
Bounded-Concurrent Secure Two-Party Computation

in a Constant Number of Rounds

Rafael Pass ∗

NADA

Royal Institute of Technology

SE-10044 Stockholm, Sweden

rafael@nada.kth.se

Alon Rosen †

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

alon@lcs.mit.edu

Abstract

We consider the problem of constructing a general pro-

tocol for secure two-party computation in a way that pre-

serves security under concurrent composition. In our treat-

ment, we focus on the case where an a-priori bound on the

number of concurrent sessions is specified before the proto-

col is constructed (a.k.a. bounded concurrency). We make

no set-up assumptions.

Lindell (STOC 2003) has shown that any protocol for

bounded-concurrent secure two-party computation, whose

security is established via black-box simulation, must have

round complexity that is strictly larger than the bound on the

number of concurrent sessions. In this paper, we construct a

(non black-box) protocol for realizing bounded-concurrent

secure two-party computation in a constant number of

rounds. The only previously known protocol for realizing

the above task required more rounds than the pre-specified

bound on the number of sessions (despite usage of non

black-box simulation techniques).

Our constructions rely on the existence of enhanced trap-

door permutations, as well as on the existence of hash

functions that are collision-resistant against subexponential

sized circuits.

1 Introduction

The task of secure two-party computation involves two

parties that wish to evaluate a functionality f(x, y) =
(f1(x, y), f2(x, y)) of their corresponding private inputs x
and y. The evaluation process should supply the first party

with the value f1(x, y) and the second party with the value

f2(x, y) (one may also consider probabilistic functionalities

∗Work partly done while visiting the Weizmann Institute of Science.
†Work done while at the Weizmann Institute of Science. Research sup-

ported in part by a grant from the Israel Science Foundation.

in which case f(x, y) is a random variable). Loosely speak-

ing, the security requirement is that neither party learns

more from the protocol other than the output, and that the

output of each party is distributed according to the pre-

scribed functionality. This should hold even in case that

either one of the parties maliciously deviates from the pro-

tocol instructions. Shortly after its conceptualization, very

strong results have been established for secure two-party

computation. Specifically, it has been shown that any prob-

abilistic polynomial-time computable two-party functional-

ity can be securely computed, assuming the existence of en-

hanced trapdoor permutations [35, 22].

1.1 Secure Two­Party Computation in the Con­
current Setting

The original setting in which secure two-party protocols

were investigated allowed the execution of a single instance

of the protocol at a time (this is the so called stand-alone

setting). A more realistic setting, however, is one which

allows the concurrent execution of protocols. In the con-

current setting (originally introduced in the context of zero-

knowledge [17, 15]), many two-party protocols are exe-

cuted at the same time, involving many parties which may

be talking with the same (or many) other parties simultane-

ously. This setting presents the new risk of a coordinated

attack in which an adversary controls many parties, inter-

leaving the executions of the protocols and choosing mes-

sages based on other partial executions of the protocol.

Unfortunately, security of a specific protocol in the

stand-alone setting does not necessarily imply its security in

the (more demanding) concurrent setting. It is thus of great

relevance to examine whether the original feasibility results

for two-party computation (in the stand-alone setting) still

hold when many copies of the protocol are executed con-

currently. Indeed, concurrent composition of cryptographic

protocols has received a considerable amount of attention

recently.

Many of the works that deal with protocol composi-

tion strongly rely on the existence of some kind of trusted

set-up assumption. In some cases the usage of set-up as-

sumptions seems to be necessary (e.g., Universal Com-

posability [7, 12, 11]). However, it is not clear that for

other types of protocol composition one cannot do without

them (e.g., concurrent zero-knowledge [33, 24, 32], non-

malleable string commitment [14, 2]).

In this paper we consider the problem of constructing

a concurrently composable protocol for secure two-party

computation. In contrast to most of the previous work in

this area [7, 8, 12], and in accordance with recent work by

Lindell [26], our goal is to construct a protocol that does not

require any set up assumptions.

1.2 Previous Work

1.2.1 Composition Using Set-Up Assumptions

The literature discusses a wide array of set-up assumptions,

most notably the timing assumption [15, 16], the Public-

Key models [9, 13] and the Common Reference String

(CRS) model [7, 12]. Whereas the former assumptions have

been primarily used to obtain concurrent composition of

zero-knowledge, the latter assumption has been also used

to obtain strong composition theorems for secure two-party

computation. Specifically, in the model assuming the ex-

istence of a Common Reference String, it has been shown

how to achieve the very strong notion of Universal Com-

posability (UC) for both two-party and multi-party secure

computation [7, 12].

The universal composability setting (introduced by

Canetti [7]) is even more demanding than the concurrent

setting considered in this paper. It allows many sets of pos-

sibly different parties to run many protocols, and secure pro-

tocols may run concurrently with arbitrary other protocols.

Security of a protocol in the UC setting would imply its

security in the concurrent setting (as a special case). Unfor-

tunately, the possibility of obtaining univeral composability

without making any set-up assumptions (i.e., in the plain

model) has been ruled out for a large class of functionali-

ties [7, 8, 11]. This indicates that the notion of universal

composabilty might be too strong to be realized in a mean-

ingful way without making any set-up assumptions.

Recent work also seems to indicate that the CRS model

might not reflect the security concerns that one would

like to adress in reality [31]. Loosely speaking, standard

simulation-based definitions of security in the CRS model

do not cover certain “natural” security properties that are

satisfied in the plain model (e.g., deniability of protocols).

Moreover, known impossibility results for composition in

the plain model (e.g., [10, 26]) will apply to any protocol

that satisfies these “natural” security properties in the CRS

model.

1.2.2 Concurrent Secure Two-Pary Computation

So far, the only treatment of concurrent two-party compu-

tation without set-up assumptions has been given by Lin-

dell [26]. The definitional approach taken by Lindell is

somewhat analogous to the approach taken by earlier works

on concurrent zero-knowledge [15, 10]. Loosely speaking,

the setting in which a two-party protocol should be proved

to be secure involves a single (or many) honest parties that

are running many concurrent executions of the same pro-

tocol. The honest parties are trying to protect themselves

from a malicious adversary that controls a subset (or all) of

the parties it is interacting with. Since it seems unrealistic

(and certainly undesirable) for honest parties to coordinate

their actions so that security is preserved, one must assume

that in each instance of the protocol the honest party acts

independently.

The conclusions reached by Lindell were mostly nega-

tive in nature. His main result is that any protocol for con-

current secure two-party computation, whose security is es-

tablished via black-box simulation, must have round com-

plexity that is strictly larger than the number of concurrent

executions of the protocol. In particular, black-box simu-

lation cannot be used in order to establish the security of

two-party protocols when arbitrarily many protocols are al-

lowed to run concurrently. Lindell’s lower bound stands

in sharp contrast to the case of zero-knowledge for NP
where it has been shown that logarithmically many rounds

are sufficient for black-box simulation in the concurrent set-

ting [33, 24, 32].

Falling short of providing a concurrently composable

protocol for secure two-party computation, Lindell resorts

to the model of bounded concurrency. In the model of

bounded concurrency, first considered by Barak [1] in the

context of zero-knowledge, it is assumed that an a-priori

bound on the number of concurrent sessions is specified be-

fore the protocol is constructed. As shown by Barak, it is

possible to construct a constant-round bounded-concurrent

zero-knowledge protocol for all languages in NP [1].

This goes well below previous impossibility results show-

ing that logarithmically many rounds are necessary for

black-box simulation of (even bounded) concurrent zero-

knowledge [10]. Indeed, the security of Barak’s protocol is

proved using non black-box simulation techniques. Inter-

estingly, it is still open whether it is at all possible to extend

Barak’s techniques to construct an unbounded concurrent

zero-knowledge protocol (even using a super-constant num-

ber of rounds).

Using Barak’s protocol, Lindell constructs a protocol

for bounded concurrent secure two-party computation. The

main feature required from Barak’s protocol in the context

of secure two-party computation is that its simulator does

not make use of rewinding (a simulation technique inherent

to black-box simulation [20, 25, 10]). In this context, the

low round-complexity of Barak’s protocol does not play a

significant role.

Unfortunately, Lindell’s protocol also relies on black-

box simulation. As a consequence, the round-complexity

of Lindell’s protocol is severely limited by his own lower

bound (on black-box simulation of concurrently compos-

able secure two-party computation). Indeed, the number of

rounds in the protocol is required to be strictly larger than

the number of allowed concurrent sessions!

1.3 Our Results

Motivated by the above discussion, one might wonder

whether Lindell’s negative results are inherent to his def-

inition of concurrent composition of two-party protocols

(or even to any other “natural” definition of concurrency).

Given the current state of knowledge, it is still conceivable

that “non-trivial” concurrent composition of secure two-

party protocols is beyond reach without resorting to some

kind of set-up assumption (somewhat analogously to the sit-

uation in Universal Composability). In light of this, any pro-

tocol for (even bounded) concurrent two-party computation

with “non-trivial” round-complexity would be interesting.1

In this work we address the above question and present

a result of a positive nature. While our focus has been on

feasibility, we also obtain the best one could hope for in

terms of round-complexity. Specifically, we show how to

construct a constant-round protocol for realizing bounded-

concurrent secure two-party computation.

The security of our protocol relies on the existence of

enhanced trapdoor permutations [18], as well as on the ex-

istence of strong collision resistant hash functions (i.e., so

that for some κ > 0 forming collisions with probability

greater than 2−nκ

requires at least 2nκ

time). For an inte-

ger m, the notion of m-bounded concurrent composition

refers to a setting in which at most m copies of a protocol

are executed concurrently (typically, m = m(n) is a fixed

polynomial in the security parameter). Our main theorem is

stated below.

Main Theorem Assume the existence of enhanced trap-

door permutations and the existence of strong collision-

resistant hash functions. Then, for any two-party function-

ality f and for any integer m, there exists a protocol Π that

securely computes f under m-bounded concurrent compo-

sition. Moreover, the number of communication rounds in

Π is constant.

1By “non-trivial” round complexity we mean that the number of rounds

in the protocol is strictly smaller than the pre-specified bound on the num-

ber of sessions.

On the Cryptographic Assumptions Used. The above

theorem relies on slightly strong, nevertheless standard, as-

sumption on collision resistance of hash functions. As it

turns out from our proof, this assumption can be some-

what relaxed to require the existence of both one-way func-

tions that are hard to invert for sub-exponential sized cir-

cuits and of hash functions that are collision-resistant for

quasi-polynomial sized circuits.

On the Model of Concurrency. The concurrent setting

considered in this paper follows Lindell’s treatment [26]

which, in turn, is adapted from previous works on concur-

rent zero-knowledge. We consider a single (or many) honest

parties that are running many concurrent executions of the

same two-party protocol. The honest parties are trying to

protect themselves from a malicious adversary that controls

a subset (or all) of the parties it is interacting with. In each

instance of the protocol the honest party is required to act

independently. As observed by Lindell [26], this setting is

equivalent to the case where many different pairs of parties

run a protocol concurrently where each party is designated

to be either a first party P1 or a second party P2 (this de-

fines the role that it plays in the protocol execution). The

adversary is then only allowed to corrupt a subset of the

parties playing P1 or a subset of the parties playing P2; but

cannot corrupt both parties P1 and P2 simultaneously. We

further require that the adversary is non-adaptive, that is,

the corrupted parties are chosen before the begining of the

interaction.

1.4 Techniques

Our work relies in part on the works by Canetti, Lin-

dell, Ostrovsky and Sahai [12] and Lindell [26]. The first

of these works develops tools for proving security of two-

party protocols in the framework of universal composability

in the CRS model. The second work demonstrates how to

use some of these tools in order to reduce the problem of

concurrent composition of two-party protocols to the con-

struction of special-purpose zero-knowledge protocols in

the plain model. Once this reduction is provided, all that

is required is to implement such protocols without resorting

to any set-up assumption. Our first contribution is a con-

ceptual simplification of Lindell’s reduction. We do this by

introducing a new type of adversary, called a non-abusing

adversary. More details on such adversaries can be found in

Sections 3.1.

The main technical ingredient of our work is the con-

struction of two new special-purpose zero-knowledge pro-

tocols. These protocols satisfy the following extra proper-

ties:

Round efficiency: Both protocols have a constant number

of rounds.

Bounded Concurrency: Both protocols retain their zero-

knowledge property under bounded concurrent com-

position, even in presence of messages from other pro-

tocols.

Non-rewinding simulation: The simulators establishing

the concurrent zero-knowledge property of the proto-

cols do not use rewinding. Here we rely on Barak’s

non black-box simulation techniques [1]. In our set-

ting, however, the simulator might simltaneously act

as a prover in one protocol and as a verifier in an-

other protocol. This introduces technical difficulties

that Barak’s protocol was not designed to deal with,

and requires the usage of new ideas for performing the

simulation.

Simulation Soundness: The protocols are simulation-

sound with respect to each other. That is, the sound-

ness of each one of the protocols is preserved even

when the other protocol is simulated at the same

time with the roles of the prover and verifier re-

versed. This introduces technical issues related to non-

malleability [14]. The main problem here is to guaran-

tee simulation-soundness for both protocols. Different

solutions are required for each one of the protocols due

to the symmetric nature of the problem. In one direc-

tion we use the idea of complexity leveraging (previ-

ously used in the context of resettable zero-knowledge

and simulation in quasi-polynomial time [9, 30]). In

the other direction, we introduce a new technique that

enables us to prove simulation-soundness in a direct

manner.

We feel that some of the techniques that we use for

simulating the zero-knowledge protocols and for prov-

ing simulation-soundness might find application elsewhere.

More details on our zero-knowledge protocols can be found

in Section 3.2.

1.5 Future work

This paper essentially settles the question of bounded-

concurrent composition of secure two-party computation.

One issue that deserves improvement, however, is the

strength of the underlying cryptographic assumptions.

Perhaps the most important open question in the con-

text of concurrent composition is to establish whether it is

possible to achieve unbounded concurrent composition of

two-party protocols. This seems to require new ideas for

improving currently known non black-box simulation tech-

niques (due to Barak [1]). As a first step one could settle for

super-constant round-complexity. We mention that, even in

this relaxed case, nothing is known.

Another important question is whether one can achieve

concurrently composable multi-party computation without

an honest majority and without making any set-up assump-

tions. It seems that the techniques presented here do not

suffice for achieving such a result.

1.6 Organization

Definitions of bounded-concurrent secure two-party

computation can be found in Section 2. Section 3 contains a

high level description of our proof, as well as a description

of our new zero-knowledge protocols.

2 Definitions

In this section we present the definition for m-bounded

concurrent secure two-party computation. Our definitions

follows the ones of Lindell and we here present an abre-

viated version, taken almost verbatim from [26]. The ba-

sic description and definition of secure computation fol-

lows [23, 28, 5, 6]. We denote computational indistin-

guishability by ≡, and the security parameter (and, for sim-

plicity, the lengths of the parties’ inputs) by n.

Two-party computation. A two-party protocol problem

is cast by specifying a random process that maps pairs of

inputs to pairs of outputs (one for each party). We refer to

such a process as a functionality and denote it f : {0, 1}∗×
{0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is,

for every pair of inputs (x, y), the output-pair is a random

variable (f1(x, y), f2(x, y)) ranging over pairs of strings.

The first party (with input x) wishes to obtain f1(x, y) and

the second party (with input y) wishes to obtain f2(x, y).
In the context of concurrent composition, each party re-

ceives a vector of inputs of polynomial length, and the aim

of the parties is to jointly compute f(xi, yi) for every i.

Adversarial behavior. In this work we consider a mali-

cious, static adversary. That is, the adversary controls one

of the parties (who is called corrupted) and may then in-

teract with the honest party while arbitrarily deviating from

the specified protocol. The focus of this work is not on fair-

ness. We therefore present a definition where the adversary

always receives its own output and can then decide when (if

at all) the honest party will receive its output. The schedul-

ing of message delivery is decided by the adversary.

Security of protocols (informal). The security of a pro-

tocol is analyzed by comparing what an adversary can do

in the protocol to what it can do in an ideal scenario that is

secure by definition. This is formalized by considering an

ideal computation involving an incorruptible trusted third

party to whom the parties send their inputs. The trusted

party computes the functionality on the inputs and returns

to each party its respective output. Unlike in the case of

stand-alone computation, here the trusted party computes

the functionality p(n) times, each time upon different in-

puts. Loosely speaking, a protocol is secure if any adver-

sary interacting in the real protocol (where no trusted third

party exists) can do no more harm than if it was involved in

the above-described ideal computation.

Concurrent execution in the ideal model. The ideal ex-

ecution is defined as follows: The honest party sends all its

inputs to the trusted party. The adversary thereafter sends

its input in any order that it wishes to the trusted party, and

directly receives the output. In particular, since we are con-

sidering a concurrent setting the adversary can schedule the

order in which all protocols take place and choose its inputs

adaptively. Finally, the adversary decides which outputs the

honest party will recieve and sends a list of indexes to the

trusted party, which in turn sends the output of these execu-

tions to the honest party. The honest party then outputs the

results obtained from the trusted party, while the adversary

can output an arbritrary function of its initial state and the

messages obtained from the trusted party.

Let p(n) be a polynomial in the security parameter, let

f : {0, 1}∗×{0, 1}∗ 7→ {0, 1}∗×{0, 1}∗ be a functionality,

and let S be a non-uniform probabilistic polynomial-time

machine (representing the adversary). Then, the ideal exe-

cution of f (on input vectors (x, y) of length p(n) and aux-

iliary input z to S), denoted IDEALf,S(x, y, z), is defined as

the output pair of the honest party and S in the above ideal

execution.

We note that the definition of the ideal model does not

include any reference to the bound m on the concurrency.

This is because this bound is relevant only to the scheduling

allowed to the adversary in the real model; see below.

Execution in the real model. We next consider the real

model in which a real two-party protocol is executed (and

there exists no trusted third party). Let p(n) and m = m(n)
be polynomials, let f be as above and let Π be a two-party

protocol for computing f . Furthermore, let A be a non-

uniform probabilistic polynomial-time machine that con-

trols either P1 or P2. Then, the real m-bounded concur-

rent execution of Π (on input vectors (x, y) of length p(n)
and auxiliary input z to A), denoted REALm

Π,A
(x, y, z), is

defined as the output pair of the honest party and A, result-

ing from p(n) executions of the protocol interaction, where

the honest party always inputs its ith input into the ith exe-

cution.

The scheduling of all messages throughout the execu-

tions is controlled by the adversary. The bound on concur-

rency requires that the scheduling by the real model adver-

sary must fulfill the following condition: for every execu-

tion i, from the time that the ith execution begins until the

time that it ends, messages from at most m different execu-

tions can be sent.

Security as emulation of a real execution in the ideal

model. Having defined the ideal and real models, we can

now define security of protocols. Loosely speaking, the def-

inition asserts that a secure two-party protocol (in the real

model) emulates the ideal model (in which a trusted party

exists). This is formulated by saying that for every real-

model adversary there exists an ideal model adversary that

can simulate an execution of the secure real-model protocol.

Definition 1 (Security in the malicious model) Let m =
m(n) be a polynomial and let f and Π be as above. Proto-

col Π is said to securely compute f under m-bounded

concurrent composition if for every real-model non-

uniform probabilistic polynomial-time adversary A control-

ling party Pi for i ∈ {1, 2}, there exists an ideal-model non-

uniform probabilistic polynomial-time adversary S control-

ling Pi, such that for every polynomial p(n),

{

IDEALf,S(x, y, z)
}

n∈N
≡

{

REAL
m
Π,A(x, y, z)

}

n∈N

where x, y ∈ ({0, 1}n)p(n) and z ∈ {0, 1}∗.

Strengthening the definition. Definition 1 is rather sim-

plistic in that it assumes that all inputs are fixed before any

execution begins. We remark that our result also holds for

a more general definition where inputs for later executions

can depend on outputs of earlier executions.

3 Proof Outline

In this section we give a high-level outline of our proof,

as well as a description of our new special-purpose zero-

knowledge protocols. More details can be found in the full

version.

The structure of our proof follows that of Lindell [26].

On a very high level, the proof can be divided into two parts.

The first part shows how to reduce the problem of construct-

ing a concurrently composable two-party protocol to the

task of implementing two special-purpose zero-knowledge

protocols. This part mainly follows [26] while introducing

a new notion that conceptually simplifies the proof. It is

described in Sections 3.1.

The second part involves the construction of the special-

purpose zero-knowledge protocols. This part builds on

Barak’s bounded-concurrent zero-knowledge argument [1]

as well as on new ideas related to non-malleability and con-

current simulatability. It is described in Section 3.2.

3.1 Reducing the Problem to Special­Purpose ZK

3.1.1 Idealized Functionalities

Our starting point is the protocol of Canetti et al. [12]. In

their paper, they show that the task of concurrently com-

posable secure two-party computation can be achieved in a

setting where the parties have access to a specific idealized

functionality.2 The notion of ideal functionalities is a cen-

tral tool in the framework of universal composability [7],

and can be thought of as the introduction of a trusted third

party that is designed to perform a specific task. In the case

of Canetti et al. [12], the protocol requires usage of the ideal

zero-knowledge proof of knowledge functionality.

The IdealZK functionality. Informally, the ideal zero-

knowledge proof of knowledge functionality (called Ide-

alZK) for an NP-relation R is specified as follows: The

prover sends an instance-witness pair (x, w) to the ideal

functionality which, in turn, sends (x, 1) to the verifier if

(x, w) ∈ R and (x, 0) otherwise.

The setting in which the parties have access to (multi-

ple) ideal zero-knowledge functionalities is called the ZK-

Hybrid model. Our motivation (as was also the motivation

of Lindell [26]) is to remove the usage of the ideal zero-

knowlegde functionality and implement a protocol that per-

forms the same task but in the real model. If done in an

appropriate way, this would give rise to a concurrently com-

posable two-party computation protocol.

A natural (yet naı̈ve) approach to implement such a

protocol, would be to instantiate each idealized zero-

knowledge call in the protocol of [12] with an invocation

of a concurrent zero-knowledge argument. However, as

pointed out in [26], this approach lacks in several aspects:

• The notion of concurrent zero-knowledge only con-

siders the composition of the zero-knowledge protocol

with itself. In the more complicated setting of secure

two-party computation, it is essential that the proto-

col is zero-knowledge not only when being composed

with itself, but also when being composed with other

protocols running at the same time.

• In the setting of concurrent two-party computation, it

is conceivable that a party acts as a prover in one ses-

sion, while simultaneously acting as a verifier in a dif-

ferent session. (This problem does not occur in the set-

ting of concurrent zero-knowledge, since each party is

either a verifier or a prover.) Thus the problem of mal-

leability arises: It is possible for an adversary to use

2The result by Canetti et al. [12] is in fact stronger, as they construct a

protocol that is universally composable [7]. Nevertheless, in this work we

only require composition in the (less demanding) concurrent setting. One

advantage arising from the usage of the protocol of [12] as a starting point

is that it enables us to avoid many technicalities that arise when proving a

general theorem on secure two-party computation from scratch.

messages from a proof that it is receiving in a proof

that it is giving.3

In order to achieve the above mentioned task, we show

a general transformation that transforms any protocol Π̃ in

the ZK-Hybrid model into a protocol Π in the real model

(without any ideal functionalities or set-up assumptions).

This is what we call realizing the ZK-Hybrid model. Jump-

ing ahead, we mention that this part also includes the con-

struction of the special-purpose zero-knowledge protocols

(as will be described in Section 3.2). We further show that

the transformation satisfies the following properties:

Concurrency: The protocol’s security is preserved under

(bounded) concurrent composition.

Round-Efficiency: The protocol’s round-complexity is

preserved (up to a constant factor).

In particular the transformation can be applied to the proto-

col of [12] to obtain a bounded concurrent secure two-party

computation protocol.

3.1.2 How to Realize Protocols in the ZK-Hybrid Model

The above transformation is performed in two steps:

1. Reduce the usage of the IdealZK functionality to the

usage of a weaker (and easier to implement) ideal func-

tionality. This functionality is named the WeakZK

functionality.

2. Show how to transform any protocol using the

WeakZK functionality into a protocol in the real

model by “plugging in” the special-purpose protocols.

The WeakZK functionality. The first step consists of re-

ducing the usage of IdealZK to the usage of WeakZK. (This

reduction might be of independent interest as it in fact also

is applicable in the multi-party setting withoutany bounds

on concurrency). The latter functionality was introduced

in [26] as a technical tool and is (informally) specified as

follows: The prover sends a pair (x, b) to the ideal func-

tionality which, in turn, sends (x, b) to the verifier if x ∈ L
and (x, 0) otherwise (where b ∈ {0, 1}).4

The difference between the IdealZK and the WeakZK

functionalities can be described as follows. While in the

IdealZK functionality the prover needs to supply both a

3The situation in our case is even more complicated than in “tradi-

tional” treatments of non-malleability since, in our setting, the so-called

man-in-the-middle is considered to succeed even if he convinces the ver-

ifier of the truthfulness of the same statement that he is being proven. In

particular, known solutions for non-malleability do not apply here.
4In fact, our WeakZK functionality slightly differs from the one de-

fined by Lindell. The reason we define it differently will become clear

later when we introduce the new notion of non-abusing adversaries.

witness and a statment, in the WeakZK functionality it is

sufficient for the prover to just supply a statement. In other

words, the IdealZK functionality provides a proof of knowl-

edge, while the ideal WeakZK functionality only provides

a proof of validity. The extra bit b is used to let the prover

“fail” in proving even true statements (clearly, one cannot

force the prover to prove something if he does not want to

do so). We call a model where parties have access to the

WeakZK functionality, the WeakZK-Hybrid model.

Non-abusing adversaries. We note that the WeakZK

functionality is not efficiently computable since, in general,

it might be hard to decide whether a given instance belongs

to an NP language without possessing a witness. This

complicates the reduction from the usage of the IdealZK

functionality to the usage of the WeakZK functionality. To

overcome this problem, we introduce the notion of non-

abusing adversaries. Non-abusing adversaries exist only

in the WeakZK-Hybrid model. These adversaries (almost)

always make “proper” usage of the WeakZK functionality.

That is, they always explicitly tell the WeakZK functional-

ity if the statement x is false by sending (x, 0) to it. (We

mention, however, that an non-abusing adversary may send

(x, 0) to the ideal functionality, even if x ∈ L). In other

words, non-abusing adversaries only send values (x, b) that

would make the WeakZK functionality send (x, b) to the

verifier. Thus, for non-abusing adversaries the WeakZK

functionality is efficiently computable.

Reducing between the hybrid models. Taking care of

the above issue will enable us to show that any proto-

col Π̃ in the ZK-Hybrid model can be transformed into

a protocol Π′ in the WeakZK-Hybrid model, such that

any non-abusing adversary in the WeakZK-Hybrid model

can be simulated in the ZK-Hybrid model. This in par-

ticular means that, in the transformation between the two

hybrid models, security is preserved. The proof of this

statement makes use of a generic transformation of a zero-

knowledge argument into a zero-knowledge argument of

knowledge [4].

Now, in order to show how to realize any protocol in the

ZK-Hybrid model, it remains to show how to transform any

protocol Π′ in the WeakZK-Hybrid model into a protocol Π
in the real model. This should be done in a way than enables

simulation of any adversary in the real model by a non-

abusing adversary in the WeakZK-Hybrid model. Here

we will also require the extra property that the simulator for

the instantiated zero-knowledge proof does not make use of

rewinding.5 Jumping ahead, we mention that in order to

5To be accurate, some kind of rewinding is permissible in this setting

(such rewinding has been used by Lindell [26]). However, one has to make

sure that this rewinding does not rewind past messages that are external to

the instantiated zero-knowledge protocols.

show that the simulation can be done by a non-abusing ad-

versary we will need to instantiate the calls to the WeakZK

functionality by invocations of zero-knowledge protocols

that are simulation-sound with respect to each other.

Completing the Reduction. The proof of the previous

lemma thus boils down to the construction of two special-

purpose zero-knowledge protocols satisfying the following

requirements:

1. Both protocols compose concurrently with respect to

arbitrary protocols.

2. Simulation of the protocols does not make use of

rewinding.

3. The protocols are simulation-sound with respect to

each other. That is, the soundness of each one of the

protocols is preserved even when the other protocol is

simulated at the same time with the role of the prover

and verifier reversed.

3.2 The Special­Purpose ZK Protocols

Our special purpose zero-knowledge protocols are based

on the bounded-concurrent ZK protocol of Barak [1].

Barak’s protocol relies on the existence of strong collision

resistant hash functions. Other tools used in the protocol are

perfectly binding bit-commitments [29, 19] and a witness-

indistinguishable universal argument (WI UARG)[3].

We start by giving a brief description of this protocol

with an emphasis on a key property of its simulator. This

property will enable us to perform simulation in our set-

ting. More details on Barak’s protocol can be found in [1].

The underlying idea behind Barak’s protocol is the usage an

NTIME(nlog n) relation denoted Rsim.

Input: A triplet 〈h, c, r〉.

Witness: A program Π, a string y ∈ {0, 1}(|r|−n), and a

string s.

Relation: RSim(〈h, c, r〉, 〈Π, s, y〉) = 1 if and only if:

1. c = Com (h(Π); s).

2. Π(c, y) = r within T (n) steps.

Figure 1. Barak’s NTIME(T (n)) relation Rsim.

Let T : N → N be a “nice” function that satisfies

T (n) = nω(1). Let T ′ : N → N be a function such that

T ′(n) = T (n)ω(1). Suppose there exist a T ′(n)-collision

resistant hash functions ensemble {Hn}h∈{0,1}n where h
maps {0, 1}∗ to {0, 1}n. Barak’s protocol is described in

Figure 2 below.

Common Input: an instance x ∈ {0, 1}n presumably in L,

security parameter 1n, length parameter ℓ(n).

Stage 1:

V → P : Send h
R
←Hn.

P → V : Send c = Com(0n).

V → P : Send r ∈ {0, 1}ℓ(n).

Stage 2:

P ↔ V : A WI UARG proving the OR of the following

two statements:

1. ∃ w ∈ {0, 1}poly(|x|) so that RL(x, w) = 1.

2. ∃ 〈Π, s〉 so that RSim(〈h, c, r〉, 〈Π, s〉) = 1.

Figure 2. Barak’s bounded­concurrent zero­
knowledge argument for NP .

As shown in [1], Barak’s protocol is computationally sound.

Moreover, given access to the verifier’s code (or, equiva-

lently, to the verifier’s next message function), the protocol

can be simulated without making use of rewinding. To sim-

ulate a specific session, the simulator commits to the veri-

fier’s next-message function (instead of committing to ze-

ros). The verifier’s next message function is then a program

whose output depends on all the prover messages sent be-

tween messages c and r in the relevant session.

Now, if the length of all these messages is bounded by

ℓ(n) − n the simulator will have a valid witness for stage

2 of the protocol. The zero-knowledge property then fol-

lows (with some work) from the witness indistinguishable

property of stage 2.

Barak [1] has shown that the length of the prover’s mes-

sages in a single execution can be bounded by 2n2. Thus,

for m concurrent executions, taking ℓ(n) = 2m · n2 + n
would do. We note that the length of the verifier’s messages,

not counting r’s, can also be bounded by 2n2.

An important extra feature of the protocol is that it is in

fact sufficient that the simulator has a “short” description

of the prover’s messages. The protocol is thus simulatable

even if the total length of prover’s messages is greater than

ℓ(n) − n, as long as the simulator has a description of a

program for generating the prover’s messages that is shorter

than ℓ(n) − n.

Our protocols. Let f be a one-way function with an ef-

ficiently recognizable range set, and let κ > 0 be so that f
is not invertible by circuits of size 2nκ

. 6 Let k = 1/κ + 1,

T ′(n) = nlogk+1 n, and let T (n) be a super-polynomial

function such that T (n) = T ′(n)1/ω(1). Suppose there

6The efficient recognizability requirement on f is not really necessary

and it is introduced only for simplicity of presentation. In our case any

one-way function with the above security properties would do.

exist a T ′(n)-collision resistant hash functions ensemble

{Hn}h∈{0,1}n as required by Barak’s protocol. We are

ready to describe our special purpose protocols, cZK1 and

cZK2 (depicted in Figures 3 and 4).

Common Input: an instance x ∈ {0, 1}n presumably in L,

security parameter 1n, length parameter ℓ(n).

Stage 1:

V → P : Send h
R
←Hn.

P → V : Send c1 = Com(0n).

V → P : Send r1
R
← {0, 1}ℓ(n).

P → V : Send c2 = Com(0n).

V → P : Send r2
R
← {0, 1}ℓ(n).

Stage 2:

P ↔ V : A WI UARG, that is sound against adversaries

running in time T ′(n) = nlogk+1n, proving the

OR of the following three statements:

1. ∃ w ∈ {0, 1}poly(|x|) so that RL(x, w) = 1.

2. ∃ 〈Π, s〉 so that RSim(〈h, c1, r1〉, 〈Π, s〉)=1.

3. ∃ 〈Π, s〉 so that RSim(〈h, c2, r2〉, 〈Π, s〉)=1.

Figure 3. Our first special­purpose zero­

knowledge protocol – cZK1.

Simulating the protocols. The difference between cZK1

and the protocol of Barak is that in cZK1 the prover (simu-

lator) is given two opportunities to guess the verifier’s next

message. We call each such opportunity a slot. Messages

that are exchanged between the message ci and the message

ri are said to be contained in slot i. Note that it is sufficient

to have a “short” description of the messages contained in

either slot 1 or slot 2 to succeed in the simulation of cZK1.

cZK2 is obtained by combining the quasi-polynomial

time simulatable protocol of Pass [30] with the protocol of

Barak. Note that, besides using Barak’s technique to simu-

late in polynomial time, one can simulate cZK2 by running

in time nO(logk n) and inverting the one-way function by

brute-force.

Let ℓ(n) = m(k · 4n2 + length(Π′)) + n, where Π′

denotes the protocol in the WeakZK Hybrid model (that

we wish to realize) and k is the total number of ideal zero-

knowledge calls in one execution of Π′. We note that the to-

tal length of messages sent by a party, not including the r’s

in cZK1, cZK2, is bounded by m(k · 2n2 + length(Π′)),

as both the length of the prover messages and verifier mes-

sages in cZK1, cZK2 is bounded by 2n2.

It follows that if the simulator can give a description

of the various r’s (each being of length ℓ(n)) that is

Common Input: an instance x ∈ {0, 1}n presumably in L,

security parameter 1n, length parameter ℓ(n).

Stage 1:

V → P : Send h
R
←Hn.

V → P : Send q = f(t), where t ∈R {0, 1}log
k n. 7

P → V : Send c = Com(0n).

V → P : Send r
R
← {0, 1}ℓ(n).

Stage 2:

P ↔ V : A WI UARG proving the OR of the following

three statements:

1. ∃ w ∈ {0, 1}poly(|x|) so that RL(x,w) = 1.

2. ∃ 〈Π, s〉 so that RSim(〈h, c, r〉, 〈Π, s〉) = 1.

3. ∃ t′ so that q = f(t′).

Figure 4. Our second special­purpose zero­

knowledge protocol – cZK2.

shorter than n2 it will always succeed in the simulation of

cZK1,cZK2. We hint that this is done by letting the sim-

ulator use a pseudorandom generator in order to generate

verifier messages when playing the role of the verifier in

other protocols.

Soundness in the stand-alone setting. By using a hash

function that is secure against T ′(n)-adversaries one can

ensure that cZK1 is sound against T ′(n) adversaries. It

is straightforward to see that the functions T (n) and T ′(n)
satisfy the requirements needed to guarantee the soundness

of the interactive argument.

As for cZK2, soundness against polynomial time adver-

saries follows using the same argument as in [30], by com-

bining the proof of knowledge property of the universal ar-

gument and the fact that the one-way function is hard to

invert in sub-exponential time.

Simulation soundness. The last step is to guarantee that

the soundness of each one of cZK1,cZK2 is not violated

when simulating the other protocol with the roles of the

prover and verifier reversed. To do this we show how to

transform a cheating prover in this simulation/cheating sce-

nario into a cheating prover for the stand alone case.

Suppose there exists a cheating prover P ∗ that manages

to violate the soundness of one instance of protocol cZKi

while it is verifying the simulation of multiple concurrent

instances of the other cZK protocol. We show how to con-

struct a cheating prover P ∗∗ for a single instance of cZKi

7To remove the efficient recognizability requirement from f , one could

let V prove using a Witness Hiding proof that there exists an inverse to q

under f .

by forwarding the messages of this “cheating” instance of

cZKi to an external honest verifier V (the instance in which

P ∗ is actually cheating can be “guessed” by picking one of

the instances of cZKi at random). V ’s replies are then for-

warded by P ∗∗ back to P ∗ as if they were generated by the

simulator. Since P ∗ is assumed to be cheating in this spe-

cific instance of cZKi, and since the verifier messages used

by P ∗∗ are actually the messages used by V , the (stand-

alone) soundness of cZKi is presumably violated.

One final (subtle) issue that should be handled is that

the code of V is not available to us. This means that the

straightforward simulation of cZKi cannot be completed as

it is (since it explicitly requires possession of a “short” ex-

planation of the corresponding verifier messages). To over-

come this problem we resort to alternative simulation tech-

niques in each one of the protocols.

Simulating cZK2 while verifying cZK1: In this case we

use the alternative simulator for cZK2 (running in time

nO(logk n)). Note that this simulation technique does

not require the verifier’s code. Due to the WI prop-

erty of the UARG, the presumed cheating prover will

still succeed to convince an honest verifier of protocol

cZK1 with roughly the same probability. Since sound-

ness of cZK1 is guaranteed against provers running in

time nlogk+1 n we derive a contradiction.

Simulating cZK1 while verifying cZK2: In this case we

use the fact that it is sufficient to have a short descrip-

tion of the messages sent in either the first or the sec-

ond slot of cZK1 since the honest verifier’s r mes-

sage (to be “explained”) can occur in at most one of

the slots, polynomial time simulation is guaranteed.

Again, the WI property of the UARG guarantees that

the the presumed cheating prover will still succeed

to convince an honest verifier of protocol cZK2 with

roughly the same probability.

4 Acknowledgements

We are grateful to Yehuda Lindell for significant discus-

sions on the subject and for giving us access to a manuscript

of his work. We also thank Johan Håstad for valuable help

and discussions. Thanks also to Oded Goldreich, Shafi

Goldwasser, and Moni Naor for helpful conversations. The

first author is grateful to the Weizmann Institute, and in par-

ticular Shafi Goldwasser, for letting him visit the Institute.

References

[1] B. Barak. How to go Beyond the Black-Box Simulation Bar-

rier. In 42nd FOCS, pages 106–115, 2001.

[2] B. Barak. Constant-Round Coin-Tossing or Realizing the

Shared-Random String Model. In 43rd FOCS, pages 345-355,

2002.

[3] B. Barak and O. Goldreich. Universal Arguments and their

Applications. 17th CCC, pages 194–203, 2002.

[4] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation

and Extraction. In 34th STOC, pages 484–493, 2002.

[5] D. Beaver. Foundations of Secure Interactive Computing.

In CRYPTO’91, Springer-Verlag (LNCS 576), pages 377–391,

1991. Repetition Lower the Error

[6] R. Canetti. Security and Composition of Multiparty Cryp-

tographic Protocols. Journal of Cryptology, 13(1):143–202,

2000.

[7] R. Canetti. Universally Composable Security: A New

Paradigm for Cryptographic Protocols. In 34th STOC, pages

494–503, 2002.

[8] R. Canetti and M. Fischlin. Universally Composable Com-

mitments. In Crypto2001, Springer LNCS 2139, pages 19–40,

2001.

[9] R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Reset-

table Zero-Knowledge. In 32nd STOC, pages 235–244, 2000.

[10] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box

Concurrent Zero-Knowledge Requires (almost) Logarithmi-

cally Many Rounds. SIAM Jour. on Computing, Vol. 32(1),

pages 1–47, 2002.

[11] R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations

of Universally Composable Two-Party Computation Without

Set-Up Assumptions. To appear in EuroCrypt2003.

[12] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Univer-

sally Composable Two-Party and Multy-Party Computation. In

34th STOC, pages 494–503,2002.

[13] I. Damgard. Eficient Concurrent Zero-Knowledge in the

Auxiliary String Model. In EuroCrypt2000, LNCS 1807, pages

418–430, 2000.

[14] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptog-

raphy. SIAM Jour. on Computing, Vol. 30(2), pages 391–437,

2000.

[15] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-

Knowledge. In 30th STOC, pages 409–418, 1998.

[16] C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Re-

ducing the Need for Timing Constraints. In Crypto98, Springer

LNCS 1462 , pages 442–457, 1998.

[17] U. Feige. Ph.D. thesis, Alternative Models for Zero Knowl-

edge Interactive Proofs. Weizmann Institute of Science, 1990.

[18] O. Goldreich. Draft of a Chapter on general Proto-

cols. Available at: http://www.wisdom.weizmann.

ac.il/˜oded/PSBookFrag/prot.ps

[19] O. Goldreich. Foundation of Cryptography – Basic Tools.

Cambridge University Press, 2001.

[20] O. Goldreich and H. Krawczyk. On the Composition of

Zero-Knowledge Proof Systems. SIAM Jour. on Computing,

Vol. 25(1), pages 169–192, 1996.

[21] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield

Nothing But Their Validity or All Languages in NP Have Zero-

Knowledge Proof Systems. JACM, Vol. 38(1), pp. 691–729,

1991.

[22] O. Goldreich, S. Micali and A. Wigderson. How to Play any

Mental Game – A Completeness Theorem for Protocols with

Honest Majority. In 19th STOC, pages 218–229, 1987.

[23] S. Goldwasser and L. Levin. Fair Computation of General

Functions in Presence of Immoral Majority. In CRYPTO’90,

Springer-Verlag (LNCS 537), pages 77–93, 1990.

[24] J. Kilian and E. Petrank. Concurrent and Resettable Zero-

Knowledge in Poly-logarithmic Rounds. In 33rd STOC, pages

560–569, 2001.

[25] J. Kilian, E. Petrank and C. Rackoff. Lower Bounds for Zero-

Knowledge on the Internet. In 39th FOCS, pages 484–492,

1998.

[26] Y. Lindell. Bounded-Concurrent Secure Two-Party Compu-

tation Without Setup Assumptions. To appear in 34th STOC,

2003.

[27] S. Micali. CS Proofs. SIAM Jour. on Computing, Vol. 30 (4),

pages 1253–1298, 2000.

[28] S. Micali and P. Rogaway. Secure computation. Unpub-

lished manuscript, 1992. Preliminary version in CRYPTO’91,

Springer-Verlag (LNCS 576), pages 392–404, 1991.

[29] M. Naor. Bit Commitment using Pseudorandomness. Jour. of

Cryptology, Vol. 4, pages 151–158, 1991.

[30] R. Pass. Simulation in Quasi-polynomial Time and its Appli-

cation to Protocol Composition. In EuroCrypt2003, Springer

LNCS 2656, pages 160–176, 2003.

[31] R. Pass. On Deniability in the Common Reference String and

Random Oracle Model. To appear in Crypto2003

[32] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-

Knowledge with Logarithmic Round Complexity. Proceedings

of the 43rd annual IEEE symposium on Foundations of Com-

puter Science (FOCS 2002), pages 366-375 2002.

[33] R. Richardson and J. Kilian. On the Concurrent Composition

of Zero-Knowledge Proofs. In EuroCrypt99, Springer LNCS

1592, pages 415–431, 1999.

[34] A. Rosen. A note on the round-complexity of Concurrent

Zero-Knowledge. In Crypto2000, Springer LNCS 1880, pages

451–468, 2000.

[35] A. Yao. How to Generate and Exchange Secrets. In 27th

FOCS, pages 162–167, 1986.

