol

is the description of the permutation 7 in the interactive which is of length at
most V. I

7.2 Security for Bob

The following Theorem guarantees the security of Bob.
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Theorem 7.3 For every choice of ingredients of BS-OT, the protocol is secure
for Bob.

Proof: We show that for any strategy A*, the view of A* is independent of the

bit ¢. This is shown by the following argument: Fix the randomness of A* and

R. We show a perfect bijection between possible pairs of B’s randomness rp and

input ¢. That is, for each pair (rp,c) that is consistent with the view V of A*,

there exists a unique pair (rz, 1 — ¢) such that r; and 1 — ¢ are consistent with

the same view V. There are two possible options for a V = ViGWfLﬁ*7B>Z

— The protocol aborts before the choice stage where Bob sends Alice the value
e = c®d. In such a case, the view V is totally independent of ¢ and we map
every consistent rg to itself (r; = rg). Clearly rg is consistent with both
c=0and c=1.

— V includes the message e = ¢ ® d sent by Bob. In such a case, suppose
that (rp,c) is consistent V. That is, rp is the randomness that chooses the
random set B so that C = ANB is encoded by the string W;. By the fact that
the protocol did not abort, we are assured that also Wj_4 encodes a legal set
C’. Then we choose r'; to be the randomness that chooses B’ = (B\ C)UC’
and encodes C’ by Wi_g4. This perfectly defines (5,1 — ¢) that is consistent
with the view V. Furthermore, (13,1 — ¢) is mapped by the same process
back to (rpg,c), hence we get a perfect bijection.

Theorem 7.3 follows. [}

7.3 Security for Alice

The following theorem (which is technically the most challenging theorem of
this paper) guarantees Alice’s security against bounded storage receivers. This
theorem refers to a list of requirements on the parameters of the ingredients
which appears in figure 5.

Theorem 7.4 For every v < 1 (not necessarily constant), if all the requirements
in figure 5 are met, then protocol BS-OT is (vN,¢€)-secure for Alice.

We prove Theorem 7.4 in Section 7.5. In section 6.1 we showed that Ext and
Samp 4 and 4M-TH satisfy all the requirements in figure 5 for ¢ = 27%(), The-
orem 7.4 thus implies the following corollary which in turn completes the proof
of Theorem 6.1.

Corollary 7.5 Let Ext, Samp, and IH be chosen as in Theorem 6.1. Protocol
BS-OT is (vN,e€)-secure for Alice, for € = 2=% where a > 0 is a constant that
depends on v.

7.4 Overview of the proof

Theorem 7.4 regarding Alice’s security is somewhat technical and involves many
parameters. We find it instructive to first give a sketch of the proof while ignoring
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the precise parameters. The formal proof appears in the next section. Fix some
bounded storage strategy B* with storage bound vV for some v < 1, and an
input c¢. We need to show that there exists a random variable I" determined in the
setup stage such that for every two pairs of secrets s, s’ which are I'-consistent
the view of B* is distributed roughly the same whether Alice’s input is s or s’
Recall that in the protocol, the secrets sg, s1 are only involved in the transfer
stage where z; = Ext(X,,Y;) @ s; for i € {0,1}. Our goal is to show that there
exists a random variable I determined in the setup stage such that for every
choice of secrets sg, s1, the string Z; is close to uniformly distributed from B*’s
point of view. More precisely, for every ¢ € {0, 1} we split Alice’s messages into Z;
and all the rest of the messages which we denote by M SG,. For every fixing of r
of R and msg; of M SG;, B*’s point of view on Z; is captured by considering the
distribution Z! = (Z; | ¢*(R) = ¢*(r), MSG,; = msg;). We show that for most
fixings r and msgy, the random variable Z} is close to uniformly distributed.
We now explain how we achieve this goal. It is instructive to first consider a
simplified scenario in which B* chooses to remember the original content of R
at vN indices. We call these indices “bad” indices, and the remaining (1 — v)N
indices “good” indices. Let 6 = (1 — v). The proof proceeds as follows:

1. We note that B* does not remember the 6 N good indices.

2. When Alice uses a sampler to choose A, with high probability she hits a
large fraction (say dn/2) of the good indices.

3. We have that the set A contains many good indices. If we were to choose
a random subset of A with ¢ indices, then with high probability we will hit
many (say 6¢/4) good indices. Let S be the set of all such subsets which hit
less indices. By the above argument S is a small set.

4. It follows that when Alice and Bob use interactive hashing to determine the
subsets Cy and C7, at least one of the subsets is not in S. We define the
random variable I to be the index of this subset. It follows that C; contains
many good indices.

5. We now consider X; = R¢, given M SG;. As it contains many good indices,
it has high min-entropy. It follows that with high probability over the choice
of Y, Ext(X7,Y7) is close to uniformly distributed even given M SG;. Thus,
Z1 is close to uniformly distributed as required. However, a subtlety is that
Rc, and Re, are not independent, consequently Z;_; may give information
about R¢,, and hence may potentially give some information about Z;. We
explain how to resolve this issue below in the proof sketch for the general
case where B* computes an arbitrary memory function of R.

We now sketch how to make this argument work when B* is allowed to remember
an arbitrary function g* : {0,1}¥ — {0,1}*" of R. Intuitively, the notion of
“min-entropy” replaces that of “good bits” in this case.

1. Tt is easy to see that for most fixings r of R, the random variable (R |
g*(R) = ¢g*(r)) has high min-entropy (say 2(6N)).

2. When Alice uses a min-entropy sampler for most fixings p of P she obtains
a set A such that (R4 | g*(R) = g*(r), P = p) has high min-entropy.
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3. Choosing a random subset is a min-entropy sampler, and thus for most
choices of a subset of C of size ¢, (R¢ | g*(R) = g*(r), P = p) has high
min-entropy.

4. As before it follows that following the interactive hashing with high prob-
ability there exists an I such that (R¢, | g*(R) = ¢*(r), P = p) has high
min-entropy.

5. We note that R¢, and R, are not independent, as mentioned earlier. Thus,
it may be the case that Z;_; gives information about R¢,. However, we set
the parameters so that R, has min-entropy much larger than the length of
the pair (Z1-1,Y1-1). As a consequence we can argue that for most fixings
zi—rand y1-1, (Re, | 9" (R) = g*(r), P =p,Z1—1 = 211, Y11 = y1—1) has
high min-entropy. Thus, running an extractor, with high probability over
Y; we obtain a distribution which is close to uniform given MSGy just as
before.

7.5 The Full Proof of Alice’s Security

In this section we assume that the parameters of the Extractor, Sampler and
Interactive Hashing protocol satisfy the requirements in figure 5. We fix some
bounded storage strategy B* with storage bound vN for some v < 1. We also
fix some secrets sg, s and choice bit ¢. Consider the probability space obtained
in the interaction of Alice(sg,s1) and B*(c) when receiving a random R. We
can assume w.l.o.g. that B* is deterministic, as otherwise we consider every
possible fixing of his random coins. The view of B* depends on ¢*(R) and
Alice’s messages. We denote the random variable of Alice’s messages by M SG =
(P,MSGru,Y,Y1,Zo, Z1) where P is the seed for the sampler used to choose
A, MSGrp is the messages sent by Alice in the Interactive Hashing protocol,
and Yy, Y1, Zy, Z1 are defined in protocol BS-OT. The security of the protocol
follows from the following technical Lemma: (We say that a bounded storage
strategy B* is non-aborting if it always sends messages which are syntactically
consistent with the protocol and in addition it never claims that the intersection
C = AN B is too small in the subset stage.)

Lemma 7.6 For every sg,s1 and c, and every non-aborting bounded storage
strategy B* with storage bound vIN, there exists a subset G7.g of 6-tuples (b, p,msgrm, z',y',y")
and a random variable I such that:

— I is determined in the setup stage (it does not depend on messages sent in
the choice stage).

— Pr[(¢"(R), P, MSG11,Z1-1,Y1-1,Y1) € G76] > 1 — P16
for Bre =27 O"IN2 Ly 4 p4 27 0al/6 4 \/2(6A 3. 2720040/ 108(1/5))) 4
2,\/€E.

— For every (b,p,msgru, 2, y',y") € Gz,
(Zr1g*(R)=b,P=p,MSGrg =msgru, Z1-1 =2 Y11=y, Yr =y") is

€7.¢-close to uniform for ez = \/2(6A + 3.2 5255/ 1"g(l/‘yA))) + €E.
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Loosely speaking, this means that there is a bit I, (which is determined before
Alice uses sg, s1) such that Bob’s view does not depend on the secret “encrypted”
in Z;. Indeed this Lemma suffices to prove Theorem 7.4.

Proof of theorem 7.4: Let B* be some bounded storage strategy with storage
bound vN. We assume w.l.o.g. that B* is non-aborting. If B* chooses to abort
at some stage we modify it to answer randomly from that point on. Let G7¢
and I be the set and random variable guaranteed in Lemma 7.6. We define
I' = (1 —I) ® e where e is the bit sent by B* at the choice stage. Let 5 and s’
be two pairs of secrets which are I'-consistent. Let V (sg, $1,¢) denote the view
of B* when given input ¢ and interacting with Alice(sg, s1). We need to show
that V (8,¢) and V(5 ¢) are statistically close. We first observe that for every
6-tuples (b, p,msgrm,z',y',y") € Gr.6, the probability that ¢g*(R) = b and Alice
sends P =p, MSGyg = msgrg, Z1-1 =2, Y11 =% and Y; = y” is identical
no matter whether Alice plays with § or §'. This is trivial for all messages except
Z1—1 as they are sent in the setup stage and do not depend on the secrets. It
holds for Z;_; because Z1_; depends only on s(;_1)g.. Note that sq_j)ge is
identical in the two cases as § and s’ are I'-consistent and I' = (1 — I) ® e.
Furthermore we observe that:

(V(g, C) | g*(R) = b,P = p,MSG[H = mSg]H,Z1,[ = Z/,Y1,[ = y/,Y] = y”) is
(3)
2¢e7 g-close to

(V(5',¢) | g*(R) =b,P =p, MSGrg = msgru, Z1—-1 =2, Yi_1 =y, Y1 =y").

This holds because V(sg, s1,c¢) is determined by ¢g*(R) and Alice’s messages
MSG = (P,MSGrn,Yo,Y1,Zo, Z1), and by Lemma 7.6, (Z; | g*(R) = b, P =
p, MSGrg = msgru,Z1-1 = 2, Y11 = ¢, Yr = y") is e7.¢-close to uniform.
Thus, (3) follows by the triangle inequality. By (3) above the two random vari-
ables V(3,¢) and V(3,¢) are 2e7g-close on a set G7g which has probability
1 — B7.6. Therefore, they are (2¢7.6 + (B7.6)-close. Thus the final error is given by

2¢76+ PBre < 2(\/2(€A +3- 279(5%/10%(1/%))) +Ver)

427N/ gy p 42700/ \/2(6,4 + 3. 270008/ 10e(1/5))) 4 2, feg;

<9 (-IN/2 gy 9= 0at/6 L3, (\/2(€A 43272004/ 10801/82)) 4 2, /e7)

< 27(171/)N/2 + ¢A +p+ 276;12/6 _|_6\/a_|_9 . 27f2(5:4£/10g(1/5:4)) + 6\/5)
< 27% 0+ €/20 + €/20 + 27044/0 4 6e/20 + 9 - 2720t/ 102 (1/50)) 4 e /20
< M o-aeos0/50) <
S350 <
where all the inequalities above except the last one follow by the requirements
in Figure 5. For the last inequality we choose the constant ¢ that appears in the
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requirement that ¢ > 9—cdal/log(1/8%4) ip Figure 5 to be small enough so that the
inequality holds.

The remainder of this section is devoted to proving Lemma 7.6. We will
follow the messages of the protocol one by one to obtain the set G and random
variable I. We start by showing that with high probability B* forgets at least
(1 — ¥)N/2 bits of information about R.?!

Lemma 7.7 There exists G7.7 C {0,1}*N such that:

— Pr[g*(R) € Gr7] > 1 = Br7 for frq =27 07N/2,
— For everyb € Gr7, (R| g*(R) =) is a ((1 — v)N/2)-source.

Proof: We apply Lemma 3.15 where R plays the role of X, ¢*(R) plays the
role of Y, and 3 = 2-(1=")N/2 Tt follows that there is a subset G7.7 C {0, 1}V
such that Pr[g*(R) € G7.7] > 1 — (3 and for every b € G7.7, (R | g*(R) =b) is a
(1 = v)N/2)-source. W

Our next step is to show that when Alice chooses A, with high probability B*
does not remember a lot about R 4.

Lemma 7.8 There exists G7.g C {0, 1}"YN x [La] such that

— Pr[(g*(R), P) € Gr.s] > 1= fr5 for Br.s = frr+ ¢a =2"1"N2 4 g
— For every (b,p) € Grs, the random variable (Rsamp ,(p) | 9*(R) = b, P = p)
is ea-close to a §'yn-source. .

Proof: Let G717 be the set from Lemma 7.7. As 64N < (1 — v)N/2, we have
that for every b € Gr.7, (R | g*(R) = b) is a §4N-source. By the properties
of Samp , it follows that for every b € G7.7 there exists a set G, C [La] with
density 1 — ¢4 such that for p € Gy, (Rsamp,(p) | 9°(R) = b) is ea-close to a
8 n-source. Let G7.s = {(b,p) | b € G7.7,p € Gp}. The lemma follows. Wl

We now show that B* does not remember a lot about R¢ for a random
subset C' C A.

Lemma 7.9 For every (b,p) € Grs, let G,y be the set of all C'C Samp 4(p)
such that |C| = £ and (Rc | g*(R) = b, P = p) is €4 +3-27%0at/108(1/04)) _clpse
to a §'y0/2-source. Then for every (b,p) € Grs, the density of G ) in the set
(I) s at least 1 — 3. 22/ 1s1/5)).

Proof: Let (b,p) € G7s. By Lemma 7.8 we have that (Rsamp, () | 9°(R) =
b,P = p) is ea-close to a ¢§yn-source. Consider the random subset sampler
RS which samples sets of size ¢ in a universe of size n. We think of this sam-
pler as sampling subsets of Samp 4(p). By Corollary 3.14 RS is a (8’4,6%,/2,3 -
9284t/ log(l/‘;/A)), 3.2 24t/ 1"g(l/5//4)))-min-en‘cropy sampler. It follows that there

21 1t is instructive to consider a player B* that sets g*(R) = 0% if and only if R = 0.
In the case that R = 0%, B* remembers all of R. The lemma says that such a case
happens with very small probability.
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exists a subset G(byp) - ([’Z]) of density 1 — 3 - 9—2(54¢/10g(1/5%4)) guch that
for every C' € G p) such that (Rsamp,pnc | 9°(R) = b, P = p) is ea +3 -
9~ 204t/ 108(1/54))_close to a &'y ¢/2-source. M

We now show that after the interactive hashing phase, with high probability
there exists an ¢ such that B* does not remember a lot about R¢;.

Lemma 7.10 There exists a set Gr.10 of triples (b,p, msgrm) such that:

= Pr[(¢*(R), P, MSG1H) € G7.10] > 1 — B7.10 for
Brao=Brs+p=2"0"IN24 g, 4 p.
— For every (b,p,msgru) € G710 there exists an i € B such that
(Re, | g*(R) =b,P =p, MSGru = msgru) 1s €7.10-close to a §'y¢/2-source
for €710 = €4+ 3 - 9—82(8, £/ log(1/8}4))

Proof: Let G7s be the set from Lemma 7.8. For every (b,p) € Grs, let Gb.p)
be the set defined in Lemma 7.9. For every pair (b,p) € Grs we define set
Sw,p) € {0,1}™ as follows: Recall the encoding F}, (defined in definition 3.3)
which encodes pairs (C, Q), we think of C' as a subset of Samp 4 (P) of size £ and
Q € [tm] (where t,, is defined in definition 3.3). We use D to denote the image
of F,,. We define

Stppy =AW €{0,1}™ | W ¢ D}

(i.e. those for which F 1 is undefined). We define
Sthp) = AW €{0,1}™ | such that (C,Q) = Fy/ (W) is defined and C ¢ G, )}

Finally, we define S, ) = Sgb,p) U SEZ,p)' We now show that S, is small. By
Lemma 3.4 we have that [D|/2™ > 1 — (’)27™. Thus, 1St < () < 2flosm <
27/10 a5 m, = 10¢1log n. We now bound S(y p)- We have that the density of G )
is at least 1 — 3.2 2(4¢/108(1/6)) Ag F, outputs any set C' the same number
of times, we have that |S& p)| < 3.2 20at/108(1/84)) . 9™ QOverall, we have that

1S < om/10 4 gm g o9—02(5,¢/log(1/5,))

We now choose the constant ¢y which appear in Figure 5 on the requirement
from the interactive hashing protocol. We define c;g to be the constant hidden
in the £2(-) notation above. We thus have that:

|S(b,p)| < 2m/10 + Qm*CIH(?;‘E/ log(1/6%,)

Note that m = 10flogn and therefore the second term is larger and we conclude

that
|S(b p)| < 2m—01H6;’€/ log(l/é'A)-i-I.

As the interactive hashing protocol is (s, p)-secure for s > m—c; 6’4 ¢/ log(1/6,)+
1, we have that for each (b, p) € Gr.s, there is a subset G'(b ) of messages msgrg
of probability measure at least 1 — p such that for each msgry € G'(b ) there
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exists an ¢ € {0, 1} such that C; € G ;). Define G710 to be the set of triples
(b,p,msgrm) such that (b,p) € Grs and msgry € Gl(b,p)' It follows that for
each (b,p,msgIH) € (,?7,10, (Re; | g"(R) = b,P = p, MSGrg = msgrg) is
€A+ 327004/ 108(1/94)) close to a 0/4¢/2-source. M

We can now identify the secret that B* does not learn.

Definition 7.11 (Identifying the secret) We define a random variable I =
I(R,P,MSGg) as the bit i from Lemma 7.10. I is defined arbitrarily when
(¢*(R), P, MSGrp) & Gr.10. Note that I is determined in the setup stage.

It follows that by running an extractor on R, Alice obtains a string Z; which is
(close to) uniform from B*’s point of view. Thus, intuitively the message Z; does
not give information about the secret encoded in it. However, this guarantee is
not sufficient to prove the security of the protocol. This is because at the last
step of the protocol Alice sends Z;_; which may depend on Z; and give B*
more information. We therefore prove that with high probability B* does not
remember a lot about R¢, even when given Z;_1,Y;_;.

Lemma 7.12 There exists a subset G712 of 5-tuples (b,p,msgrm,z',y’) such
that

— Pr{(¢g*(R), P, MSGrm, Zr—1,Y1-1) € Gra2] > 1 — (712 for )
Braz = Brao + 27446 4 \Rerg = 270IN/Z L gy 4 p + 27000 4
\/2(6A 4 3.2 R044/105(1/8,))
— For every (b,p,msgrm, 2’ ,y') € Gr.12, the random variable
(RCI | g*(R) = b,P = p,MSG[H = mSg[H,Z1,[ = Z/,Y1,[ = y/) 5
€7.12-close to a 0’4 0/6-source, for

er12 = Verto = \/2(ea + 3 - 2720t 10201/5)

Proof: (of lemma 7.12) Let G719 be the set from Lemma 7.10. Fix some
(b,p, msgr) € Gr.10 we have that (R¢, | ¢*(R) =b, P =p, MSGrg = msgrm)
is €7.10 -close to a ¢’4¢/2-source. Note that the total length of (Z1_r,¥1_;) is no
more than ¢,¢/6. We now use Lemma 3.16 with the following parameters: The
probability space for the Lemma is the initial probability space of the protocol
conditioned on the event £ = {¢g*(R) = b,P = p, MSGig = msgru}. Re,
plays the role of X and (Z;_1,Y1-) play the role of Y. We use 8 = 2-04t/6 and
& = €7.10. We conclude that with probability 1 — 3 —2,/e7.10 over choosing y', 2’
from (Yl_],Zl_] | E), (RCI | g*(R) = b,P = p,MSG]H = mSg[H,Zl_] =
2 Yi_r =y') is €712 = /2¢e7.10 close to a §’4¢/6-source. We define G7.12 to be
the set of all 5-tuples (b,p,msgrm,2’,y’) such that (b,p,msgrg) € G710 and
2,y are good in the sense explained above. [l

It follows that when Alice applies an extractor to R¢,, she obtains a string
which is (close to) uniform even when conditioned on the rest of Alice’s messages.
We are finally ready to prove Lemma 7.6.

Proof: (of Lemma 7.6) Let G712 be the set from Lemma 7.12 and I be the ran-
dom variable defined in definition 7.11. We have that for every (b, p, msgrm, 2',y’) €
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G7.12, the random variable (R¢, | g*(R) = b, P = p, MSGrg = msgru, Z1—1 =
2 Yi_r = y') is e7.12-close to a §’4¢/6-source. As Ext is a (§/4£/6, eg)-strong
extractor it follows from Lemma 3.17 that with probability 1 —2,/eg over choos-
ing y from (Y7 | ¢*(R) = b,P = p, MSG1g = msgru,Z1-1 = 2',Y1i_1 = ¥'),
(EXt(RCI,Y]) | g*(R) = b,P = p,MSGrg = msgrg,Z1-1 = Z/,Y1,[ =
Yy, Yr = y) is €712 + Vee-close to uniform. We define Gz to be the set of
all tuples whose prefix is in G712 and y is good in the sense explained above.
It follows that Z; = srge ® Ext(Rc,,Ys) satisfies that (Z; | ¢*(R) = b, P =
p, MSGryg =msgry, Z1_1 =2, Y1i_1 =y, Y = 9) is €7 6-close to uniform. [l

8 Conclusions and open problems

We have constructed the first constant-round protocol for oblivious transfer in
the bounded storage model. Our protocol involves only 5 messages. As a main
building block, we have constructed a novel 4-message interactive hashing pro-
tocol using almost t-wise independent permutations. Our interactive hashing
protocol may be of independent interests.

Our OT protocol also has some additional improvements over previous work
[7, 17], including total communication efficiency, memory requirement, probabil-
ity of aborting, and handling of long secrets. Our protocol achieves k ~ VK ~
VN, where k is the space requirement of honest parties, K is the space bound
of a malicious receiver, and N is the length of the public random string R. In
words, the space of the honest parties is about a square root of the space allowed
for the malicious parties. This space requirement has recently been proved to be
optimal in [19].22

Our 5-message OT protocol attains a very small error € = 2= against
a malicious receiver, and has a total communication of ¢°() bits, where ¢ =
|A N B is size of the intersection of the sets of indices in [N] sampled by Alice
and Bob respectively, and ¢ > u where u is the length of the secrets. In the
case of a large secret length wu, if one settles for a larger yet still negligibly
small error, e.g. € = 278" N the communication complexity can be further
reduced, by using a randomness efficient averaging sampler Sampy : [Lg] —
[N]™ for Bob in choosing his set B. That is, instead of choosing B uniformly at
random, Bob chooses a random seed y < [Lpg] for Sampg, and computes B =

22 Tn [19], it is shown that for secure key agreement (KA) against a passive eavesdropper
in the bounded storage model, the product of the space required of Alice and Bob
must be at least 2(K), where K the adversay’s storage bound. It is well known
(c.f. [22]) that a secure OT protocol yields a secure KA protocol. Moreover, the
standard reduction from KA to OT has the following properties: Suppose that one
is given an OT protocol that requires honest Alice and Bob of space ka and kg
respectively, and is secure against a malicious party with space bound K. Then the
resulting KA protocol invokes the given OT protocol exactly once, requires the two
communicating parties Alice and Bob of the same space k4 and kg, and achieves
the given OT protocol’s security against an eavesdropper with space bound K — kp.
Thus by the lower bound of [19], kaks > 2(K — kg).
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Sampg(y). Then the seed y is input to the interactive hashing protocol, instead
of an encoding of B. The rest of the protocol is essentially the same. The security
of the resulting protocol variant can be proved by slightly modifying the proof
in Section 7. Since the density of A is subconstant, we need a sampler Samppg
for a subconstant average p (recall Definition 3.8). Although optimal averaging
samplers for a subconstant average have not been constructed, a short seed
length of say O(log N log (1/€)) can be achieved by constructions based on t-wise
independence (c.f. [4]). Using such a sampler, the communication complexity of
the resulting protocol becomes O (u+ (log N log (1/¢))°™M). When log (1/€) < u,
the saving would be significant.

Our new 4-message interactive hashing protocol can replace the NOVY pro-
tocol of [36] in our setting. A similar phenomena was observed also in the con-
text of Zero-Knowledge. Damgard [12] used the NOVY protocol to give certain
transformations of “honest verifier” Zero-Knowledge protocols into general Zero-
Knowledge protocols. Later works [14, 27] replaced the NOVY protocol with
a constant-round protocol. This raises the interesting question of whether the
NOVY protocol can be replaced by a constant-round protocol for the applica-
tion in [36], that is, for constructing perfectly hiding bit commitment schemes
from arbitrary one-way permutations. We remark that constant-round perfectly
hiding bit commitment schemes are known only using seemingly stronger as-
sumptions [39, 16, 25]. The NOVY protocol achieves a stronger security for
interactive hashing than the one defined here. This stronger security allows its
use in the application of [36]. Loosely speaking, it is shown in [36] that their
protocol is secure in the following sense: For every malicious strategy B* for
Bob, there is a “simulator” Ap-(W’) with running time polynomial in that of
B*, such that for most W’ € {0,1}™, the simulator Ag-(W’) can run B*, play
Alice’s role, and generate a perfectly simulated random transcript in which one
of the two outputs is W’. Intuitively, this is a stronger and computational form of
the notion that Bob does not “control” the two outputs. Obtaining this stronger
property with a constant number of rounds seems hard. A very related open
problem was raised in [15] in the context of Zero-Knowledge.

It is interesting to further study simulation-based definitions for protocols in
the bounded storage model, and investigate whether it is possible to construct
efficiently simulatable protocols. Positive results may allow composition of such
protocols with secure protocols in the standard complexity-based model, with
the benefit of combining the salient features of both worlds.
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