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Abstract—By allowing routers to randomly mix the informa-
tion content in packets before forwarding them, network coding
can maximize network throughput in a distributed manner
with low complexity. However, such mixing also renders the
transmission vulnerable to pollution attacks, where a malicious
node injects corrupted packets into the information flow. In
a worst case scenario, a single corrupted packet can end up
corrupting all the information reaching a destination. In this
paper, we propose RIPPLE, a symmetric key based in-network
scheme for network coding authentication. RIPPLE allows a
node to efficiently detect corrupted packets and encode only
the authenticated ones. Despite using symmetric key based
homomorphic Message Authentication Code (MAC) algorithms,
RIPPLE achieves asymmetry by delayed disclosure of the MAC
keys. Our work is the first symmetric key based solution to
allow arbitrary collusion among adversaries. It is also thefirst to
consider tag pollution attacks, where a single corrupted MAC tag
can cause numerous packets to fail authentication farther down
the stream, effectively emulating a successful pollution attack.

I. Introduction

Network coding allows the routers to mix the informa-
tion content in packets before forwarding them. This mixing
has been theoretically proven to maximize network through-
put [1]–[4]. It can be done in a distributed manner with low
complexity, and is robust to packet losses and network fail-
ures [5], [6]. Furthermore, recent implementations of network
coding for wired and wireless environments demonstrate its
practical benefits [7], [8].

But what if the network contains malicious nodes? A
malicious node may mount apollution attackby pretending
to forward packets from source to destination, while in reality
it injects corrupted packets into the information flow. Since
network coding makes the routers mix packets’ content, a sin-
gle corrupted packet can end up corruptingall the information
reaching a destination. Unless this problem is solved, in the
presence of adversaries network coding schemes may perform
much worse than pure forwarding schemes.

Source authenticationprevents the pollution attack by al-
lowing a node to ensure that the received data originates
from the source and was not modified en-route. Previous re-
search on providing source authentication for network coding
falls into two broad categories: end-to-end and in-network
schemes. An end-to-end approach makes minimal changes to
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existing network coding algorithms; only the source and sink
are involved in performing computations to enable detection
and/or correction of errors introduced by malicious nodes [9].
However, these schemes are geared towards a worst-case view
of adversarial action; namely, that the adversaries locatethem-
selves at the weakest part of the network (the bottlenecks).
Hence the achievable rate guarantees of such schemes can be
unduly pessimistic when the adversary does not have a free
hand at choosing which parts of the network to attack.

The in-network solutions apply cryptographic primitives
to enable routers to detect and drop corrupted packets. The
rates they achieve scale gracefully with the adversaries’ actual
attacks, rather than their worst-case attacks. The in-network
approach can be further divided into public key based and sym-
metric key based solutions. Researchers have proposed various
public key signature schemes [10]–[15]. These schemes are
elegant, but too slow for online traffic.

Two recent research endeavors use symmetric key cryptog-
raphy to reduce computational complexity in network coding
source authentication. Yu et al. [16] exploit symmetric key
encryption and probabilistic key pre-distribution to defend
against pollution attacks. Agrawal and Boneh [17] design a
homomorphic Message Authentication Code (MAC)1 system
that allows in-network verification of the authenticity of net-
work coded data. Both schemes are limited in being onlyc-
collusion resistant for some pre-determinedc; they become
vulnerable when more thanc malicious nodes collude. More-
over, both systems are susceptible to a subtletag pollution
attack, where an attacker tampers with MAC tags. In [16] and
[17], a message carries multiple tags, and a node only verifies
a subset of them. An attacker can modify a tag that will only
be verified farther down the stream. This single corrupted tag
can cause numerous packets to fail authentication, effectively
emulating a successful pollution attack.

In this paper, we propose RIPPLE, a symmetric key based
in-network solution for network coding authentication. RIP-
PLE differs from the above two schemes in two main respects:
(a) tolerating arbitrary collusion among adversaries, and(b)
being tag pollution resistant. We make two main contributions.
First, we construct a symmetric key based homomorphic MAC
that enables routers to both verify the authenticity of a packet,
and compute new MACs for encoded packets. Second, we
propose a transmission protocol to allow source authentication
in network coding. To ensure that data comes from a claimed
sender, asymmetry is essential. Inspired by TESLA [18],
RIPPLE achieves asymmetry by delayed disclosure of the

1A MAC algorithm, sometimes called a keyed (cryptographic) hash func-
tion, accepts as input a secret key and an arbitrary-length message to be
authenticated, and outputs a MAC, sometimes known as a tag.



MAC keys, and thus provides source authentication of the
received data. We name our network coding authentication
scheme RIPPLE for packets moving in the network from level
to level, in a wavelike fashion. A wave of packets reaches the
nodes at a level, pauses for key disclosure, verification, and
coding, and then flows to the next level.

A. Related Work

Work on network coding started with a pioneering paper
by Ahlswede et al. [1], which establishes the value of coding
in the routers and provides theoretical bounds on the capacity
of such networks. The combination of [2], [3], and [4] shows
that, for multicast traffic, linear codes achieve the maximum
capacity bounds, and both design and implementation can
be done in polynomial time. Additionally, Ho et al. show
that the above is true even when the routers perform random
linear operations [5]. Researchers have extended the above
results to a variety of areas including wireless networks [7],
[19], secrecy [20], content distribution [8], and distributed
storage [21]. See [22] for a nice survey on network coding.

A Byzantine attacker is a malicious adversary hidden in
a network, capable of eavesdropping and jamming commu-
nications. Prior research has examined such attacks in the
presence of network coding and without it. In theabsence
of network coding, Dolev et al. [23] consider the problem
of communicating over a known graph containing Byzantine
adversaries. They show that fork adversarial nodes, reliable
communication is possible only if the graph has more than
2k+1 vertex connectivity. Subramaniam extends this result to
unknown graphs [24]. Pelc et al. address the same problem
in wireless networks by modeling malicious nodes as locally
bounded Byzantine faults, i.e., nodes can overhear and jam
packets only in their neighborhood [25].

Existing work in defending against such pollution attacks
on network coding falls into two broad categories: end-to-end,
and in-network approaches.
End-to-end schemes:The end-to-end schemes in the literature
allow internal nodes to mixall incoming packets, without
verifying the veracity of their contents, to generate outgoing
packets. The motivation is two-fold. For one, a paradigm
where internal nodes perform only very simple operations
meshes well with the distributed, low-complexity nature of
random linear network coding algorithms in the literature [5]
– all the complexity is pushed to the source’s encoder and
the receiver’s decoder. For another, the worst-case throughput
performance of such schemes (when the adversary can choose
“the weakest links” in the network to attack) can be shown to
be equivalent to that achievable by more sophisticated schemes
in which interior nodes can performarbitrary operations.

The work in [26], detects the existence of an adversary
but does not provide an error-correction scheme. This work
demonstrates that as long as there is even one pollution-free
path from the sender to the receiver, a pollution attack can be
detected. Such performance is attained by requiring that each
source packet satisfy a (non-linear) hash. With high probability
any pollution injected by the adversary results in the receiver
decoding packets that do not satisfy such a hash, and therefore
the attack can be detected.

The work of Cai and Yeung [20], [27], [28] general-
izes standard bounds on error-correcting codes to networks,
and demonstrates the existence of codes that achieves these
bounds. However, no tractable algorithms to design and im-
plement that achieve these bounds are presented in [20], [27],
[28].

The work of [29] and [9] presents the first efficient schemes
to design and implement error-correction against Byzantine
adversaries in the distributed network coding setting. They
concentrate on communicating in the presence of a wiretap-
ping and pollution-injecting adversary, and present distributed
schemes with an information-theoretically optimal rate. In a
nutshell, [29] reduce the model of network coding to a certain
point-to-point channel. They then construct generalizations
of Reed-Solomon codes for this channel, which enables the
authors to construct deterministic network error-correcting
codes as mentioned above. The work of [9] is in a similar
vein, but looks at the performance of random linear network
codes against Byzantine adversaries. It also considers the
interplay between eavesdropping and error-injection – it turns
out that if the adversary is limited in its eavesdropping power,
significantly higher throughputs can be achieved even against
pollution attacks.
In-network schemes: However, in realistic scenarios the
adversary often cannot choose which parts of the network
to attack. In these scenarios the rates achievable via end-to-
end schemes are pessimistic. If one requires honest internal
nodes to verify incoming packets via cryptographic primitives,
one can achieve higher rates in such situations than would be
achievable via end-to-end schemes.

For such in-network cryptographic schemes, researchers
propose various signature schemes [10]–[14] in the context
of integrity verifications of network coding. These public key
signature schemes are elegant, but too slow for online traffic.

Krohn et al. [30] first propose using collision-resistant
homomorphic hashing in the context of verification of rateless
erasure codes. Gkantsidis et al. [10] apply such homomorphic
hash functions for integrity verification of network coded data.
Since these homomorphic hash functions are computationally
expensive, batch verification schemes are used to improve
efficiency. To further reduce the cryptographic computation,
Gkantsidis et al. propose a security scheme where honest
nodes probabilistically check received packets and cooper-
atively detect and alert each other of malicious activities.
However, this scheme allows some bogus packets to propagate.

Zhao et al. [12] suggest an authentication scheme that
breaks a file into a number of blocks viewed as vectors
spanning a subspaceV. The sender computes an authenticator
for V based on a vector orthogonal toV and signs it with
a common public key signature scheme. A node can verify
the integrity of an encoded message (viewed as a vectorv) by
checking the membership ofv in V based on the authenticator.
A drawback of the schemes in [10], [12], [30] is their lacking
of data streaming support since the sender needs to know the
entire file before generating the authentication information.

Boneh et al. [14] propose two signature schemes for net-
work coding authentication. The first homomorphic signature
scheme differs from that of Zhao et al. [12] in associating sig-



natures with individual vectors instead of the entire subspace.
This scheme supports data steaming and has a constant public-
key size and per-packet overhead. The second scheme modifies
that of Krohn et al. [30] to prevent vectors from different files
from being combined.

Yu et al. [16] exploit probabilistic key pre-distribution and
symmetric key encryption to defend against pollution attacks.
A probabilistic key pre-distribution protocol assigns each node
a random subset of secret keys from a global key poolK

such that any two nodes have a certain probability to share a
key. For each message, the sender generatest authenticators
each with a different secret key. An authenticator only verifies
some part of a message and a node can check its validity
if it knows the encryption key. Multiple downstream nodes
can thus collaboratively verify different parts of an encoded
message and potentially detect a bogus message within a
few hops with high probability. The scheme does not detect
a bogus packet at every first honest node thus allows it to
propagate to pollute more packets. Another drawback is that
an encoded message has a communication overheadx times
higher than that of a source message if it is computed fromx
source messages [16].

Agrawal and Boneh [17] design a homomorphic MAC
system which allows checking the integrity of network coded
data. The construction evolves in three stages. The first stage
constructs a homomorphic MAC which allows end-to-end
detection of bogus packets. The second stage converts the
previous homomorphic MAC into a broadcast homomorphic
MAC which allows in-network integrity verification. This con-
struction is limited in being onlyc-collusion resistant for some
pre-determinedc. The system becomes vulnerable when more
thanc malicious nodes collude. The third stage constructs an
integrity system for multiple senders and receivers and we are
concerned only with the single sender setting in this paper.

Most related to our proposal is the work of [15], in which
Dong et al. propose DART. DART is a time-based authenti-
cation in combination with random linear transformations to
defend against pollution attacks. Inspired by TESLA [31], both
DART and our work leverage time in source authentication.
However, RIPPLE differs from DART in two main respects.
First, RIPPLE uses symmetric key cryptography (except for
the two public key operations per node per multicast session).
In contrast, DART is essentially public key cryptography.
DART requires that every node performs one public key
verification per generation. Frequent public key verification
is expensive and exposes DART to denial of service attacks,
where an attacker floods a node with signature packets for
verification. Second, RIPPLE supports multicast and DART
is implicitly unicast only. A source starts sending packetsfor
the next generation only after it receives an acknowledgement
from the receiver which has received all packets in a genera-
tion. It is not clear how to extend DART to efficiently support
multicast with the acknowledgement mechanism.

II. Problem Statement

A. System Setting

Consider a network modeled as a directed acyclic graph
G = (V,E). A sourceS multicasts a stream of messages to a

set of receivers. All nodes inV − {S}, i.e., all receivers and
forwarders, perform random linear network coding.

In this paper, we consider a well adopted random linear
network coding scheme based on generations.S partitions a
stream of messages into generations, each ofm messages.
For clarity, we focus on the coding and transmission of a
single generation. Only messages from the same generation
are encoded. A messagex ∈ Fn

q is a vector ofn symbols,
each an element of the finite fieldFq. Following the treatment
in [3], all arithmetic operations henceforth are done overFq.
S starts a multicast session by transmitting messages to its
neighbors. As the messages propagate through the network, a
node generates coded messages as random linear combinations
of the received messages and transmits the coded messages to
its neighbors. Specifically, consider a nodeV with w incoming
links. For incoming linki and outgoing link j, V chooses a
coding coefficientαi j ∈ Fq uniformly at random. Letxi denote
a message received from linki. V generates a coded message
y j leaving for link j as

y j =

w∑

i=1

αi j xi . (1)

A receiver can recover the original messages from anym
random linear combinations that form a full rank matrix.

In order for a receiver to decode, a messagex must carry
the global coding coefficients that result inx as the random
linear combination of the original messages.S thus expands
each original messagēMi ∈ F

n
q (1 ≤ i ≤ m) by m symbols as

Mi = (M̄i ,

m
︷                  ︸︸                  ︷

0, . . . , 0, 1
︸      ︷︷      ︸

i

, 0, . . . , 0) ∈ Fn+m
q (2)

with a single 1 in theith position. The augmentedMi ’s are
coded as they traverse the network. As a result, if a message
x is a linear combination of the original messages, i.e.,

x =
m∑

i=1

ci Mi

(

ci ∈ Fq

)

; (3)

the lastm symbols ofx are the global coding coefficientsci .
The network coding scheme described above implicitly

assumes that messages of the same generation, traveling along
different paths from the source to a node, arrive at the same
time. However, in typical scenarios where multiple paths
from the source to a node introduce heterogeneous delays,
messages of the same generation arrive asynchronously. In
such situations, each node buffers for a long enough time
(e.g., more than the longest network propagation delay) for
all outstanding messages of the same generation to arrive
before performing network coding. Due to this buffering,
the end-to-end decoding delay may increase, and nodes may
need large buffers to perform network coding. Nevertheless,
the scheme still achieves the optimal multicast throughput
asymptotically in the number of generations [32]. The work
of [33] demonstrates the stability of the rates achievable and
buffer-lengths even in lossy networks operated asynchronously.

For example, consider the skewed Butterfly network in
Fig. 1(b), where every link has unit capacity and unit propa-
gation delay. The sourceS multicasts messages{ui , vi} (i ≥ 1)



to receiversf and g. The first generation of packetsu1 and
v1 reaches noded at time 2 and 3, respectively. Noded
buffers u1 that arrives at time 2, and skips the opportunity
to transmit on linkd → e at time 2. It sends outu1 + v1

when v1 arrives at time 3.u1 (resp.v1) reachesf (resp.g)
at time 2 through routeS → a → f (resp.S → b → g).
When u1 + v1 reachesf (resp.g) at time 5, f (resp.g) can
decode the first generation of messages. Although noded
wastes one transmission opportunity at time 2, the arrivalsof
the streaming generations of packets allow it to utilize every
transmission opportunity afterwards. Consequently,f and g
can decode the second generation of messages at time 6,
the third generation of messages at time 7, and so on. The
throughput f and g obtain is still the optimal value 2. Thus,
amortized over the number of packets across generations, the
loss in transmission efficiency due to pipelining initialization
can be made negligible.

B. Threat Model

We consider adversaries that control an arbitrary subset of
the nodes in the network. The adversaries may attempt to inject
corrupted packets into the information flow, aiming to corrupt
the information on its way to the destination. They may also
try to modify the packets going through the nodes it controls,
and to fiddle with the authentication tags that are appended to
these packets.2 An adversary is considered to have successfully
modified a packet if it has managed to produce an authentic
(vector, tag) pair for which the vector component does not lie
in the linear subspace corresponding to the delivered messages
(see Section IV for details).

We assume that the adversary does not have access to the
randomness used by the source in order to produce the various
cryptographic keys, and that its running time is polynomial
in the security parameter (which may in some cases be
polylogarithmic in the size of the underlying finite fieldFq

– see Section IV-A for discussion).
Our work is the first symmetric key based scheme to allow

collusion among an arbitrary number of corrupted nodes. It is
also the first to consider adversaries that modify tags on their
way to verification. Indeed, one of our main objectives is to
prevent a “tag pollution” attack, in which an adversary injects
errors in tags that are verified far down the information flow.
Tag pollution attacks are mostly relevant in symmetric key
based authentication schemes. In public key based solutions,
a message is authenticated with a single authenticator. If
an attacker modifies either the message or the authenticator,
the authentication will fail immediately and the packet is
discarded. However, this is not the case in the two previously
proposed symmetric key based schemes [16] and [17]. In these
two schemes, a message carries multiple tags, and each node
only verifies a subset of them. As a result, it is possible for
an attacker to tamper with a tag that will only be verified
farther down the information flow. The consequences of such
attacks may be devastating, not only because they evade early

2Allowing adversaries to fiddle with tags is a new consideration that has
not been previously addressed. It is most relevant in the symmetric-key
cryptography realm.

detection (since the polluted tags are verified only at a much
later phase), but also because errors in as little as a single
tag may snowball into errors in many tags (thus resulting in
numerous packets that fail authentication and are subsequently
dropped, effectively emulating a successful pollution attack).

III. D esign Goals and Approach

Under our settings, the goals of in-network authentication
of network coding are as follows:

• In-network source authentication.Any node in the net-
work can verify that the received data originates from
the source and was not modified en-route.

• Arbitrary collusion resistant.An honest node can verify
the authenticity of the received data even in the presence
of arbitrary colluding adversaries.

• Light-weight operation.Forwarders need little extra
power to process message authentication.

With these goals in mind, we present our RIPPLE scheme
for network coding authentication in the next two sections.
The main set of ideas behind our scheme are: 1) designing
homomorphic MACs to allow in-network tag regeneration for
coded messages, 2) utilizing symmetric key cryptography for
light-weight in-network message authentication, and 3) using
time to create asymmetry in message authentication; ideas of
this kind were first proposed in [18].

RIPPLE has two main components. The first is a homo-
morphic MAC for broadcast authentication. The second is
the RIPPLE transmission protocol for message distribution
and authentication. Our homomorphic MAC is information
theoretically secure, whereas the security of the RIPPLE
transmission protocol relies on computational hardness.

IV. HomomorphicMAC

A homomorphic MAC (cf. [17]) allows to linearly combine
any sequence of given (vector, tag) pairs. That is, given a
sequence of pairs{(Mi , ti)}mi=1, whereM1,M2, . . . ,Mm ∈ F

n+m
q ,

anyone can create a valid tagt for the vectory =
∑m

i=1αi Mi

for any α1, α2, . . . , αm ∈ Fq. Loosely speaking, the security
requirement is that, even under an adaptively chosen message
attack, creating a valid tagt for a vector outside the linear
span of the original messages is only possible with negligible
probability.

Syntax. We define a (q, n,m) homomorphic MAC via four
probabilistic, polynomial-time (PPT) algorithms, (Generate,
MAC , Verify , Combine):

• Generate is a PPT algorithm that randomly samples a
key K from a key spaceK .

• MAC is a PPT algorithm that takes as input a secret key
K, a vectorM and outputs a tagt for M.
TheMAC algorithm authenticates a vector space spanned
by M1,M2, . . . ,Mm ∈ F

n+m
q by runningMAC (K,Mi) for

i = 1, . . . ,m. This produces a tag for each of the basis
vectors. To authenticate a message (whose packets form
the subspace spanned byM1,M2, . . . ,Mm) the sender
transmits the pairs (Mi , ti).



• Verify is a PPT algorithm that takes as input a triplet
(K,M, t), whereK is a secret key,M ∈ Fn+m

q , and t is a
tag, and outputs either 1 (accept) or 0 (reject).

• Combine is a PPT algorithm that takes a sequence
of triplets (M1, t1, α1), (M2, t2, α2), . . . , (Md, td, αd), where
d ≤ m andMi ∈ F

n+m
q andαi ∈ Fq, and outputs a tagt for

the vectory =
∑w

i=1αi Mi ∈ F
n+m
q .

We require that for anyM1,M2, . . . ,Md ∈ F
n+m
q and any

α1, . . . , αd ∈ Fq, it holds that

Verify



K,
w∑

i=1

αi Mi ,Combine((Mi , ti , αi)w
i=1)



 = 1

whereti = MAC (K,Mi).

Security. To define security of the MAC, we consider an
adversary that is given access to messages of its choice. The
adversary should be unable to produce a pair (M′, t) that passes
verification, and so thatM′ does not lie within the subspace
spanned by the messagesM1, . . . ,Mm.

A bit more formally, security is defined through the follow-
ing game between a challengerC and an adversaryA. First,C
generates a random keyK. ThenA adaptively submits MAC
queries of the formM1, . . . ,Mm. To respond to a query,C
computesti = MAC (K,Mi) and sends (t1, . . . , tm) to A. Finally,
A outputs a vectorM′ ∈ Fn+m

q and a tagt. The adversary
A is said to have forged if: (1)Verify (M′, t) = 1, and (2)
M′ < Span(M1, . . . ,Mm).

Definition 1: A (q, n,m) homomorphic MAC scheme is said
to be secure if for all PPT adversaryA the probability thatA
forges is upper bounded by 1/q.

Basic construction.We start with a basic construction of a
homomorphic MAC. Denote by〈M,K〉 ∈ Fq the inner product
operation between two vectorsM and K over Fq of equal
length. Our basic (q, n,m) homomorphic MAC scheme, which
we call theinner-productMAC, is constructed as follows:

• Generate: SampleK
R
← Fn+m

q .
• MAC: Given M,K ∈ Fn+m

q , outputt = 〈M,K〉 ∈ Fq.
• Verify: Given (K,M, t), check that〈M,K〉 = t.
• Combine: Given (Mi , ti , αi)w

i=1 with d ≤ m, output
∑w

i=1αi ti .

Theorem 2:The inner-product scheme is a secure homo-
morphic MAC.

Proof: Homomorphism: Define t =
∑w

i=1αi ti . We then
have:

t =
w∑

i=1

αi〈Mi ,K〉 = 〈
w∑

i=1

αi Mi ,K〉.

Security. Assume the adversary knows (Mi , ti)
m
i=1 by adap-

tively choosing (Mi)
m
i=1. Let (M′, t) be the adversary’s output,

which presumably satisfiesM′ < Span(M1,M2, . . . ,Mm).
It suffices to prove that for anyt ∈ Fq there exists a set of

equal size, such that anyK in the set satisfies〈M′,K〉 = t.
For anyt ∈ Fq, a possibleK is a solution of :

(M1; M2; . . . ; Mm; M′)K = (t1; t2; . . . ; tm; t).

By applying basic linear algebra result we get that if the
first m equations have a solution, andM′ is not in the
linear subspace spanned by the (Mi)m

i=1, then for anyt, the
solutions set has cardinalityq(n−rk) where rk is the rank of
(M1; M2; . . . ; Mm; M′).

An appealing feature of the inner-product MAC is that its
tags are elements inFq. Thus, concatenating a vectorM with
its authentication tagt actually results in a longer vector (M, t),
which can be itself authenticated by taking its inner product
with a longer key. This process can be continued inductively,
effectively producing a “chain” of nested authentications, each
intended to a different level in the network. Conveniently,
this “nesting” operation preserves both the security and the
homomorphic properties of the original authentication scheme.

Full construction. We now present the homomorphic MAC
scheme that is used in RIPPLE. This scheme takes advantage
of the ability to nest authentications in order to prevent tag
pollution attacks.

• Generate: Sample a sequenceK = (K1,K2, . . . ,KL),

whereK j R
← F

n+L− j
q .

• MAC: Given a messageM ∈ F
n+m
q and keys

K1,K2, . . . ,KL as above, output the followingL tags:

tL = 〈M,KL〉

tL−1 = 〈(M, tL),KL−1〉

...

t1 = 〈(M, tL, tL−1, . . . , t2),K1〉

• Verify: Given P = (M, tL, tL−1, . . . , t1) ∈ Fn+m+L
q , check

that t j = 〈(M, tL, tL−1, . . . , t j+1),K j〉 for every j = 1, . . . , L.
• Combine: Given (Mi , t

L
i , t

L−1
i , . . . , t

1
i , αi)

w
i=1 with w ≤ m,

output a tagt = tL, tL−1
i , . . . , t

1 wheret j =
∑w

i=1αi t
j
i .

We next argue that the scheme described above is secure.

Theorem 3:. The nested inner-product scheme is a secure
homomorphic MAC.

Proof: Homomorphism: Given (Mi , t
1
i , . . . , t

L
i , αi)

w
i=1,

consider a tagt = t1, . . . , tL wheret j =
∑w

i=1αi t
j
i .

Firstly, note thattL =
∑w

i=1αi〈Mi ,KL〉 = 〈
∑w

i=1αi Mi ,KL〉

passes the verification. For anyj = L−1, L−2, . . . , 1, we then
have:

t j =

w∑

i=1

αi〈(Mi , t
L
i , t

L−1
i , . . . , t

j+1
i ),K j〉

= 〈

w∑

i=1

αi(Mi , t
L
i , t

L−1
i , . . . , t

j+1
i ),K j〉

= 〈(M, tL, tL−1, . . . , t j+1),K j〉

And so ti passes the verification.
Security. Suppose that an adversary outputsM′ <

Span(M1,M2, . . . ,Mm). By Theorem 2, this means that the
adversary can forget j for any j = 1, 2, . . . , L with probability
at most 1/q.

For any j = L, L−1, . . . , 2, if (M, tL, tL−1, . . . , t j) is not in the
space spanned by{(Mi , tLi , t

L−1
i , . . . , t

j
i )}

m
i=1, then by Theorem 2,



an adversary can forgetk for any k = 1, 2, . . . , j − 1 with
probability at most 1/q.

Arbitrary Collusion Resistant. Our RIPPLE system is se-
cure against arbitrary collusion among the adversaries. Assume
that the adversary knows all thelegal packets, i.e., the linear
subspace spanned by{Pi = (Mi , t1i , . . . , t

L
i )}mi=1 are observed.

Any adversarial behaviors, i.e., nonlinear operations, onM or
t j can pass the verification oftk with probability at most 1/q
for any j > k.

A. Security beyond1/q

As proved in Theorem 3, an adversary can forge with
probability at most 1/q. For small q (e.g. 2), this may not
yield satisfactory security. To ameliorate this state of affairs,
we consider two possible approaches to strengthen the security
of the MAC system:

1) Using a larger field. Let q be the size of the original
field and q′ = qc be the size of a larger field used to
achieve a reliable security parameter 1/q′ = 1/qc. Such a
larger field would result in tag communication overhead
c times of the original one, while the computational
complexity of field multiplication overFq′ is c logc
times of that overFq.

2) Using Multiple Tags. For each level j ∈ [1, L] we
use c tags {t j

1, t
j
2, . . . , t

j
c} generated byc independent

keys3 {K j
1,K

j
2, . . . ,K

j
c}. The probability that an adversary

can forgec tags is 1/qc. Thus the tag communication
overhead increases by a factor ofc, while the number
of multiplication increases by onlyc times, as opposed
to c logc times in the first approach.

We suggest using the second approach to improve security
for its lower computational complexity. However, for ease
of understanding, we will use a single tag per level in the
description of the RIPPLE transmission protocol next.

V. RIPPLE Transmission Protocol

In our problem setting, a senderS schedules packet trans-
mission based on two coordinates, space and time. The net-
work space is hierarchically organized. A node is called a
level-j node if it is at mostj hops away fromS. We define
the children ofS to be level-1 nodes and assume a maximum
of L levels in a network. Time is divided into uniform intervals.
S sends zero or multiple packets during an interval. We refer
to packets sent during intervali as interval-i packets.

We name our network coding authentication scheme RIP-
PLE for packets moving in the network from level to level,
in a wavelike fashion. A batch of packets reaches the nodes
at a level, pauses for key disclosure, verification, coding,and
finally flows to the next level. For ease of understanding, we
first describe the RIPPLE scheme at a high level, and then
break it into four stages and elaborate on each of them.
S broadcasts a batch of packets in each time interval and

a batch moves from level to level driven by delayed key
disclosures. Specifically, assume thatS transmits a batch of

3Note thatt j
a is not used to authenticatet j

b for any a, b ∈ [1, c]. Thus the
length of K j

a is n+ (L − j)c for any j ∈ [1, L] and a ∈ [1, c].

packets to its children during intervali. Each packet carriesL
tags, each for verification by nodes at a different level. A tag
is produced with a key generated specifically for a particular
interval and level.S reveals the key for intervali and level 1
after a fixed amount of delay to ensure that all level-1 nodes
have received the interval-i packets. Upon receiving the key,
a level-1 node verifies all the buffered interval-i packets by
checking their level-1 tags and encodes only the authenticated
packets. Due to the homomorphic property of our MAC, the
level-1 nodes are able to produce new tags for the encoded
packets for the remaining levels. Driven by one key disclosure,
this batch of packets moves to level-2 nodes. Based on a
predetermined key disclosure schedule,S distributes the keys
for levels 2 throughL in an increasing order of levels. Every
key disclosure drives the batch one level forward. Eventually,
this batch of packets reaches all the receivers.

A. Sender Setup

We now describe our RIPPLE transmission protocol in four
stages. Recall that time is divided into intervals of a uniform
length. We use the following notations:T0 denotes the starting
time of a multicast transmission,N the maximum number of
intervals in a multicast session,W the maximum number of
packets sent in an interval,Ti the starting time of intervali,
andδ the interval length. For the last three variables, we have
the following equation

Ti = T0 + i · δ, ∀1 ≤ i ≤ N. (4)

In the setup stage,S determines the network levelL and
network delayD.

1) Determining Network Level L:For each nodev ∈ V −
{S}, its level Lv(v) on a coding graphG = (V,E) is defined as
the length (i.e., hop count) of the longest path fromS to v.
Network levelL is thus defined as

L , max
v∈V−{S}

Lv(v). (5)

For example, the level of noded on the butterfly coding graph
in Fig. 1(b) is 3, and the network level is 5.

Given a coding graph4, finding the length of the longest
path fromS to a nodev ∈ V can be transformed to finding
the shortest path betweenS and v by changing the signs of
the weights on the edges. Hence, by using existing shortest
path algorithms such as the Dijkstra’s algorithm, the length
of the longest path can be computed inO(|V| log |V| + |E|)
time when no adversary exists. In the presence of adversaries,
the length of the longest path can be computed by using
recently proposed passive network tomography schemes [34]
for network coding based multicast.

2) Bounding Network Delay D:We define network delay
D as the sum of these two terms:

• RTT(S, v), the maximum round trip time betweenS and
a nodev ∈ V − {S}, and

• Tp, the bound on a node’s processing time to authenticate
up to W messages of an interval, encode authenticated

4Recall that we focus on directed acyclic coding graph in thispaper.



messages, calculate new tags for the encoded messages,
and forward the newly generated packets to the next level.

More precisely,

D , max
v∈V−{S}

RTT(S, v) + Tp. (6)

D is thus an upper bound on the maximum time for messages
of an interval to move one level forward. We emphasize that
RIPPLE only requiresS to know the upper bounds ofL andD
to operate. However, knowledge of accurate values ofL andD
reduces both the communication and computational overhead.

3) One-way Key Chain:For each level of nodes, we
generate a different sequence ofN random values and use
them in reverse order to derive the MAC keys each for a
different time interval. We use a pseudo-random function [35]
F to generate the sequences. For each sequence, we choose
a different random numberr0 as the base value and generate
the sequence recursively asr i = F(r i−1) where 1≤ i ≤ N
(recall thatN is the maximal number of intervals in a broadcast
session). We refer to the sequence as theone-way key chain.

To authenticate the values in a one-way key chain,S signs
the last valuerN with a common public key signature scheme
such as RSA [36] or DSA [37]. We refer to the signed
rN a commitmentto the key chain. Anyone can verify the
authenticity ofrN with S’s public key. Given an authenticated
rN and an indexi, anyone can check if a valuer is theith value
in the one-way key chain by checking ifrN = FN−i(r), where
Fn(x) denotesn consecutive applications ofF. By convention,
F0(x) = x.

We use the one-way key chain in reverse order to de-
rive MAC keys. To avoid using the same key in different
cryptographic operations, we apply a second pseudo-random
function F′ to derive the MAC keys. Specifically, we use key
K j

i = F′
(

r j
N−i

)

to generate tags for interval-i messages, for

verification by level-j nodes, wherer j
N−i denotes the (N − i)th

value in the one-way key chain for level-j.
4) Key Disclosure Delay d:S sets the key disclosure delay

for the one-way key chain to be

d = ⌈D/δ⌉ + 1 (7)

in units of intervals. For packets sent in intervali, S delays the
key disclosure for level-j until interval i +d j, by when level-j
nodes must have already received the interval-i packets.

B. Initializing Nodes

Before data transmission,S and the nodes in the network
loosely synchronize their clocks. By using a synchronization
protocol such as the one with low complexity [18], each nodev
in V−{S} compares its local time with that ofS’s, and records
the difference∆v. We assume that the clock drifts betweenS
and the receivers are negligible during a multicast session.

In addition to loose time synchronization,S sends each node
a bootstrapping packet. These packets are digitally signedwith
a public signature scheme. A bootstrapping packet includes:
the starting time of the transmissionT0, the interval lengthδ,
the key disclosure delayd, the level of the recipient node, and
the commitment to the key chain associated with the level of
the recipient node.

C. Sending Authenticated Packets

To prevent tag pollution attacks,S generatesL tags each for
a different level in a nested fashion. LetM denote a message to
be sent in intervali andK = K1

i ,K
2
i , . . . ,K

L
i be theL level keys

for interval i. S prependsM with i; without loss of generality,
let the resulting vector (i,M) ∈ Fn+m

q . We will discuss the
purpose of prependingi in Section V-D.S computes tags
MAC ((i,M),K) = (tL, tL−1

i , . . . , t
1) and sends packet

P , (i,M, tL, tL−1, . . . , t1) ∈ Fn+m+L
q . (8)

Key disclosure schedule.RIPPLE leverages the time differ-
ence between packet dispatch and key disclosure to authenti-
cate packets. For packets sent in intervali, S delays the release
of the key for level j and intervali until after level-j nodes
have received those packets. Specifically, it discloses a key
packet (j,K j

i ) for interval i and level j in interval i + d j where
d is the key disclosure delay.

D. Packet Authentication and Coding

Upon receiving a packetP =
(

i,M, tL, tL−1, . . . , tl
)

, a for-
warderF buffers it only if S has not disclosed the keyK l

i
for F ’s level l and intervali. To this end,F first derives the
latest possible timey that S could be at based on the loose
time synchronization. Assume that the synchronization error
betweenS andF is ∆F and the current time atF is Tk. Then
y = (Tk + ∆F )/δ. For packets sent in intervali, S releases
the key for level-l nodes in intervali + dl based on the key
disclosure schedule. As a result,F checks ifi ≤ y ≤ i + dl. If
not,F discardsP. Otherwise,F buffersP.
F takes the following actions upon receiving a key packet

(

j,K j
i

)

. If j < l, F discards it. If j > l, F forwards it to its

children. Otherwise,F keeps it. IfF already knowsK j
i or

a later key, then it does nothing. Otherwise,K j
i is the latest

key received so far.F checksK j
i ’s legitimacy and derives its

birth interval i via the one-way key chain. Specifically, for a
previously received keyK j

k (k < i), if F can find a positive
integer x such thatK j

k = Fx(K j
i ), then K j

i is legitimate with
birth interval i = x + k. Having an upper bound onx limits
the number of applications ofF to compute. To this end,F
first derives the latest possible timey that S could be at as
described above. Then the latest key thatS has disclosed for
level j is for interval⌊y−d j⌋. Sox is bounded by⌊y−d j⌋−k if
F usesK j

k in key verification. To reduce future computation,
F buffers the latest key in a pair (i,K j

i ) and removes the old
latest interval-key pair.

With an authenticated keyK j
i , F verifies the buffered

interval-i packets. For packetP = (i,M, tL, tL−1, . . . , t j) and
key K j

i , F checks if t j = 〈(i,M, tL, tL−1, . . . , t j+1),K j
i 〉. If

so, F removest j
i from P. Otherwise, it discardsP. For w

authenticated packets (i,Mk, tTk , t
T−1
k , . . . , t j+1

k )
w

k=1, F generates
w coding coefficients αi as described in Section II-A.F
generates the network coded messageM̃ =

∑w
k=1αkMk. It

then callsCombine which takes (i,Mk, t
T
k , t

T−1
k , . . . , t j+1

k , αk)
w

k=1
with w ≤ m, and outputs a tagt = t̃T , t̃T−1, . . . , t̃ j+1 where
t̃ j =

∑w
k=1αkt

j
k. F sends (i, M̃, t) to its children. See Fig. 1(a)

for an example.



time

Ii Ii+1 Ii+2 Ii+3

Pi,1

Ii+4

Pi,2

Pi+1,1

Pi+1,2

Pi+2,1

K
1

i
K

1
i+1

K
2

i

K
1
i+2

K
L

i

K
L−1

i+2
.

.

.

Time to send K
1

i

Pipelined for

high throughput

Setting: d = 2.

Pi+2,2
· · ·

· · ·

Time to send K
2

i
Time to send K

L

i

· · · · · ·

(a)

s

a b

d

c

e

f g

(b)

Fig. 1. a) This figure illustrates the packet and key disclosure schedule of sourceS. In this example, network delayD is 0.9δ and the key disclosure delay
d is 2. S sends two packets per interval. For the two packetsPi,1 and Pi,2 sent in intervalI i , S releases the corresponding levelj keys K j

i in interval I i+d j,
by when Pi,1 and Pi,2 must have reached all levelj nodes. Specifically,S releasesK1

i , K2
i , . . . , KL

i for levels 1,2, . . . ,L in intervals I i+2, I i+4, . . . , I i+2L
respectively. For ease of understanding, we use the same boxframe for packets sent in an interval and the corresponding level keys for that interval. b)S
sends multiple batches of messages{ui , vi }i to nodes f and g over a skewed Butterfly network, where each link has unit capacity and unit delay. Noded
buffers ui and waits forvi before transmittingui + vi to nodee. Due to pipelining, the achieved multicast throughput is still 2.

E. Reducing Key Disclosure Traffic

The baseline RIPPLE scheme broadcastsL keys to the entire
network per interval, one key for nodes at each level. For
large network with largeL and large number of nodes, this
could lead to heavy key disclosure traffic, reducing the overall
transmission efficiency.

We describe a mechanism to reduce the key disclosure traffic
to one key per interval. Our mechanism is inspired by the work
of [38] and works as follows. Instead of using one independent
key chain per level, we use the same key chain for all levels,
but different functions of the same key for authentication at
different levels. All nodes at different levels share the same
key chain. Each keyKi in the key chain is associated with
the corresponding time intervali, and will be disclosed in
interval i. When nodes at levelj receiveKi , they authenticate
it using the commitment of the key chain, and generate their
authentication key asK j

i = G (Ki , j), whereG is a pseudo-
random function. This way, nodes at different levels verify
the same “seed” key using the shared key chain, but derive
different authentication keys.

VI. Performance Analysis

In this section, we study the performance characteristics of
the RIPPLE transmission protocol.

A. Computational Overhead

The computational overhead of the RIPPLE transmission
protocol is dominated by the homomorphic MAC scheme used
in the last two stages of RIPPLE. The overhead incurred by the
first two stages, the sender setup and node initialization stages,
is one time cost for a multicast session and asymptotically
negligible. Recall that our MAC scheme consists of four func-
tions,Generate, MAC , Verify , andCombine (Section IV, full
construction). FunctionGenerateproducesL random numbers
as level keys for a multicast session; its cost is negligible.

The cost ofMAC is dominated by the number of finite
field multiplications.MAC takes a messageM and L keys
and outputsL tags, tL, tL−1, . . . , t1. Recall that a tagt j for
level j is computed as the inner product of two vectors in

F
(n+m)+(L− j)
q , i.e., t j = 〈(M, tL, tL−1, · · · , t j+1),K j〉. Generatingt j

thus takesn+m+ L − j multiplications inFq. The number of
multiplications to generate allL tags is

S =
L∑

j=1

(n+m+ L − j) = L

(

n+m+
L − 1

2

)

. (9)

The cost ofVerify is similar to that ofMAC . Given a packet
P = (M, tL, tL−1, . . . , t j) ∈ Fn+m+L− j+1

q and a keyK j for level j,
a level-j node checks ift j = 〈(M, tL, tL−1, . . . , t j+1),K j〉. This
takes n + m + L − j multiplications in Fq. For a packet to
travel from level 1 toL, a total number ofL

(

n+m+ L−1
2

)

multiplications is required. On average, each node computes
(

n+m+ L−1
2

)

multiplications.
The cost ofCombine depends only onL and the numberw

of incoming edges of a node. Recall that in the RIPPLE trans-
mission protocol, a level-j node receives packets in the form of
(M, tT , tT−1 . . . , t j , ); tag t j−1, t j−2, . . . , t1 have been removed by
upper level nodes.Combine takes (Mi , t

T
i , t

T−1
i , . . . , t j+1

i , αi)
w

i=1
with w ≤ m, and outputs a tagt = tT , tT−1, . . . , t j+1 where
t j =

∑w
i=1αi t

j
i . To compute the tags for each outgoing packet,

a level-j node performs (L− j)w multiplications. If we assume
that every node in the network has the same number of parents,
then on average, a node computes (L− 1)w/2 multiplications.

B. Experiments

Table I summarizes RIPPLE’s performance. We assume that
the network has 10K nodes and estimate the maximum number
of levels L = 16 (note that log 10000≈ 13). We assume
q = 28, a packet sizen = 1024 bytes, a generation size
m = 32, and the number of parents per nodew = 6. We
use the C/C++ library [39] which implements fast Galois
field multiplications with table lookups. We conduct the ex-
periments on a GNU/Linux system with 2.33GHz Intel Core
2 Duo processors. Recall that in Section IV-A, we discuss
using multiple tags to increase security. For a fixedq, the
computational and per packet communication overhead grows
linearly with the number of tags per level, while the security
grows exponentially. We show this relationship in Table I.



Number of Tags MAC Verify and Tag Size Security
Per Level (ns) Combine (ns) (bytes)

1 61.7 4.0 16 1/28

4 246.8 24.0 64 1/232

TABLE I
Computation and Communication Overhead under Different Security

Settings

VII. Conclusions

In this work we present RIPPLE, an efficient in-network
authentication scheme that is well-matched to distributedran-
dom linear network codes. Operating in tandem, they provide
a practical and low-complexity scheme for achieving rate-
optimal throughput even in the presence of a disruptive adver-
sary in the network. The low complexity of RIPPLE’s authenti-
cation scheme arises from using symmetric-key authentication
together with time-asymmetry,i.e., keys are transmitted after
their corresponding messages. Hence we achieve security
akin to that of public-key verification schemes, without their
undesirable properties (prohibitive computational complexity
for moderate key sizes). We show that RIPPLE is robust to ar-
bitrary collusion among adversaries. It is also resilient against
the subtle tag pollution attack discussed in this work, wherein
an adversarially injected packet with a single corrupted tag
may cause nodes in prior schemes to dropnumerouspackets.
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