Bounded-Concurrent Secure Two-Party Computation
in a Constant Number of Rounds

Rafael Pass *
NADA
Royal Institute of Technology
SE-10044 Stockholm, Sweden
rafael @nada.kth.se

Abstract

We consider the problem of constructing a general pro-
tocol for secure two-party computation in a way that pre-
serves security under concurrent composition. In our treat-
ment, we focus on the case where an a-priori bound on the
number of concurrent sessions is specified before the proto-
col is constructed (a.k.a. bounded concurrency). We make
no set-up assumptions.

Lindell (STOC 2003) has shown that any protocol for
bounded-concurrent secure two-party computation, whose
security is established via black-box simulation, must have
round complexity that is strictly larger than the bound on the
number of concurrent sessions. In this paper, we construct a
(non black-box) protocol for realizing bounded-concurrent
secure two-party computation in a constant number of
rounds. The only previously known protocol for realizing
the above task required more rounds than the pre-specified
bound on the number of sessions (despite usage of non
black-box simulation techniques).

Our constructions rely on the existence of enhanced trap-
door permutations, as well as on the existence of hash
functions that are collision-resistant against subexponential
sized circuits.

1 Introduction

The task of secure two-party computation involves two
parties that wish to evaluate a functionality f(x,y) =
(f1(z,), f2(x,y)) of their corresponding private inputs x
and y. The evaluation process should supply the first party
with the value f7(x,y) and the second party with the value
fa(x, y) (one may also consider probabilistic functionalities

*Work partly done while visiting the Weizmann Institute of Science.
TWork done while at the Weizmann Institute of Science. Research sup-
ported in part by a grant from the Israel Science Foundation.

Alon Rosen |
Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139
alon@Ics.mit.edu

in which case f(x,y) is a random variable). Loosely speak-
ing, the security requirement is that neither party learns
more from the protocol other than the output, and that the
output of each party is distributed according to the pre-
scribed functionality. This should hold even in case that
either one of the parties maliciously deviates from the pro-
tocol instructions. Shortly after its conceptualization, very
strong results have been established for secure two-party
computation. Specifically, it has been shown that any prob-
abilistic polynomial-time computable two-party functional-
ity can be securely computed, assuming the existence of en-
hanced trapdoor permutations [35, 22].

1.1 Secure Two-Party Computation in the Con-
current Setting

The original setting in which secure two-party protocols
were investigated allowed the execution of a single instance
of the protocol at a time (this is the so called stand-alone
setting). A more realistic setting, however, is one which
allows the concurrent execution of protocols. In the con-
current setting (originally introduced in the context of zero-
knowledge [17, 15]), many two-party protocols are exe-
cuted at the same time, involving many parties which may
be talking with the same (or many) other parties simultane-
ously. This setting presents the new risk of a coordinated
attack in which an adversary controls many parties, inter-
leaving the executions of the protocols and choosing mes-
sages based on other partial executions of the protocol.

Unfortunately, security of a specific protocol in the
stand-alone setting does not necessarily imply its security in
the (more demanding) concurrent setting. It is thus of great
relevance to examine whether the original feasibility results
for two-party computation (in the stand-alone setting) still
hold when many copies of the protocol are executed con-
currently. Indeed, concurrent composition of cryptographic
protocols has received a considerable amount of attention
recently.

Many of the works that deal with protocol composi-
tion strongly rely on the existence of some kind of trusted
set-up assumption. In some cases the usage of set-up as-
sumptions seems to be necessary (e.g., Universal Com-
posability [7, 12, 11]). However, it is not clear that for
other types of protocol composition one cannot do without
them (e.g., concurrent zero-knowledge [33, 24, 32], non-
malleable string commitment [14, 2]).

In this paper we consider the problem of constructing
a concurrently composable protocol for secure two-party
computation. In contrast to most of the previous work in
this area [7, 8, 12], and in accordance with recent work by
Lindell [26], our goal is to construct a protocol that does not
require any set up assumptions.

1.2 Previous Work

1.2.1 Composition Using Set-Up Assumptions

The literature discusses a wide array of set-up assumptions,
most notably the timing assumption [15, 16], the Public-
Key models [9, 13] and the Common Reference String
(CRS) model [7, 12]. Whereas the former assumptions have
been primarily used to obtain concurrent composition of
zero-knowledge, the latter assumption has been also used
to obtain strong composition theorems for secure two-party
computation. Specifically, in the model assuming the ex-
istence of a Common Reference String, it has been shown
how to achieve the very strong notion of Universal Com-
posability (UC) for both two-party and multi-party secure
computation [7, 12].

The universal composability setting (introduced by
Canetti [7]) is even more demanding than the concurrent
setting considered in this paper. It allows many sets of pos-
sibly different parties to run many protocols, and secure pro-
tocols may run concurrently with arbitrary other protocols.
Security of a protocol in the UC setting would imply its
security in the concurrent setting (as a special case). Unfor-
tunately, the possibility of obtaining univeral composability
without making any set-up assumptions (i.e., in the plain
model) has been ruled out for a large class of functionali-
ties [7, 8, 11]. This indicates that the notion of universal
composabilty might be too strong to be realized in a mean-
ingful way without making any set-up assumptions.

Recent work also seems to indicate that the CRS model
might not reflect the security concerns that one would
like to adress in reality [31]. Loosely speaking, standard
simulation-based definitions of security in the CRS model
do not cover certain “natural” security properties that are
satisfied in the plain model (e.g., deniability of protocols).
Moreover, known impossibility results for composition in
the plain model (e.g., [10, 26]) will apply to any protocol
that satisfies these “natural” security properties in the CRS
model.

1.2.2 Concurrent Secure Two-Pary Computation

So far, the only treatment of concurrent two-party compu-
tation without set-up assumptions has been given by Lin-
dell [26]. The definitional approach taken by Lindell is
somewhat analogous to the approach taken by earlier works
on concurrent zero-knowledge [15, 10]. Loosely speaking,
the setting in which a two-party protocol should be proved
to be secure involves a single (or many) honest parties that
are running many concurrent executions of the same pro-
tocol. The honest parties are trying to protect themselves
from a malicious adversary that controls a subset (or all) of
the parties it is interacting with. Since it seems unrealistic
(and certainly undesirable) for honest parties to coordinate
their actions so that security is preserved, one must assume
that in each instance of the protocol the honest party acts
independently.

The conclusions reached by Lindell were mostly nega-
tive in nature. His main result is that any protocol for con-
current secure two-party computation, whose security is es-
tablished via black-box simulation, must have round com-
plexity that is strictly larger than the number of concurrent
executions of the protocol. In particular, black-box simu-
lation cannot be used in order to establish the security of
two-party protocols when arbitrarily many protocols are al-
lowed to run concurrently. Lindell’s lower bound stands
in sharp contrast to the case of zero-knowledge for NP
where it has been shown that logarithmically many rounds
are sufficient for black-box simulation in the concurrent set-
ting [33, 24, 32].

Falling short of providing a concurrently composable
protocol for secure two-party computation, Lindell resorts
to the model of bounded concurrency. In the model of
bounded concurrency, first considered by Barak [1] in the
context of zero-knowledge, it is assumed that an a-priori
bound on the number of concurrent sessions is specified be-
fore the protocol is constructed. As shown by Barak, it is
possible to construct a constant-round bounded-concurrent
zero-knowledge protocol for all languages in NP [1].
This goes well below previous impossibility results show-
ing that logarithmically many rounds are necessary for
black-box simulation of (even bounded) concurrent zero-
knowledge [10]. Indeed, the security of Barak’s protocol is
proved using non black-box simulation techniques. Inter-
estingly, it is still open whether it is at all possible to extend
Barak’s techniques to construct an unbounded concurrent
zero-knowledge protocol (even using a super-constant num-
ber of rounds).

Using Barak’s protocol, Lindell constructs a protocol
for bounded concurrent secure two-party computation. The
main feature required from Barak’s protocol in the context
of secure two-party computation is that its simulator does
not make use of rewinding (a simulation technique inherent
to black-box simulation [20, 25, 10]). In this context, the

low round-complexity of Barak’s protocol does not play a
significant role.

Unfortunately, Lindell’s protocol also relies on black-
box simulation. As a consequence, the round-complexity
of Lindell’s protocol is severely limited by his own lower
bound (on black-box simulation of concurrently compos-
able secure two-party computation). Indeed, the number of
rounds in the protocol is required to be strictly larger than
the number of allowed concurrent sessions!

1.3 Our Results

Motivated by the above discussion, one might wonder
whether Lindell’s negative results are inherent to his def-
inition of concurrent composition of two-party protocols
(or even to any other “natural” definition of concurrency).
Given the current state of knowledge, it is still conceivable
that “non-trivial” concurrent composition of secure two-
party protocols is beyond reach without resorting to some
kind of set-up assumption (somewhat analogously to the sit-
uation in Universal Composability). In light of this, any pro-
tocol for (even bounded) concurrent two-party computation
with “non-trivial” round-complexity would be interesting.’

In this work we address the above question and present
a result of a positive nature. While our focus has been on
feasibility, we also obtain the best one could hope for in
terms of round-complexity. Specifically, we show how to
construct a constant-round protocol for realizing bounded-
concurrent secure two-party computation.

The security of our protocol relies on the existence of
enhanced trapdoor permutations [18], as well as on the ex-
istence of strong collision resistant hash functions (i.e., so
that for some x > 0 forming collisions with probability
greater than 2~ requires at least 2" time). For an inte-
ger m, the notion of m-bounded concurrent composition
refers to a setting in which at most m copies of a protocol
are executed concurrently (typically, m = m(n) is a fixed
polynomial in the security parameter). Our main theorem is
stated below.

Main Theorem Assume the existence of enhanced trap-
door permutations and the existence of strong collision-
resistant hash functions. Then, for any two-party function-
ality f and for any integer m, there exists a protocol 11 that
securely computes [under m-bounded concurrent compo-
sition. Moreover, the number of communication rounds in
II is constant.

By “non-trivial” round complexity we mean that the number of rounds
in the protocol is strictly smaller than the pre-specified bound on the num-
ber of sessions.

On the Cryptographic Assumptions Used. The above
theorem relies on slightly strong, nevertheless standard, as-
sumption on collision resistance of hash functions. As it
turns out from our proof, this assumption can be some-
what relaxed to require the existence of both one-way func-
tions that are hard to invert for sub-exponential sized cir-
cuits and of hash functions that are collision-resistant for
quasi-polynomial sized circuits.

On the Model of Concurrency. The concurrent setting
considered in this paper follows Lindell’s treatment [26]
which, in turn, is adapted from previous works on concur-
rent zero-knowledge. We consider a single (or many) honest
parties that are running many concurrent executions of the
same two-party protocol. The honest parties are trying to
protect themselves from a malicious adversary that controls
a subset (or all) of the parties it is interacting with. In each
instance of the protocol the honest party is required to act
independently. As observed by Lindell [26], this setting is
equivalent to the case where many different pairs of parties
run a protocol concurrently where each party is designated
to be either a first party P; or a second party P» (this de-
fines the role that it plays in the protocol execution). The
adversary is then only allowed to corrupt a subset of the
parties playing P, or a subset of the parties playing P»; but
cannot corrupt both parties P; and P, simultaneously. We
further require that the adversary is non-adaptive, that is,
the corrupted parties are chosen before the begining of the
interaction.

1.4 Techniques

Our work relies in part on the works by Canetti, Lin-
dell, Ostrovsky and Sahai [12] and Lindell [26]. The first
of these works develops tools for proving security of two-
party protocols in the framework of universal composability
in the CRS model. The second work demonstrates how to
use some of these tools in order to reduce the problem of
concurrent composition of two-party protocols to the con-
struction of special-purpose zero-knowledge protocols in
the plain model. Once this reduction is provided, all that
is required is to implement such protocols without resorting
to any set-up assumption. Our first contribution is a con-
ceptual simplification of Lindell’s reduction. We do this by
introducing a new type of adversary, called a non-abusing
adversary. More details on such adversaries can be found in
Sections 3.1.

The main technical ingredient of our work is the con-
struction of two new special-purpose zero-knowledge pro-
tocols. These protocols satisfy the following extra proper-
ties:

Round efficiency: Both protocols have a constant number
of rounds.

Bounded Concurrency: Both protocols retain their zero-
knowledge property under bounded concurrent com-
position, even in presence of messages from other pro-
tocols.

Non-rewinding simulation: The simulators establishing
the concurrent zero-knowledge property of the proto-
cols do not use rewinding. Here we rely on Barak’s
non black-box simulation techniques [1]. In our set-
ting, however, the simulator might simltaneously act
as a prover in one protocol and as a verifier in an-
other protocol. This introduces technical difficulties
that Barak’s protocol was not designed to deal with,
and requires the usage of new ideas for performing the
simulation.

Simulation Soundness: The protocols are simulation-
sound with respect to each other. That is, the sound-
ness of each one of the protocols is preserved even
when the other protocol is simulated at the same
time with the roles of the prover and verifier re-
versed. This introduces technical issues related to non-
malleability [14]. The main problem here is to guaran-
tee simulation-soundness for both protocols. Different
solutions are required for each one of the protocols due
to the symmetric nature of the problem. In one direc-
tion we use the idea of complexity leveraging (previ-
ously used in the context of resettable zero-knowledge
and simulation in quasi-polynomial time [9, 30]). In
the other direction, we introduce a new technique that
enables us to prove simulation-soundness in a direct
manner.

We feel that some of the techniques that we use for
simulating the zero-knowledge protocols and for prov-
ing simulation-soundness might find application elsewhere.
More details on our zero-knowledge protocols can be found
in Section 3.2.

1.5 Future work

This paper essentially settles the question of bounded-
concurrent composition of secure two-party computation.
One issue that deserves improvement, however, is the
strength of the underlying cryptographic assumptions.

Perhaps the most important open question in the con-
text of concurrent composition is to establish whether it is
possible to achieve unbounded concurrent composition of
two-party protocols. This seems to require new ideas for
improving currently known non black-box simulation tech-
niques (due to Barak [1]). As a first step one could settle for
super-constant round-complexity. We mention that, even in
this relaxed case, nothing is known.

Another important question is whether one can achieve
concurrently composable multi-party computation without

an honest majority and without making any set-up assump-
tions. It seems that the techniques presented here do not
suffice for achieving such a result.

1.6 Organization

Definitions of bounded-concurrent secure two-party
computation can be found in Section 2. Section 3 contains a
high level description of our proof, as well as a description
of our new zero-knowledge protocols.

2 Definitions

In this section we present the definition for m-bounded
concurrent secure two-party computation. Our definitions
follows the ones of Lindell and we here present an abre-
viated version, taken almost verbatim from [26]. The ba-
sic description and definition of secure computation fol-
lows [23, 28, 5, 6]. We denote computational indistin-
guishability by =, and the security parameter (and, for sim-
plicity, the lengths of the parties’ inputs) by n.

Two-party computation. A two-party protocol problem
is cast by specifying a random process that maps pairs of
inputs to pairs of outputs (one for each party). We refer to
such a process as a functionality and denote it f : {0, 1}* x
{0,1}* — {0,1}* x {0,1}*, where f = (f1, f2). That s,
for every pair of inputs (x,y), the output-pair is a random
variable (f1(z,v), f2(z,y)) ranging over pairs of strings.
The first party (with input «) wishes to obtain fi(x,y) and
the second party (with input y) wishes to obtain fo(x,y).

In the context of concurrent composition, each party re-
ceives a vector of inputs of polynomial length, and the aim
of the parties is to jointly compute f(x;,y;) for every i.

Adversarial behavior. In this work we consider a mali-
cious, static adversary. That is, the adversary controls one
of the parties (who is called corrupted) and may then in-
teract with the honest party while arbitrarily deviating from
the specified protocol. The focus of this work is not on fair-
ness. We therefore present a definition where the adversary
always receives its own output and can then decide when (if
at all) the honest party will receive its output. The schedul-
ing of message delivery is decided by the adversary.

Security of protocols (informal). The security of a pro-
tocol is analyzed by comparing what an adversary can do
in the protocol to what it can do in an ideal scenario that is
secure by definition. This is formalized by considering an
ideal computation involving an incorruptible trusted third
party to whom the parties send their inputs. The trusted
party computes the functionality on the inputs and returns

to each party its respective output. Unlike in the case of
stand-alone computation, here the trusted party computes
the functionality p(n) times, each time upon different in-
puts. Loosely speaking, a protocol is secure if any adver-
sary interacting in the real protocol (where no trusted third
party exists) can do no more harm than if it was involved in
the above-described ideal computation.

Concurrent execution in the ideal model. The ideal ex-
ecution is defined as follows: The honest party sends all its
inputs to the trusted party. The adversary thereafter sends
its input in any order that it wishes to the trusted party, and
directly receives the output. In particular, since we are con-
sidering a concurrent setting the adversary can schedule the
order in which all protocols take place and choose its inputs
adaptively. Finally, the adversary decides which outputs the
honest party will recieve and sends a list of indexes to the
trusted party, which in turn sends the output of these execu-
tions to the honest party. The honest party then outputs the
results obtained from the trusted party, while the adversary
can output an arbritrary function of its initial state and the
messages obtained from the trusted party.

Let p(n) be a polynomial in the security parameter, let
f:{0,1}*x{0,1}* — {0,1}*x {0, 1}* be a functionality,
and let S be a non-uniform probabilistic polynomial-time
machine (representing the adversary). Then, the ideal exe-
cution of f (on input vectors (Z,) of length p(n) and aux-
iliary input z to S), denoted IDEAL ; §(Z, ¥, 2), is defined as
the output pair of the honest party and S in the above ideal
execution.

We note that the definition of the ideal model does not
include any reference to the bound m on the concurrency.
This is because this bound is relevant only to the scheduling
allowed to the adversary in the real model; see below.

Execution in the real model. We next consider the real
model in which a real two-party protocol is executed (and
there exists no trusted third party). Let p(n) and m = m(n)
be polynomials, let f be as above and let II be a two-party
protocol for computing f. Furthermore, let A be a non-
uniform probabilistic polynomial-time machine that con-
trols either P; or I. Then, the real m-bounded concur-
rent execution of II (on input vectors (T, 7) of length p(n)
and auxiliary input 2 to A), denoted REAL A(E, Y, 2), is
defined as the output pair of the honest party and A, result-
ing from p(n) executions of the protocol interaction, where
the honest party always inputs its i*" input into the i*" exe-
cution.

The scheduling of all messages throughout the execu-
tions is controlled by the adversary. The bound on concur-
rency requires that the scheduling by the real model adver-
sary must fulfill the following condition: for every execu-
tion 4, from the time that the i'" execution begins until the

time that it ends, messages from at most m different execu-
tions can be sent.

Security as emulation of a real execution in the ideal
model. Having defined the ideal and real models, we can
now define security of protocols. Loosely speaking, the def-
inition asserts that a secure two-party protocol (in the real
model) emulates the ideal model (in which a trusted party
exists). This is formulated by saying that for every real-
model adversary there exists an ideal model adversary that
can simulate an execution of the secure real-model protocol.

Definition 1 (Security in the malicious model) Let m =
m(n) be a polynomial and let f and 11 be as above. Proto-
col 11 is said to securely compute f under m-bounded
concurrent composition if for every real-model non-
uniform probabilistic polynomial-time adversary A control-
ling party P; fori € {1, 2}, there exists an ideal-model non-
uniform probabilistic polynomial-time adversary S control-
ling P;, such that for every polynomial p(n),

{IDEALﬁS(E, 7, z)} {REAL;A (7,7, Z)}

neN neN

where T, 7 € ({0,1})P(™ and z € {0, 1}*.

Strengthening the definition. Definition 1 is rather sim-
plistic in that it assumes that all inputs are fixed before any
execution begins. We remark that our result also holds for
a more general definition where inputs for later executions
can depend on outputs of earlier executions.

3 Proof Outline

In this section we give a high-level outline of our proof,
as well as a description of our new special-purpose zero-
knowledge protocols. More details can be found in the full
version.

The structure of our proof follows that of Lindell [26].
On a very high level, the proof can be divided into two parts.
The first part shows how to reduce the problem of construct-
ing a concurrently composable two-party protocol to the
task of implementing two special-purpose zero-knowledge
protocols. This part mainly follows [26] while introducing
a new notion that conceptually simplifies the proof. It is
described in Sections 3.1.

The second part involves the construction of the special-
purpose zero-knowledge protocols. This part builds on
Barak’s bounded-concurrent zero-knowledge argument [1]
as well as on new ideas related to non-malleability and con-
current simulatability. It is described in Section 3.2.

3.1 Reducing the Problem to Special-Purpose ZKX

3.1.1 Idealized Functionalities

Our starting point is the protocol of Canetti et al. [12]. In
their paper, they show that the task of concurrently com-
posable secure two-party computation can be achieved in a
setting where the parties have access to a specific idealized
functionality.> The notion of ideal functionalities is a cen-
tral tool in the framework of universal composability [7],
and can be thought of as the introduction of a trusted third
party that is designed to perform a specific task. In the case
of Canetti et al. [12], the protocol requires usage of the ideal
zero-knowledge proof of knowledge functionality.

The ldealZK functionality. Informally, the ideal zero-
knowledge proof of knowledge functionality (called Ide-
alZK) for an N'P-relation R is specified as follows: The
prover sends an instance-witness pair (z,w) to the ideal
functionality which, in turn, sends (z,1) to the verifier if
(z,w) € Rand (z,0) otherwise.

The setting in which the parties have access to (multi-
ple) ideal zero-knowledge functionalities is called the ZK-
Hybrid model. Our motivation (as was also the motivation
of Lindell [26]) is to remove the usage of the ideal zero-
knowlegde functionality and implement a protocol that per-
forms the same task but in the real model. If done in an
appropriate way, this would give rise to a concurrently com-
posable two-party computation protocol.

A natural (yet naive) approach to implement such a
protocol, would be to instantiate each idealized zero-
knowledge call in the protocol of [12] with an invocation
of a concurrent zero-knowledge argument. However, as
pointed out in [26], this approach lacks in several aspects:

e The notion of concurrent zero-knowledge only con-
siders the composition of the zero-knowledge protocol
with itself. In the more complicated setting of secure
two-party computation, it is essential that the proto-
col is zero-knowledge not only when being composed
with itself, but also when being composed with other
protocols running at the same time.

e In the setting of concurrent two-party computation, it
is conceivable that a party acts as a prover in one ses-
sion, while simultaneously acting as a verifier in a dif-
ferent session. (This problem does not occur in the set-
ting of concurrent zero-knowledge, since each party is
either a verifier or a prover.) Thus the problem of mal-
leability arises: It is possible for an adversary to use

2The result by Canetti et al. [12] is in fact stronger, as they construct a
protocol that is universally composable [7]. Nevertheless, in this work we
only require composition in the (less demanding) concurrent setting. One
advantage arising from the usage of the protocol of [12] as a starting point
is that it enables us to avoid many technicalities that arise when proving a
general theorem on secure two-party computation from scratch.

messages from a proof that it is receiving in a proof
that it is giving.3

In order to achieve the above mentioned task, we show
a general transformation that transforms any protocol I in
the ZK-Hybrid model into a protocol IT in the real model
(without any ideal functionalities or set-up assumptions).
This is what we call realizing the ZK-Hybrid model. Jump-
ing ahead, we mention that this part also includes the con-
struction of the special-purpose zero-knowledge protocols
(as will be described in Section 3.2). We further show that
the transformation satisfies the following properties:

Concurrency: The protocol’s security is preserved under
(bounded) concurrent composition.

Round-Efficiency: The protocol’s round-complexity is
preserved (up to a constant factor).

In particular the transformation can be applied to the proto-
col of [12] to obtain a bounded concurrent secure two-party
computation protocol.

3.1.2 How to Realize Protocols in the ZK-Hybrid Model

The above transformation is performed in two steps:

1. Reduce the usage of the IdealZK functionality to the
usage of a weaker (and easier to implement) ideal func-
tionality. This functionality is named the WeakZK
functionality.

2. Show how to transform any protocol using the
WeakZK functionality into a protocol in the real
model by “plugging in” the special-purpose protocols.

The WeakZK functionality. The first step consists of re-
ducing the usage of IdealZK to the usage of WeakZK. (This
reduction might be of independent interest as it in fact also
is applicable in the multi-party setting withoutany bounds
on concurrency). The latter functionality was introduced
in [26] as a technical tool and is (informally) specified as
follows: The prover sends a pair (x,b) to the ideal func-
tionality which, in turn, sends (x, b) to the verifierif z € L
and (z,0) otherwise (where b € {0,1}).4

The difference between the IdealZK and the WeakZK
functionalities can be described as follows. While in the
IdealZK functionality the prover needs to supply both a

3The situation in our case is even more complicated than in “tradi-
tional” treatments of non-malleability since, in our setting, the so-called
man-in-the-middle is considered to succeed even if he convinces the ver-
ifier of the truthfulness of the same statement that he is being proven. In
particular, known solutions for non-malleability do not apply here.

“In fact, our WeakZK functionality slightly differs from the one de-
fined by Lindell. The reason we define it differently will become clear
later when we introduce the new notion of non-abusing adversaries.

witness and a statment, in the WeakZK functionality it is
sufficient for the prover to just supply a statement. In other
words, the IdealZK functionality provides a proof of knowl-
edge, while the ideal WeakZK functionality only provides
a proof of validity. The extra bit b is used to let the prover
“fail” in proving even true statements (clearly, one cannot
force the prover to prove something if he does not want to
do so). We call a model where parties have access to the
WeakZK functionality, the WeakZK-Hybrid model.

Non-abusing adversaries. We note that the WeakZK
functionality is not efficiently computable since, in general,
it might be hard to decide whether a given instance belongs
to an NP language without possessing a witness. This
complicates the reduction from the usage of the ldealZK
functionality to the usage of the WeakZK functionality. To
overcome this problem, we introduce the notion of non-
abusing adversaries. Non-abusing adversaries exist only
in the WeakZK-Hybrid model. These adversaries (almost)
always make “proper” usage of the WeakZK functionality.
That is, they always explicitly tell the WeakZK functional-
ity if the statement x is false by sending (z,0) to it. (We
mention, however, that an non-abusing adversary may send
(z,0) to the ideal functionality, even if z € L). In other
words, non-abusing adversaries only send values (z, b) that
would make the WeakZK functionality send (x,b) to the
verifier. Thus, for non-abusing adversaries the WeakZK
functionality is efficiently computable.

Reducing between the hybrid models. Taking care of
the above issue will enable us to show that any proto-
col II in the ZK-Hybrid model can be transformed into
a protocol IT" in the WeakZK-Hybrid model, such that
any non-abusing adversary in the WeakZK-Hybrid model
can be simulated in the ZK-Hybrid model. This in par-
ticular means that, in the transformation between the two
hybrid models, security is preserved. The proof of this
statement makes use of a generic transformation of a zero-
knowledge argument into a zero-knowledge argument of
knowledge [4].

Now, in order to show how to realize any protocol in the
ZK-Hybrid model, it remains to show how to transform any
protocol IT’ in the WeakZK-Hybrid model into a protocol IT
in the real model. This should be done in a way than enables
simulation of any adversary in the real model by a non-
abusing adversary in the WeakZK-Hybrid model. Here
we will also require the extra property that the simulator for
the instantiated zero-knowledge proof does not make use of
rewinding.’ Jumping ahead, we mention that in order to

3To be accurate, some kind of rewinding is permissible in this setting
(such rewinding has been used by Lindell [26]). However, one has to make
sure that this rewinding does not rewind past messages that are external to
the instantiated zero-knowledge protocols.

show that the simulation can be done by a non-abusing ad-
versary we will need to instantiate the calls to the WeakZK
functionality by invocations of zero-knowledge protocols
that are simulation-sound with respect to each other.

Completing the Reduction. The proof of the previous
lemma thus boils down to the construction of two special-
purpose zero-knowledge protocols satisfying the following
requirements:

1. Both protocols compose concurrently with respect to
arbitrary protocols.

2. Simulation of the protocols does not make use of
rewinding.

3. The protocols are simulation-sound with respect to
each other. That is, the soundness of each one of the
protocols is preserved even when the other protocol is
simulated at the same time with the role of the prover
and verifier reversed.

3.2 The Special-Purpose ZK Protocols

Our special purpose zero-knowledge protocols are based
on the bounded-concurrent ZK protocol of Barak [1].
Barak’s protocol relies on the existence of strong collision
resistant hash functions. Other tools used in the protocol are
perfectly binding bit-commitments [29, 19] and a witness-
indistinguishable universal argument (WI UARG)[3].

We start by giving a brief description of this protocol
with an emphasis on a key property of its simulator. This
property will enable us to perform simulation in our set-
ting. More details on Barak’s protocol can be found in [1].
The underlying idea behind Barak’s protocol is the usage an
NTIME(n'°s") relation denoted Rgim.

Input: A triplet (h,c, 7).

Witness: A program II, a string y € {0,1}("1=™) and a
string s.

Relation: Rsim((h, c,), (II, s,y)) = 1 if and only if:
1. ¢ =Com (h(II);s).
2. TI(¢,y) = r within T'(n) steps.

Figure 1. Barak’s NTIM E(T'(n)) relation Rgjm.

Let T : N — N be a “nice” function that satisfies
T(n)=n*W. Let T" : N' — N be a function such that
T'(n) = T(n)*™"). Suppose there exist a T"(n)-collision
resistant hash functions ensemble {H,,},ec10,13» Where h
maps {0,1}* to {0,1}". Barak’s protocol is described in
Figure 2 below.

Common Input: an instance = € {0, 1}" presumably in L,
security parameter 1™, length parameter £(n).

Stage 1:

V — P:Send h & H.
P — V : Send ¢ = Com(0"™).
V — P:Sendr € {0,1}*™,
Stage 2:
P — V : A WI UARG proving the OR of the following

two statements:
1. 3w € {0,1}P¥U2D 5o that Ry (z, w) = 1.
2. 3 (11, s) so that Rsim({h,c,r),(II,s)) = 1.

Figure 2. Barak’s bounded-concurrent zero-
knowledge argument for A'P.

As shown in [1], Barak’s protocol is computationally sound.
Moreover, given access to the verifier’s code (or, equiva-
lently, to the verifier’s next message function), the protocol
can be simulated without making use of rewinding. To sim-
ulate a specific session, the simulator commits to the veri-
fier’s next-message function (instead of committing to ze-
ros). The verifier’s next message function is then a program
whose output depends on all the prover messages sent be-
tween messages c and r in the relevant session.

Now, if the length of all these messages is bounded by
£(n) — n the simulator will have a valid witness for stage
2 of the protocol. The zero-knowledge property then fol-
lows (with some work) from the witness indistinguishable
property of stage 2.

Barak [1] has shown that the length of the prover’s mes-
sages in a single execution can be bounded by 2n?. Thus,
for m concurrent executions, taking £(n) = 2m - n? +n
would do. We note that the length of the verifier’s messages,
not counting r’s, can also be bounded by 2n2.

An important extra feature of the protocol is that it is in
fact sufficient that the simulator has a “short” description
of the prover’s messages. The protocol is thus simulatable
even if the total length of prover’s messages is greater than
£(n) — n, as long as the simulator has a description of a
program for generating the prover’s messages that is shorter
than ¢(n) — n.

QOur protocols. Let f be a one-way function with an ef-
ficiently recognizable range set, and let £ > 0 be so that f
is not invertible by circuits of size 2" . ¢ Let k = 1/k + 1,
T'(n) = nog"' nand let T(n) be a super-polynomial
function such that T'(n) = T’(n)"/“(). Suppose there

The efficient recognizability requirement on f is not really necessary
and it is introduced only for simplicity of presentation. In our case any
one-way function with the above security properties would do.

exist a T"(n)-collision resistant hash functions ensemble
{Hn}hefo,13» as required by Barak’s protocol. We are
ready to describe our special purpose protocols, cZK; and
cZy (depicted in Figures 3 and 4).

Common Input: an instance z € {0, 1}" presumably in L,
security parameter 1", length parameter £(n).

Stage 1:

V — P:Send h & H,.

P — V : Send ¢c; = Com(0").

V — P:Sendr; & {0,134,

P — V : Send c2 = Com(0").

V — P:Sendry & {0, 1},
Stage 2:

P «— V : A WI UARG, that is sound against adversaries
running in time 7"(n) = plos™ " proving the

OR of the following three statements:
1. 3w € {0,1}P¥ =D 5o that Ry (z, w) = 1.
2. 3 (11, s) so that Rsim({h,c1,71), (IL, s))=1.

3. 3 (11, s) so that Rsim({h, c2,r2), (II, s)) =1.

Figure 3. Our first special-purpose zero-
knowledge protocol — cZK;.

Simulating the protocols. The difference between cZK;
and the protocol of Barak is that in cZXC; the prover (simu-
lator) is given two opportunities to guess the verifier’s next
message. We call each such opportunity a slot. Messages
that are exchanged between the message c¢; and the message
r; are said to be contained in slot . Note that it is sufficient
to have a “short” description of the messages contained in
either slot 1 or slot 2 to succeed in the simulation of cZ/C;.

cZK9 is obtained by combining the quasi-polynomial
time simulatable protocol of Pass [30] with the protocol of
Barak. Note that, besides using Barak’s technique to simu-
late in polynomial time, one can simulate ¢Z/Cy by running
in time nO0°e" ") and inverting the one-way function by
brute-force.

Let £(n) =m(k-4n? + length(Il')) + n, where IT
denotes the protocol in the WeakZK Hybrid model (that
we wish to realize) and k is the total number of ideal zero-
knowledge calls in one execution of II'. We note that the to-
tal length of messages sent by a party, not including the r’s
in cZK1, cZKo, is bounded by m(k - 2n? + length(Il')),
as both the length of the prover messages and verifier mes-
sages in cZK1, cZK is bounded by 2n?.

It follows that if the simulator can give a description
of the various 7’s (each being of length ¢(n)) that is

Common Input: an instance x € {0,1}" presumably in L,
security parameter 1™, length parameter £(n).

Stage 1:

V — P:Send h & H,.
V — P:Send g = f(t), where t € {0, 1}1°gk n7
P — V : Send ¢ = Com(0"™).
V — P:Sendr < {0, 1},
Stage 2:

P < V : A WI UARG proving the OR of the following
three statements:
1. 3w € {0,1}P¥ =D 5o that Ry (2, w) = 1.
2. 3 (11, s) so that Rsim({h, c,r), (I, s)) = 1.
3. 3t sothatg = f(t').

Figure 4. Our second special-purpose zero-
knowledge protocol — cZK.

shorter than n? it will always succeed in the simulation of
cZK1,cZK,. We hint that this is done by letting the sim-
ulator use a pseudorandom generator in order to generate
verifier messages when playing the role of the verifier in
other protocols.

Soundness in the stand-alone setting. By using a hash
function that is secure against 7”(n)-adversaries one can
ensure that ¢ZK; is sound against 7”(n) adversaries. It
is straightforward to see that the functions 7'(n) and T"(n)
satisfy the requirements needed to guarantee the soundness
of the interactive argument.

As for cZKCy, soundness against polynomial time adver-
saries follows using the same argument as in [30], by com-
bining the proof of knowledge property of the universal ar-
gument and the fact that the one-way function is hard to
invert in sub-exponential time.

Simulation soundness. The last step is to guarantee that
the soundness of each one of cZK,cZ/5 is not violated
when simulating the other protocol with the roles of the
prover and verifier reversed. To do this we show how to
transform a cheating prover in this simulation/cheating sce-
nario into a cheating prover for the stand alone case.
Suppose there exists a cheating prover P* that manages
to violate the soundness of one instance of protocol cZ/C;
while it is verifying the simulation of multiple concurrent
instances of the other cZK protocol. We show how to con-
struct a cheating prover P** for a single instance of cZK;

7To remove the efficient recognizability requirement from f, one could
let V' prove using a Witness Hiding proof that there exists an inverse to q
under f.

by forwarding the messages of this “cheating” instance of
cZIC; to an external honest verifier V' (the instance in which
P* is actually cheating can be “guessed” by picking one of
the instances of cZ/C; at random). Vs replies are then for-
warded by P** back to P* as if they were generated by the
simulator. Since P* is assumed to be cheating in this spe-
cific instance of cZK;, and since the verifier messages used
by P** are actually the messages used by V, the (stand-
alone) soundness of ¢ZK; is presumably violated.

One final (subtle) issue that should be handled is that
the code of V' is not available to us. This means that the
straightforward simulation of ¢Z/C; cannot be completed as
it is (since it explicitly requires possession of a “short” ex-
planation of the corresponding verifier messages). To over-
come this problem we resort to alternative simulation tech-
niques in each one of the protocols.

Simulating cZK while verifying cZ/C;: In this case we
use the alternative simulator for cZ/Cy (running in time
nOUos" ")), Note that this simulation technique does
not require the verifier’s code. Due to the W I prop-
erty of the U ARG, the presumed cheating prover will
still succeed to convince an honest verifier of protocol
¢ 2Ky with roughly the same probability. Since sound-
ness of cZKC; is guaranteed against provers running in
time n'°" " ™ we derive a contradiction.

Simulating cZ/C; while verifying cZ/Co: In this case we
use the fact that it is sufficient to have a short descrip-
tion of the messages sent in either the first or the sec-
ond slot of ¢ZK; since the honest verifier’s » mes-
sage (to be “explained”) can occur in at most one of
the slots, polynomial time simulation is guaranteed.
Again, the W1 property of the U ARG guarantees that
the the presumed cheating prover will still succeed
to convince an honest verifier of protocol cZ/Cy with
roughly the same probability.

4 Acknowledgements

We are grateful to Yehuda Lindell for significant discus-
sions on the subject and for giving us access to a manuscript
of his work. We also thank Johan Héstad for valuable help
and discussions. Thanks also to Oded Goldreich, Shafi
Goldwasser, and Moni Naor for helpful conversations. The
first author is grateful to the Weizmann Institute, and in par-
ticular Shafi Goldwasser, for letting him visit the Institute.

References

[1] B. Barak. How to go Beyond the Black-Box Simulation Bar-
rier. In 42nd FOCS, pages 106-115, 2001.

[2] B. Barak. Constant-Round Coin-Tossing or Realizing the
Shared-Random String Model. In 43rd FOCS, pages 345-355,
2002.

[3] B. Barak and O. Goldreich. Universal Arguments and their
Applications. 17th CCC, pages 194-203, 2002.

[4] B.Barak and Y. Lindell. Strict Polynomial-Time in Simulation
and Extraction. In 34th STOC, pages 484-493, 2002.

[5] D. Beaver. Foundations of Secure Interactive Computing.
In CRYPTO 91, Springer-Verlag (LNCS 576), pages 377-391,
1991. Repetition Lower the Error

[6] R. Canetti. Security and Composition of Multiparty Cryp-
tographic Protocols. Journal of Cryptology, 13(1):143-202,
2000.

[71 R. Canetti. Universally Composable Security: A New
Paradigm for Cryptographic Protocols. In 34th STOC, pages
494-503, 2002.

[8] R. Canetti and M. Fischlin. Universally Composable Com-
mitments. In Crypto2001, Springer LNCS 2139, pages 1940,
2001.

[9] R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Reset-
table Zero-Knowledge. In 32nd STOC, pages 235-244, 2000.

[10] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box
Concurrent Zero-Knowledge Requires (almost) Logarithmi-
cally Many Rounds. SIAM Jour. on Computing, Vol. 32(1),
pages 1-47, 2002.

[11] R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations
of Universally Composable Two-Party Computation Without
Set-Up Assumptions. To appear in EuroCrypt2003.

[12] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Univer-
sally Composable Two-Party and Multy-Party Computation. In
34th STOC, pages 494-503,2002.

[13] 1. Damgard. Eficient Concurrent Zero-Knowledge in the
Auxiliary String Model. In EuroCrypt2000, LNCS 1807, pages
418-430, 2000.

[14] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptog-
raphy. SIAM Jour. on Computing, Vol. 30(2), pages 391437,
2000.

[15] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-
Knowledge. In 30th STOC, pages 409418, 1998.

[16] C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Re-
ducing the Need for Timing Constraints. In Crypto98, Springer
LNCS 1462 , pages 442-457, 1998.

[17] U. Feige. Ph.D. thesis, Alternative Models for Zero Knowl-
edge Interactive Proofs. Weizmann Institute of Science, 1990.

[18] O. Goldreich. Draft of a Chapter on general Proto-
cols. Available at: http://www.wisdom.weizmann.
ac.il/"oded/PSBookFrag/prot.ps

[19] O. Goldreich. Foundation of Cryptography — Basic Tools.
Cambridge University Press, 2001.

[20] O. Goldreich and H. Krawczyk. On the Composition of
Zero-Knowledge Proof Systems. SIAM Jour. on Computing,
Vol. 25(1), pages 169-192, 1996.

[21] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield
Nothing But Their Validity or All Languages in NP Have Zero-
Knowledge Proof Systems. JACM, Vol. 38(1), pp. 691-729,
1991.

[22] O. Goldreich, S. Micali and A. Wigderson. How to Play any
Mental Game — A Completeness Theorem for Protocols with
Honest Majority. In 19th STOC, pages 218-229, 1987.

[23] S. Goldwasser and L. Levin. Fair Computation of General
Functions in Presence of Immoral Majority. In CRYPTO’90,
Springer-Verlag (LNCS 537), pages 77-93, 1990.

[24] J. Kilian and E. Petrank. Concurrent and Resettable Zero-
Knowledge in Poly-logarithmic Rounds. In 33rd STOC, pages
560-569, 2001.

[25] J.Kilian, E. Petrank and C. Rackoff. Lower Bounds for Zero-
Knowledge on the Internet. In 39th FOCS, pages 484-492,
1998.

[26] Y. Lindell. Bounded-Concurrent Secure Two-Party Compu-
tation Without Setup Assumptions. To appear in 34th STOC,
2003.

[27] S. Micali. CS Proofs. SIAM Jour. on Computing, Vol. 30 (4),
pages 1253-1298, 2000.

[28] S. Micali and P. Rogaway. Secure computation. Unpub-
lished manuscript, 1992. Preliminary version in CRYPTO 91,
Springer-Verlag (LNCS 576), pages 392-404, 1991.

[29] M. Naor. Bit Commitment using Pseudorandomness. Jour. of
Cryptology, Vol. 4, pages 151-158, 1991.

[30] R.Pass. Simulation in Quasi-polynomial Time and its Appli-
cation to Protocol Composition. In EuroCrypt2003, Springer
LNCS 2656, pages 160176, 2003.

[31] R.Pass. On Deniability in the Common Reference String and
Random Oracle Model. To appear in Crypto2003

[32] M. Prabhakaran, A. Rosen and A. Sahai. Concurrent Zero-
Knowledge with Logarithmic Round Complexity. Proceedings
of the 43rd annual IEEE symposium on Foundations of Com-
puter Science (FOCS 2002), pages 366-375 2002.

[33] R.Richardson and J. Kilian. On the Concurrent Composition
of Zero-Knowledge Proofs. In EuroCrypt99, Springer LNCS
1592, pages 415-431, 1999.

[34] A. Rosen. A note on the round-complexity of Concurrent
Zero-Knowledge. In Crypto2000, Springer LNCS 1880, pages
451-468, 2000.

[35] A. Yao. How to Generate and Exchange Secrets. In 27th
FOCS, pages 162-167, 1986.

