
New and Improved Constructions of

Non-Malleable Cryptographic Protocols ∗

Rafael Pass † Alon Rosen ‡

Abstract

We present a new constant round protocol for non-malleable zero-knowledge. Using this pro-
tocol as a subroutine, we obtain a new constant-round protocol for non-malleable commitments.
Our constructions rely on the existence of (standard) collision resistant hash functions. Previous
constructions either relied on the existence of trapdoor permutations and hash functions that are
collision resistant against sub-exponential sized circuits, or required a super-constant number
of rounds. Additional results are the first construction of a non-malleable commitment scheme
that is statistically hiding (with respect to opening), and the first non-malleable commitments
that satisfy a strict polynomial-time simulation requirement.

Our approach differs from the approaches taken in previous works in that we view non-
malleable zero-knowledge as a building-block rather than an end goal. This gives rise to a
modular construction of non-malleable commitments and results in a somewhat simpler analysis.

Keywords: Cryptography, zero-knowledge, non-malleability, man-in-the-middle, round-complexity,
non black-box simulation

∗Preliminary version appeared in STOC 2005, pages 533–542.
†Department of Computer Science. Cornell University, Ithaca, NY. E-mail: rafael@cs.cornell.edu. Part of this

work done while at CSAIL, MIT, Cambridge, MA.
‡Center for Research on Computation and Society (CRCS). DEAS, Harvard University, Cambridge, MA. E-mail:

alon@eecs.harvard.edu . Part of this work done while at CSAIL, MIT, Cambridge, MA.

0



Contents

1 Introduction 3
1.1 Non-Malleable Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Techniques and New Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Future and Subsequent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7
2.1 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Witness Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Probabilistic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Computational Indistinguishability and Statistical Closeness . . . . . . . . . . . . . . 7
2.5 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.1 Interactive Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.2 Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.3 Witness Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Proofs of Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Universal Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Non-Malleable Protocols 11
3.1 Non-Malleable Interactive Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Non-malleable Zero-Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Non-malleable Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Comparison with Previous Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Simulation-Extractability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 A Simulation-Extractable Protocol 18
4.1 Barak’s non-black-box protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 A “Special-Purpose” Universal Argument . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 A family of 2n protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 A family of 2n protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Proving Simulation-Extractability 23
5.1 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Many-to-One Simulation-Extractabiity . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 The Many-to-One Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 The Simulator-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.3 Correctness of Simulation-Extraction . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 “Full-Fledged” Simulation-Extractability . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Non-malleable Commitments 36
6.1 A statistically-binding scheme (NM with respect to commitment) . . . . . . . . . . . 36
6.2 A statistically-hiding scheme (NM with respect to opening) . . . . . . . . . . . . . . 42

7 Acknowledgments 46

1



A Missing Proofs 49

2



1 Introduction

Consider the execution of two-party protocols in the presence of an adversary that has full control
of the communication channel between the parties. The adversary has the power to omit, insert
or modify messages at its choice. It has also full control over the scheduling of the messages. The
honest parties are not necessarily aware to the existence of the adversary, and are not allowed to
use any kind of trusted set-up (such as a common reference string).

The above kind of attack is often referred to as a man-in-the-middle attack. It models a natural
scenario whose investigation is well motivated. Protocols that retain their security properties in face
of a man-in-the-middle are said to be non-malleable [13]. Due to the hostile environment in which
they operate, the design and analysis of non-malleable protocols is a notoriously difficult task. The
task becomes even more challenging if the honest parties are not allowed to use any kind of trusted
set-up. Indeed, only a handful of such protocols have been constructed so far.

The rigorous treatment of two-party protocols in the man-in-the-middle setting has been initi-
ated in the seminal paper by Dolev, Dwork and Naor [13]. The paper contains definitions of security
for the tasks of non-malleable commitment and non-malleable zero-knowledge. It also presents pro-
tocols that meet these definitions. The protocols rely on the existence of one-way functions, and
require O(log n) rounds of interaction, where n ∈ N is a security parameter.

A more recent result by Barak presents constant-round protocols for non-malleable commitment
and non-malleable zero-knowledge [2]. This is achieved by constructing a coin-tossing protocol that
is secure against a man in the middle, and then using the outcome of this protocol to instantiate
known constructions for non-malleable commitment and zero-knowledge in the common reference
string model (see Section 1.4). The proof of security makes use of non black-box techniques and
is highly complex. It relies on the existence of trapdoor permutations and hash functions that are
collision-resistant against sub-exponential sized circuits.

In this paper we continue the line of research initiated by the above papers. We will be in-
terested in the construction of new constant-round protocols for non-malleable commitment and
non-malleable zero-knowledge. Similarly to the above works, we will refrain from relying on any
kind of set-up assumption.

1.1 Non-Malleable Protocols

In accordance with the above discussion, consider a man-in-the-middle adversary A that is simul-
taneously participating in two executions of a two-party protocol. These executions are called the
left and the right interaction. Besides controlling the messages that it sends in the left and right
interactions, A has control over the scheduling of the messages. In particular, it may delay the
transmission of a message in one interaction until it receives a message (or even multiple messages)
in the other interaction.

(a) (b)

P A V

x∈L=====⇒ x̃∈L=====⇒

C A R

Com(v)
=====⇒ Com(ṽ)

=====⇒

Figure 1: The man-in-the-middle adversary. (a) Interactive proofs. (b) Commitments.

The adversary is trying to take advantage of its participation in the left interaction in order to
violate the security of the protocol executed in the right interaction, where the exact interpretation
of the term ”violate the security” depends on the specific task at hand.

3



A two-party protocol is said to be non-malleable if the left interaction does not “help” the
adversary in violating the security of the right interaction. Following the simulation paradigm [23,
24, 20, 21], this is formalized by defining appropriate “real” and “idealized” executions.

In the real execution, called the man-in-the-middle execution, the adversary participates in both
the left and the right interactions. In the idealized execution, called the stand-alone execution,
the adversary is only participating in a single interaction. Security is defined by requiring that
the adversary cannot succeed better in the the man-in-the middle execution than he could have in
the stand-alone execution. In the specific instances of zero-knowledge and string commitment, the
definition of security takes the following forms.

Non-malleable zero-knowledge [13]. Let 〈P, V 〉 be an interactive proof system. In the left
interaction the adversary A is verifying the validity of a statement x by interacting with an honest
prover P In the right interaction A proves the validity of a statement x̃ 6= x to the honest verifier V
(see Figure 1.a).. The objective of the adversary is to convince the verifier in the right interaction
that x̃ ∈ L. Non-malleability of 〈P, V 〉 is defined by requiring that for any man-in-the-middle ad-
versary A, there exists a stand-alone prover S that manages to convince the verifier with essentially
the same probability as A. The interactive proof 〈P, V 〉 is said to be non-malleable zero-knowledge
if it is non-malleable and (stand-alone) zero-knowledge.

Non-malleable commitments [13]. Let 〈C,R〉 be a commitment scheme. In the left interaction
the adversary A is receiving a commitment to a value v from the committer C. In the right
interaction A is sending a commitment to a value ṽ to the receiver R (see Figure 1.b). The
objective of the adversary is to succeed in committing in the right interaction to a value ṽ 6= v
that satisfies R(v, ṽ) = 1 for some poly-time computable relation R. Non-malleability of 〈C,R〉
is defined by requiring that for any man-in-the-middle adversary A, there exists a stand-alone
committer S that manages to commit to the related ṽ with essentially the same probability as A.

Schemes that satisfy the above definition are said to be non-malleable with respect to commit-
ment. In a different variant, called non-malleable commitment with respect to opening [16], the
adversary is considered to have succeeded only if it manages to decommit to a related value ṽ.

1.2 Our Contributions

Our main result is the construction of a new constant-round protocol for non-malleable ZK. The
proof of security relies on the existence of (ordinary) collision resistant hash functions and does not
rely on any set-up assumption.

Theorem 1 (Non-malleable ZK) Suppose that there exists a family of collision resistant hash
functions. Then, there exists a constant-round non-malleable ZK argument for every L ∈ NP.

Theorem 1 is established using the notion of simulation extractability. A protocol is said to be
simulation extractable if for any man-in-the-middle adversary A, there exists a simulator-extractor
that can simulate the views of both the left and the right interactions for A, while outputting a
witness for the statement proved by A in the right interaction. Any protocol that is simulation-
extractable is also non-malleable ZK. The main reason for using simulation extractability (which
is more technical in flavor than non-malleability) is that it is easier to work with.

Using our new simulation extractable protocols as a subroutine, we construct constant round
protocols for non-malleable string commitment. One of our constructions achieves statistically
binding commitments that are non-malleable w.r.t. commitment, and the other achieves statisti-
cally hiding commitments that are non-malleable w.r.t. opening.

4



Theorem 2 (Statistically binding non-malleable commitment) Suppose that there exists a
family of collision-resistant hash functions. Then, there exists a constant-round statistically binding
commitment scheme that is non malleable with respect to commitment.

Theorem 3 (Statistically hiding non-malleable commitment) Suppose that there exists a
family of collision-resistant hash functions. Then, there exists a constant-round statistically hiding
commitment scheme that is non malleable with respect to opening.

Underlying cryptographic assumptions. The main quantitative improvement of our con-
struction over the constant round protocols in [2] is in the underlying cryptographic assumption.
Our constructions rely on the existence of ordinary collision resistant hash functions. The protocols
in [2] relied on the existence of both trapdoor permutations and hash functions that are collision re-
sistant against sub exponential sized circuits. The constructions in [13] assumed only the existence
of one-way functions, but had a super-constant number of rounds.

Statistically hiding non-malleable commitments. Theorem 3 gives the first construction of
a non-malleable commitment scheme that is statistically hiding and that does not rely on set-up
assumptions. We mention that the existence of collision resistant hash functions is the weakest
assumption currently known to imply constant round statistically hiding commitment schemes
(even those that are not of the non-malleable kind) [32, 9].

Strict vs. liberal non-malleability. The notion of non malleability that has been considered
so far in all works, allows the stand alone adversary S to run in expected polynomial time. A
stronger (“tighter”) notion of security, named strict non-malleability [13], requires S to run in strict
polynomial time. In the context of strict non-malleability, we have the following result.

Theorem 4 (Strict non-malleability) Suppose that there exists a family of collision resistant
hash functions. Then,

1. There exists a constant-round statistically binding commitment scheme that is strictly non-
malleable with respect to commitment.

2. There exists a constant round statistically hiding commitment scheme that is strictly non-
malleable with respect to opening.

1.3 Techniques and New Ideas

Our protocols rely on non black-box techniques used by Barak to obtain constant-round public-coin
ZK argument for NP [1] (in a setting where no man in the middle is considered). They are closely
related to previous works by Pass [34], and Pass and Rosen [35] that appeared in the context of
bounded-concurrent two-party and multi-party computation; in particular our protocols rely and
further explore the technique from [34] of using message-lenghts to obtain non-malleability. Our
techniques are different than the ones used by Barak in the context of non-malleable coin-tossing [2].

The approach we follow in this work is fundamentally different than the approach used in [13].
Instead of viewing non-malleable commitments as a tool for constructing non-malleable ZK proto-
cols, we reverse the roles and use non-malleable ZK protocols in order to construct non-malleable
commitments. Our approach is also different from the one taken by [2], who uses a coin-tossing
protocol to instantiate constructions that rely on the existence of a common reference string.

Our approach gives rise to a modular and natural construction of non-malleable commitments.
This construction emphasizes the role of non-malleable ZK as a building block for other non-
malleable cryptographic primitives. In proving the security of our protocols, we introduce the

5



notion of simulation extractability, which is a convenient form of non-malleability (in particular,
it enables a more modular construction of proofs). A generalization of simulation-extractability,
called one-many simulation extractability, has already been found to be useful in constructing
commitment schemes that retain their non-malleability properties even if executed concurrently an
unbounded (polynomial) number of times [36].

In principle, our definitions of non-malleability are compatible with the ones appearing in [13].
However, the presentation is more detailed and somewhat different (see Section 3). Our definitional
approach, as well as our construction of non-malleable ZK highlights a distinction between the
notions of non-malleable interactive proofs and non-malleable ZK. This distinction was not present
in the definitions given in [13].

1.4 Related Work

Assuming the existence of a common random string, Di Crescenzo, Ishai and Ostrovsky [12], and
Di Crescenzo, Katz, Ostrovsky, and Smith [11] construct non-malleable commitment schemes.
Sahai [37], and De Santis, Di Crescenzo, Ostrovsky, Persiano and Sahai [10] construct a non-
interactive non-malleable ZK protocol under the same assumption. Fischlin and Fischlin [16], and
Damg̊ard and Groth [8] construct non-malleable commitments assuming the existence of a common
reference string. We note that the non-malleable commitments constructed in [12] and [16] only
satisfy non-malleability with respect to opening [16]. Canetti and Fischlin [7] construct a universally
composable commitment assuming a common random string. Universal composability implies non
malleability. However, it is impossible to construct universally composable commitments without
making set-up assumptions [7].

Goldreich and Lindell [19], and Nguyen and Vadhan [33] consider the task of session-key gen-
eration in a setting where the honest parties share a password that is taken from a relatively small
dictionary. Their protocols are designed having a man-in-the-middle adversary in mind, and only
requires the usage of a “mild” set-up assumption (namely the existence of a “short” password).

1.5 Future and Subsequent Work

Our constructions (and even more so the previous ones) are quite complex. A natural question is
whether they can be simplified. A somewhat related question is whether non-black box techniques
are necessary for achieving constant-round non-malleable ZK or commitments. Our constructions
rely on the existence of collision resistant hash functions, whereas the non constant-round construc-
tion in [13] relies on the existence of one-way functions. We wonder whether the collision resistance
assumption can be relaxed.

Another interesting question (which has been already addressed in subsequent work – see below)
is whether it is possible to achieve non-malleability under concurrent executions. The techniques
used in this paper do not seem to extend to the (unbounded) concurrent case and new ideas seem
to be required. Advances in that direction might shed light on the issue of concurrent composition
of general secure protocols.

In subsequent work [36], we show that (a close variant of) the commitments presented here will
retain their non-malleability even if executed concurrently an unbounded (polynomial) number of
times. We note that besides using an almost identical protocol, the proof of this new result heavily
relies on a generalization of simulation extractability (called “one-many” simulation extractabil-
ity). This notion has proved itself very useful in the context of non-malleability, and we believe
that it will find more applications in scenarios where a man-in-the-middle adversary is involved.
We additionally mention that the presentation of some of the results in this paper incorporates
simplification developed by us in [36].

6



2 Preliminaries

2.1 Basic notation

We let N denote the set of all integers. For any integer m ∈ N , denote by [m] the set {1, 2, . . . ,m}.
For any x ∈ {0, 1}∗, we let |x| denote the size of x (i.e., the number of bits used in order to write it).
For two machines M,A, we let MA(x) denote the output of machine M on input x and given oracle
access to A. The term negligible is used for denoting functions that are (asymptotically) smaller
than one over any polynomial. More precisely, a function ν(·) from non-negative integers to reals
is called negligible if for every constant c > 0 and all sufficiently large n, it holds that ν(n) < n−c.

2.2 Witness Relations

We recall the definition of a witness relation for an NP language [17].

Definition 2.1 (Witness relation) A witness relation for a language L ∈ NP is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by

L = {x : ∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL (also denoted RL(x,w) = 1).
We will also let RL(x) denote the set of witnesses for the membership x ∈ L, i.e.,

RL(x) = {y : (x, y) ∈ L}

In the following, we assume a fixed witness relation RL for each language L ∈ NP.

2.3 Probabilistic notation

Denote by x
r← X the process of uniformly choosing an element x in a set X. If B(·) is an

event depending on the choice of x
r← X, then Prx←X [B(x)] (alternatively, Prx[B(x)]) denotes the

probability that B(x) holds when x is chosen with probability 1/|X|. Namely,

Prx←X [B(x)] =
∑
x

1
|X|
· χ(B(x))

where χ is an indicator function so that χ(B) = 1 if event B holds, and equals zero otherwise. We
dennote by Un the uniform distribution over the set {0, 1}n.

2.4 Computational Indistinguishability and Statistical Closeness

Let S ⊆ {0, 1}∗ be a set of strings. A probability ensemble indexed by S is a sequence of random
variables indexed by S. Namely, any X = {Xw}w∈S is a random variable indexed by S.

Definition 2.2 (Computational indistinguishability) Two ensembles X = {Xw}w∈S and Y =
{Yw}w∈S are said to be computationally indistinguishable if for every probabilistic polynomial-time
algorithm D, there exists a negligible function ν(·) so that for every w ∈ S:

|Pr [D(Xw, w) = 1]− Pr [D(Yw, w) = 1]| < ν(|w|)

The algorithm D is often referred to as the distinguisher. For more details on computational
indistinguishability see Section 3.2 of [17].

7



Definition 2.3 (Statistical Closeness) Two ensembles X = {Xw}w∈S and Y = {Yw}w∈S are
said to be statistically close if there exists a negligible function ν(·) so that for every w ∈ S:

max
D
{Pr[D(Xw, w) = 1]− Pr[D(Yw, w) = 1]} < ν(|w|)

Note that the definition does not require that the functions D are computable in polynomial time.

2.5 Protocols

2.5.1 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing machines) [24, 17] and
arguments [6]. Given a pair of interactive Turing machines, P and V , we denote by 〈P, V 〉(x) the
random variable representing the (local) output of V when interacting with machine P on common
input x, when the random input to each machine is uniformly and independently chosen.

Definition 2.4 (Interactive Proof System) A pair of interactive machines 〈P, V 〉 is called an
interactive proof system for a language L if machine V is polynomial-time and the following two
conditions hold with respect to some negligible function ν(·):

• Completeness: For every x ∈ L,

Pr [〈P, V 〉(x) = 1] = 1

• Soundness: For every x 6∈ L, and every interactive machine B,

Pr [〈B, V 〉(x) = 1] ≤ ν(|x|)

In case that the soundness condition is required to hold only with respect to a computationally
bounded prover, the pair 〈P, V 〉 is called an interactive argument system.

Definition 2.4 can be relaxed to require only soundness error that is bounded away from 1−ν(|x|).
This is so, since the soundness error can always be made negligible by sufficiently many parallel
repetitions of the protocol. However, in the case of interactive arguments, we do not know whether
this condition can be relaxed. In particular, in this case parallel repetitions do not necessarily
reduce the soundness error (cf. [5]).

2.5.2 Zero-Knowledge

An interactive proof is said to be zero-knowledge (ZK) if it yields nothing beyond the validity of
the assertion being proved. This is formalized by requiring that the view of every probabilistic
polynomial-time adversary V ∗ interacting with the honest prover P can be simulated by a proba-
bilistic polynomial-time machine S (a.k.a. the simulator). The idea behind this definition is that
whatever V ∗ might have learned from interacting with P , he could have actually learned by himself
(by running the simulator S).

The notion of ZK was introduced by Goldwasser, Micali and Rackoff [24]. To make ZK robust
in the context of protocol composition, Goldreich and Oren [22] suggested to augment the definition
so that the above requirement holds also with respect to all z ∈ {0, 1}∗, where both V ∗ and S are
allowed to obtain z as auxiliary input. The verifier’s view of an interaction consists of the common
input x, followed by its random tape and the sequence of prover messages the verifier receives
during the interaction. We denote by viewP

V ∗(x, z) a random variable describing V ∗(z)’s view of
the interaction with P on common input x.

8



Definition 2.5 (Zero-knowledge) Let 〈P, V 〉 be an interactive proof system. We say that 〈P, V 〉
is zero-knowledge, if for every probabilistic polynomial-time interactive machine V ∗ there exists a
probabilistic polynomial-time algorithm S such that the ensembles {viewP

V ∗(x, z)}z∈{0,1}∗,x∈L and
{S(x, z)}z∈{0,1}∗,x∈L are computationally indistinguishable.

A stronger variant of zero-knowledge is one in which the output of the simulator is statistically close
to the verifier’s view of real interactions. We focus on argument systems, in which the soundness
property is only guaranteed to hold with respect to polynomial time provers.

Definition 2.6 (Statistical zero-knowledge) Let 〈P, V 〉 be an interactive argument system. We
say that 〈P, V 〉 is statistical zero-knowledge, if for every probabilistic polynomial-time V ∗ there
exists a probabilistic polynomial-time S such that the ensembles {viewP

V ∗(x, z)}z∈{0,1}∗,x∈L and
{S(x, z)}z∈{0,1}∗,x∈L are statistically close.

In case that the ensembles {viewP
V ∗(x, z)}z∈{0,1}∗,x∈L and {S(x, z)}z∈{0,1}∗,x∈L are identically

distributed, the protocol 〈P, V 〉 is said to be perfect zero-knowledge.

2.5.3 Witness Indistinguishability

An interactive proof is said to be witness indistinguishable (WI) if the verifier’s view is “compu-
tationally independent” (resp. “statistically independent”) of the witness used by the prover for
proving the statement. In this context, we focus our attention to languages L ∈ NP with a corre-
sponding witness relation RL. Namely, we consider interactions in which on common input x the
prover is given a witness in RL(x). By saying that the view is computationally (resp. statistically)
independent of the witness, we mean that for any two possible NP-witnesses that could ne used
by the prover to prove the statement x ∈ L, the corresponding views are computationally (resp.
statistically) indistinguishable.

Let V ∗ be a probabilistic polynomial time adversary interacting with the prover, and let
viewP

V ∗(x, w) denote V ∗’s view of an interaction in which the witness used by the prover is w
(where the common input is x).

Definition 2.7 (Witness-indistinguishability) Let 〈P, V 〉 be an interactive proof system for a
language L ∈ NP. We say that 〈P, V 〉 is witness-indistinguishable for RL, if for every probabilistic
polynomial-time interactive machine V ∗ and for every two sequences {w1

x}x∈L and {w2
x}x∈L, such

that w1
x, w2

x ∈ RL(x), the ensembles {viewP
V ∗(x,w1

x)}x∈L and {viewP
V ∗(x,w2

x)}x∈L are computation-
ally indistinguishable.

In case that the ensembles {viewP
V ∗(x,w1

x)}x∈L and {viewP
V ∗(x,w2

x)}x∈L are identically dis-
tributed, the proof system 〈P, V 〉 is said to be statistically witness indistinguishable.

2.6 Proofs of Knowledge

Informally an interactive proof is a proof of knowledge if the prover convinces the verifier not only
of the validity of a statement, but also that it possesses a witness for the statement. This notion is
formalized by the introduction of an machine E, called a knowledge extractor. As the name suggests,
the extractor E is supposed to extract a witness from any malicious prover P ∗ that succeeds in
convincing an honest verifier. More formally,

9



Definition 2.8 Let (P, V ) be an interactive proof system for the language L with witness relation
RL. We say that (P, V ) is a proof of knowledge if there exists a polynomial q and a probabilistic
oracle machine E, such that for every interactive machine P ∗, every x ∈ L and every y, r ∈ {0, 1}∗
the following two properties hold:

1. Except with negligible probability, the machine E with oracle access to P ∗(x, y, r, ·) outputs a
solution s ∈ RL(x).

2. Furthermore, the expected number of steps taken by E is bounded by

q(|x|)
Pr[〈P ∗(x, y, r, ·), V (x)〉 = 1]

where P ∗(x, y, r, ·) denotes the machine P ∗ with common input fixed to x, auxiliary input fixed
to y and random tape fixed to r.

The machine E is called a (knowledge) extractor.

2.7 Universal Arguments

Universal arguments (introduced in [3] and closely related to the notion of CS-proofs [29]) are used
in order to provide “efficient” proofs to statements of the form y = (M,x, t), where y is considered
to be a true statement if M is a non-deterministic machine that accepts x within t steps. The
corresponding language and witness relation are denoted LU and RU respectively, where the pair
((M,x, t), w) is in RU if M (viewed here as a two-input deterministic machine) accepts the pair
(x,w) within t steps. Notice that every language in NP is linear time reducible to LU . Thus, a
proof system for LU allows us to handle all NP-statements. In fact, a proof system for LU enables
us to handle languages that are presumably ”beyond” NP, as the language LU is NE-complete
(hence the name universal arguments).1

Definition 2.9 (Universal argument) A pair of interactive Turing machines (P, V ) is called a
universal argument system if it satisfies the following properties:

• Efficient verification: There exists a polynomial p such that for any y = (M,x, t), the total
time spent by the (probabilistic) verifier strategy V , on common input y, is at most p(|y|).
In particular, all messages exchanged in the protocol have length smaller than p(|y|).

• Completeness by a relatively efficient prover: For every ((M,x, t);w) in RU ,

Pr[(P (w), V )(M,x, t) = 1] = 1

Furthermore, there exists a polynomial p such that the total time spent by P (w), on common
input (M,x, t), is at most p(TM (x,w)) ≤ p(t).

• Computational Soundness: For every polynomial size circuit family {P ∗n}n∈N , and every
triplet (M,x, t) ∈ {0, 1}n \ LU ,

Pr[(P ∗n , V )(M ;x; t) = 1] < ν(n)

where ν(·) is a negligible function.
1Furthermore, every language in NEXP is polynomial-time (but not linear-time) reducible to LU

10



• Weak proof of knowledge: For every positive polynomial p there exists a positive polynomial p′

and a probabilistic polynomial-time oracle machine E such that the following holds: for every
polynomial-size circuit family {P ∗n}n∈N , and every sufficiently long y = (M ;x; t) ∈ {0, 1}∗ if
Pr[(P ∗n ;V )(y) = 1] > 1/p(|y|) then

Pr[∃w = w1, . . . wt ∈ RU (y) s.t. ∀i ∈ [t], EP ∗
n

r (y; i) = wi] >
1

p′(|y|)

where RU (y) def= {w : (y, w) ∈ RU} and E
P ∗

n
r (·, ·) denotes the function defined by fixing the

random-tape of E to equal r, and providing the resulting Er with oracle access to P ∗n .

2.8 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself to a
value while keeping it secret from the receiver (this property is called hiding). Furthermore, the
commitment is binding, and thus in a later stage when the commitment is opened, it is guaranteed
that the “opening” can yield only a single value determined in the committing phase. Commitment
schemes come in two different flavors, statistically-binding and statistically-hiding. We sketch the
properties of each one of these flavors. Full definitions can be found in [17].

Statistically-binding: In statistically binding commitments, the binding property holds against
unbounded adversaries, while the hiding property only holds against computationally bounded
(non-uniform) adversaries. Loosely speaking, the statistical-binding property asserts that,
with overwhelming probability over the coin-tosses of the receiver, the transcript of the in-
teraction fully determines the value committed to by the sender. The computational-hiding
property guarantees that the commitments to any two different values are computationally
indistinguishable.

Statistically-hiding: In statistically-hiding commitments, the hiding property holds against un-
bounded adversaries, while the binding property only holds against computationally bounded
(non-uniform) adversaries. Loosely speaking, the statistical-hiding property asserts that com-
mitments to any two different values are statistically close (i.e., have negligible statistical dis-
tance). In case the statistical distance is 0, the commitments are said to be perfectly-hiding.
The computational-binding property guarantees that no polynomial time machine is able to
open a given commitment in two different ways.

Non-interactive statistically-binding commitment schemes can be constructed using any 1–1
one-way function (see Section 4.4.1 of [17]). Allowing some minimal interaction (in which the re-
ceiver first sends a single random initialization message), statistically-binding commitment schemes
can be obtained from any one-way function [30, 25]. We will think of such commitments as a fam-
ily of non-interactive commitments, where the description of members in the family will be the
initialization message. Perfectly-hiding commitment schemes can be constructed from any one-
way permutation [31]. However, constant-round schemes are only known to exist under stronger
assumptions; specifically, assuming the existence of a collection of certified clawfree functions [18].

3 Non-Malleable Protocols

The notion of non-malleability was introduced by Dolev, Dwork and Naor [13]. In this paper we
focus on non malleability of zero-knowledge proofs and of string commitment. The definitions are

11



stated in terms of interactive proofs, though what we actually construct are non-malleable argument
systems. The adaptation of the definitions to the case of arguments can be obtained by simply
replacing the word “proof” with “argument,” whenever it appears.

In principle, our definitions are compatible with the ones appearing in [13]. However, the pre-
sentation is more detailed and somewhat different (see Section 3.4 for a discussion on the differences
between our definition and previous ones).

3.1 Non-Malleable Interactive Proofs

Let 〈P, V 〉 be an interactive proof. Consider a scenario where a man-in-the-middle adversary A is
simultaneously participating in two interactions. These interactions are called the left and the right
interaction. In the left interaction the adversary A is verifying the validity of a statement x by
interacting with an honest prover P . In the right interaction A proves the validity of a statement
x̃ to the honest verifier V . The statement x̃ is chosen by A, possibly depending on the messages it
receives in the left interaction.

Besides controlling the messages sent by the verifier in the left interaction and by the prover
in the right interaction, A has control over the scheduling of the messages. In particular, it may
delay the transmission of a message in one interaction until it receives a message (or even multiple
messages) in the other interaction. Figure 2 describes two representative scheduling strategies.

(a) (b)

P x A x̃ V

−−−−→ −−−−→←−−−−−−−−→←−−−−−−−−→

P x A x̃ V

−−−−→ −−−−→←−−−−←−−−−−−−−→ −−−−→

Figure 2: Two scheduling strategies.

The interactive proof 〈P, V 〉 is said to be non-malleable if, whenever x 6= x̃, the left interaction
does not “help” the adversary in convincing the verifier in the right interaction.2 Following the
simulation paradigm [23, 24, 20], this is formalized by defining appropriate “real” and “idealized”
executions. In the real execution, called the man-in-the-middle execution, the adversary participates
in both the left and the right interactions with common inputs x and x̃ respectively. In the idealized
execution, called the stand-alone execution, the adversary is playing the role of the prover in a single
interaction with common input x̃. Security is defined by requiring that the adversary cannot succeed
better in the man-in-the middle execution than he could have done in the stand-alone execution.
More formally, we consider the following two executions.

Man-in-the-middle execution. The man-in-the-middle execution consists of the scenario de-
scribed above. The input of P is an instance-witness pair (x,w), and the input of V is an instance
x̃. A receives x and an auxiliary input z. Let mimA

V (x,w, z) be a random variable describing the
output of V in the above experiment when the random tapes of P,A and V are uniformly and
independently chosen. In case that x = x̃, the view mimA

V (x, w, z) is defined to be ⊥.
2Notice that requiring that x 6= x̃ is necessary, since otherwise the adversary can succeed to convince the verifier

in the right interaction by simply forwarding messages back and forth between the interactions.

12



Stand-alone execution. In the stand-alone execution only one interaction takes place. The
stand-alone adversary S directly interacts with the honest verifier V . As in the man-in-the-middle
execution, V receives as input an instance x̃. S receives instances x, x̃ and auxiliary input z. Let
staS

V (x, x̃, z) be a random variable describing the the output of V in the above experiment when
the random tapes of S and V are uniformly and independently chosen.

Definition 3.1 (Non-malleable interactive proof) An interactive proof 〈P, V 〉 for a language
L is said to be non-malleable if for every probabilistic polynomial time man-in-the-middle adver-
sary A, there exists a probabilistic expected polynomial time stand-alone prover S and a negligible
function ν : N → N , such that for every (x,w) ∈ L×RL(x), every x̃ ∈ {0, 1}|x| so that x̃ 6= x, and
every z ∈ {0, 1}∗:

Pr
[
mimA

V (x, x̃, w, z) = 1
]

< Pr
[
staS

V (x, x̃, z) = 1
]

+ ν(|x|)

Non-malleability with respect to tags. Definition 3.1 rules out the possibility that the
statement proved on the right interaction is identical to the one on the left. Indeed, if the same
protocol is executed on the left and on the right this kind of attack cannot be prevented, as the
man-in-the-middle adversary can always copy messages between the two executions (cf., the chess-
master problem [13]). Still, in many situations it might be important to be protected against an
attacker that attempts to prove even the same statement. In order to deal with this problem, one
could instead consider a “tag-based” variant of non-malleability.

We consider a family of interactive proofs, where each member of the family is labeled with a
tag string tag ∈ {0, 1}m, and m = m(n) is a parameter that potentially depends on the length of
the common input (security parameter) n ∈ N . As before, we consider a MIM adversary A that is
simultaneously participating in a left and a right interaction. In the left interaction, A is verifying
the validity of a statement x by interacting with a prover Ptag while using a protocol that is labeled
with a string tag. In the right interaction A proves the validity of a statement x̃ to the honest
verifier V ˜tag while using a protocol that is labeled with a string ˜tag. Let mimA

V (tag, ˜tag, x, x̃, w, z)
be a random variable describing the the output of V in the man-in-the-middle experiment. The
stand-alone execution is defined as before with the only difference being that in addition to their
original inputs, the parties also obtain the corresponding tags. Let staS

V (tag, ˜tag, x, x̃, z) be a
random variable describing the the output of V in the stand-alone experiment.

The definition of non-malleability with respect to tags is essentially identical to Definition 3.1.
The only differences in the definition is that instead of requiring non-malleability (which compares
the success probability of mimA

V (tag, ˜tag, x, x̃, w, z) and staS
V (tag, ˜tag, x, x̃, z)) whenever x 6= x̃,

we will require non-malleability whenever tag 6= ˜tag. For convenience, we repeat the definition:

Definition 3.2 (Tag-based non-malleable interactive proofs) A family of interactive proofs
〈Ptag, Vtag〉 for a language L is said to be non-malleable with respect to tags of length m if for every
probabilistic polynomial time man-in-the-middle adversary A, there exists a probabilistic expected
polynomial time stand-alone prover S and a negligible function ν : N → N , such that for every
(x,w) ∈ L×RL(x), every x̃ ∈ {0, 1}|x|, every tag, ˜tag ∈ {0, 1}m so that tag 6= ˜tag, and every
z ∈ {0, 1}∗:

Pr
[
mimA

V (tag, ˜tag, x, x̃, w, z) = 1
]

< Pr
[
staS

V (tag, ˜tag, x, x̃, z) = 1
]

+ ν(|x|)

Tags vs. statements. A non-malleable interactive proof can be turned into a tag-based one by
simply concatenating the tag to the statement being proved. On the other hand, an interactive proof

13



that is non-malleable with respect to tags of length m(n) = n can be turned into a non-malleable
interactive proof by using the statement x ∈ {0, 1}n as tag.

The problem of constructing a tag-based non-malleable interactive proof is already non-trivial
for tags of length, say m(n) = O(log n) (and even for m(n) = O(1)), but is still potentially easier
than for tags of length n. This opens up the possibility of reducing the construction of interactive
proofs that are non-malleable w.r.t. long tags into interactive proofs that are non-malleable w.r.t.
shorter tags. Even though we do not know whether such a reduction is possible in general, our
work follows this path and demonstrates that in specific cases such a reduction is indeed possible.

Non-malleability with respect to other protocols. Our definitions of non-malleability refer
to protocols that are non-malleable with respect to themselves, since the definitions consider a
setting where the same protocol is executed in the left and the right interaction. In principle, one
could consider two different protocols that are executed on the left and on the right which are be
non-malleable with respect to each other. Such definitions are not considered in this work.

3.2 Non-malleable Zero-Knowledge

Non-malleable ZK proofs are non-malleable interactive proofs that additionally satisfy the ZK
property (as stated in Definitions 2.5)

Definition 3.3 (Non-malleable zero-knowledge) A family {〈Ptag, Vtag〉}tag∈{0,1}∗ of interac-
tive proofs is said to be non malleable zero-knowledge if it is both non malleable and zero knowledge.

3.3 Non-malleable Commitments

Informally, a commitment scheme is non-malleable if a man-in-the-middle adversary that receives
a commitment to a value v will not be able to “successfully” commit to a related value ṽ. The
literature discusses two different interpretations of the term“success”:

Non-malleability with respect to commitment [13]. The adversary is said to succeed if
it manages to commit to a related value, even without being able to later decommit to this
value. This notion makes sense only in the case of statistically-binding commitments.

Non-malleability with respect to opening [12]. The adversary is said to succeed only if it is
able to both commit and decommit to a related value. This notion makes sense both in the
case of statistically-binding and statistically-hiding commitments.

As in the case of non-malleable zero-knowledge, we formalize the definition by comparing a
man-in-the-middle and a stand-alone execution. Let n ∈ N be a security parameter. Let 〈C,R〉
be a commitment scheme, and let R ⊆ {0, 1}n × {0, 1}n be a polynomial-time computable non-
reflexive relation (i.e., R(v, v) = 0). As before, we consider man-in-the-middle adversaries that
are simultaneously participating in a left and a right interaction in which a commitment scheme is
taking place. The adversary is said to succeed in mauling a left commitment to a value v, if he is
able to come up with a right commitment to a value ṽ such that R(v, ṽ) = 1. Since we cannot rule
out copying, we will only be interested in relations where copying is not considered success, and we
therefore require that the relation R is non-reflexive. The man-in-the-middle and the stand-alone
executions are defined as follows.

The man-in-the-middle execution. In the man-in-the-middle execution, the adversary A is
simultaneously participating in a left and a right interaction. In the left interaction the man-in-the-
middle adversary A interacts with C receiving a commitment to a value v. In the right interaction

14



A interacts with R attempting to commit to a related value ṽ. Prior to the interaction, the value
v is given to C as local input. A receives an auxiliary input z, which in particular might contain
a-priori informantion about v.3 The success of A is defined using the following two Boolean random
variables:

• mimA
com(R, v, z) = 1 if and only if A produces a valid committment to ṽ such that R(v, ṽ) = 1.

• mimA
open(R, v, z) = 1 if and only if A decommits to a value ṽ such that R(v, ṽ) = 1.

The stand-alone execution. In the stand-alone execution only one interaction takes place.
The stand-alone adversary S directly interacts with R. As in the man-in-the-middle execution, the
value v is chosen prior to the interaction and S receives some a-priori information about v as part
of its an auxiliary input z. S first executes the commitment phase with R. Once the commitment
phase has been completed, S receives the value v and attempts to decommit to a value ṽ. The
success of S is defined using the following two Boolean random variables:

• staS
com(R, v, z) = 1 if and only if S produces a valid committment to ṽ such that R(v, ṽ) = 1.

• staS
open(R, v, z) = 1 if and only if A decommits to a value ṽ such that R(v, ṽ) = 1.

Definition 3.4 (Non-malleable commitment) A commitment scheme 〈C,R〉 is said to be non-
malleable with respect to commitment if for every probabilistic polynomial-time man-in-the-middle
adversary A, there exists a probabilistic expected polynomial time stand-alone adversary S and
a negligible function ν : N → N , such that for every non-reflexive polynomial-time computable
relation R⊆{0, 1}n×{0, 1}n, every v∈{0, 1}n, and every z∈{0, 1}∗, it holds that:

Pr
[
mimA

com(R, v, z) = 1
]

< Pr
[
staS

com(R, v, z) = 1
]

+ ν(n)

Non-malleability with respect to opening is defined in the same way, while replacing the random
variables mimA

com(R, v, z) and staS
com(R, v, z) with mimA

open(R, v, z) and staS
open(R, v, z).

Content-based v.s. tag-based commitments. Similarly to the definition of interactive proofs
non-malleable with respect to statements, the above definitions only require that the adversary
should not be able to commit to a value that is related, but different, from the value it receives
a commitment of. Technically, the above fact can be seen from the definitions by noting that the
relation R, which defines the success of the adversary, is required to be non-reflexive. This means
that the adversary is said to fail if it only is able to produce a commitment to the same value.4

Indeed, if the same protocol is executed in the left and the right interaction, the adversary can
always copy messages and succeed in committing to the same value on the right as it receives a
commitment of, on the left. To cope with this problem, the definition can be extended to incorporate
tags, in analogy with the definition of interactive proofs non-malleable with respect to tags. The
extension is straightforward and therefore omitted.

We note that any commitment scheme that satisfies Definition 3.4 can easily be transformed into
a scheme which is tag-based non-malleable, by prepending the tag to the value before committing.
Conversely, in analogy with non-malleable interactive proof, commitment schemes that are non-
malleable with respect to tags of length m(n) = poly(n) can be transformed into commitment
schemes non-malleable with respect to content in a standard way (see e.g., [13, 28]).

3The original definition by Dwork et al. [13] accounted for such a-priori information by providing the adversary
with the value hist(v), where the function hist(·) be a polynomial-time computable function.

4Potentially, one could consider a slightly stronger definition, which also rules out the case when the adversary is
able to construct a different commitment to the same value. Nevertheless, we here adhere to the standard definition
of non-malleable commitments which allows the adversary to produce a different commitment to the same value.

15



3.4 Comparison with Previous Definitions

Our definitions of non-malleability essentially follow the original definitions by Dwork et al.[13].
However, whereas the definitions by Dwork et al. quantifies the experiments over all distributions D
of inputs for the left and the right interaction (or just left interaction in the case of commitments),
we instead quantify over all possible input values x, x̃ (or, in the case of commitments over all
possible input values v for the left interaction). Our definitions can thus be seen as non-uniform
versions of the definitions of [13].

Our definition of non-malleability with respect to opening is, however, different from the defi-
nition of [12] in the following ways: (1) The definition of [12] does not take into account possible
a-priori information that the adversary might have about the commitment, while ours (following
[13]) does. (2) In our definition of the stand-alone execution the stand-alone adversary receives the
value v after having completed the commitment phase and is thereafter supposed to decommit to
a value related to v. The definition of [12] does not provide the simulator with this information.

In our view, the “a-priori information” requirement is essential in many situations and we
therefore present a definition that satisfies it. (Consider, for example, a setting where the value v
committed to is determined by a different protocol, which “leaks” some information about v.) In
order to be able to satisfy this stronger requirement we relax the definition of [12] by allowing the
stand-alone adversary to receive the value v before de-committing.

3.5 Simulation-Extractability

A central tool in our constructions of non-malleable interactive-proofs and commitments is the
notion of simulation-extractability. Loosely speaking, an interactive protocol is said to be simulation
extractable if for any man-in-the-middle adversary A, there exists a probabilistic polynomial time
machine (called the simulator-extractor) that can simulate both the left and the right interaction
for A, while outputting a witness for the statement proved by the adversary in the right interaction.

Simulation-extractability can be thought of a technical variant of non-malleability, The main
reason for introducing this notion is that it enables a more modular analysis (and in particular is
easier to work with). At the end of this section, we argue that any protocol that is simulation-
extractable is also a non-malleable zero-knowledge proof of knowledge. In Section 6 we show how
to use simulation-extractable protocols in order to obtain non-malleable commitments.

Let A be a man-in-the middle adversary that is simultaneously participating in a left interaction
of 〈Ptag, Vtag〉 while acting as verifier, and a right interaction of 〈P ˜tag, V ˜tag〉 while acting as prover.

Let viewA(x, z,tag) denote the joint view of A(x, z) and the honest verifier V ˜tag when A is
verifying a left-proof of the statement x, using identity tag, and proving on the right a statement
x̃ using identity ˜tag. (The view consists of the messages sent and received by A in both left and
right interactions, and the random coins of A, and V ˜tag).5 Both x̃ and ˜tag are chosen by A. Given
a function m = m(n) we use the notation {·}z,x,tag as shorthand for {·}z∈{0,1}∗,x∈L,tag∈{0,1}m(|x|) .

Definition 3.5 (Simulation-extractable protocol) A family {〈Ptag, Vtag〉}tag∈{0,1}∗ of inter-
active proofs is said to be simulation extractable with tags of length m=m(n) if for any man-in-the-
middle adversary A, there exists a probabilistic expected poly-time machine (SIM,EXT) such that:

1. The ensembles {SIM(x, z,tag)}z,x,tag and {viewA(x, z,tag)}z,x,tag. are statistically close.

2. Let x̃ be the right hand side statement appearing in SIM(x, z,tag). If the right hand side
interaction is accepting AND tag 6= ˜tag, the output of EXT(x, z,tag) consists of a witness
w so that RL(x̃, w) = 1.

5Since the messages sent by A are fully determined given the code of A and the messages it receives, including them
as part of the view is somewhat redundant. The reason we have chosen to do so is for convenience of presentation.

16



We note that the above definition refers to protocols that are simulation extractable with respect
to themselves. A stronger variant (which is not considered in the current work) would have required
simulation extractability even in the presence of protocols that do not belong to the family.

We next argue that in order to construct non-malleable zero-knowledge protocols, it will be
sufficient to come up with a protocol that is simulation-extractable. To do so, we prove that any
protocol that is simulation-extractable (and has an efficient prover strategy) is also a non-malleable
zero-knowledge (i.e., it satisfies Definitions 3.1 and 3.3).

Proposition 3.6 Let {〈Ptag, Vtag〉}tag∈{0,1}∗ be a family of simulation-extractable protocols with
tags of length m = m(n) (with respect to the language L and the witness relation RL) with an
efficient prover strategy. Then, {〈Ptag, Vtag〉}tag∈{0,1}∗ is also a non-malleable zero-knowledge (with
tags of length m) (with respect to the language L and the witness relation RL).

Proof: Let {〈Ptag, Vtag〉}tag∈{0,1}∗ be a family of simulation-extractable protocols with tags of
length m, with respect to the language L and the witness relation RL. We argue that
{〈Ptag, Vtag〉}tag∈{0,1}∗ is both a non-malleable interactive proof and a stand alone zero-knowledge.

Non-malleability. Assume for contradiction that there exist a probabilistic polynomial time
man-in-the-middle adversary A, and a polynomial p(k) such for infinitely many k, there exists
x, x̃ ∈ {0, 1}k, w, z ∈ {0, 1}∗, and tag, ˜tag∈ {0, 1}m(k) such that (x,w) ∈ L×RL(x), tag 6= ˜tag
and

Pr
[
mimA

V (tag, ˜tag, x, x̃, w, z) = 1
]
≥ Pr

[
staS

V (tag, ˜tag, x, x̃, z) = 1
]

+
1

p(k)
(1)

By Definition 3.5, there must exist a pair of a probabilistic polynomial time machine (SIM,EXT)
for A that satisfy the definition’s conditions. We show how to use (SIM,EXT) in order to construct a
stand alone prover S for 〈Ptag, Vtag〉. On input tag, ˜tag, x, x̃, z, the machine S runs the simulator
extractor (SIM,EXT) on input x, z,tag and obtains the view view and witness w̃. In the event
that the view contains an accepting right-execution of the statement x̃ using tag tag, S executes
the honest prover strategy Ptag on input x and the witness w.

It follows directly from the simulation property of (SIM,EXT) that the probability that view
contains an accepting right-execution proof of x̃ using tag ˜tag is negligibly close to

pA = Pr
[
mimA

V (tag, ˜tag, x, x̃, w, z) = 1
]

Since (SIM,EXT) always outputs a witness when the right-execution is accepting and the tag of the
right-execution is different from the tag of the left execution, we conclude that success probability
of S also is negligbly close to pA (since tag 6= ˜tag). This contradicts equation 1.

Zero Knowledge. Consider any probabilistic poly-time verifier V ∗. Construct the man-in-the-
middle adversary A that internally incorporates V and relays its left execution unmodified to V ∗. In
the right execution, A simply outputs ⊥. By the simulation-extractability property of 〈Ptag, Vtag〉,
there exists a simulator-extractor (SIM,EXT) for A. We describe a simulator S for V ∗.

On input x, z,tag,∈ {0, 1}∗, S runs (SIM,EXT) on input x, z,tag,∈ {0, 1}∗ to obtain (view,w).
Given the view view, S outputs the view of V ∗ in view (which is a subset of view). It follows
directly from the simulation property of (SIM,EXT), and from the fact that S output an (efficiently
computable) subset of view that the output of S is indistinguishable from the view of V ∗ in an
honest interaction with a prover.

17



4 A Simulation-Extractable Protocol

We now turn to describe our construction of simulation extractable protocols. At a high level, the
construction proceeds in two steps:

1. For any n ∈ N , construct a family {〈Ptag, Vtag〉}tag∈[2n] of simulation-extractable arguments
with tags of length m(n) = log n + 1.

2. For any n ∈ N , use the family {〈Ptag, Vtag〉}tag∈[2n] to construct a family {〈Ptag, Vtag〉}tag∈{0,1}n
of simulation extractable arguments with tags of length m(n) = 2n.

The construction of the family {〈Ptag, Vtag〉}tag∈[2n] relies on Barak’s non black-box techniques
for obtaining constant-round public-coin ZK for NP [1], and are very similar in structure to the
ZK protocols used by Pass in [34]. We start by reviewing the ideas underlying Barak’s protocol.
We then proceed to present our protocols.

4.1 Barak’s non-black-box protocol

Barak’s protocol is designed to allow the simulator access to “trapdoor” information that is not
available to the prover in actual interactions. Given this “trapdoor” information, the simulator
will be able to produce convincing interactions even without possessing a witness for the statement
being proved. The high-level idea is to enable the usage of the verifier’s code as a “fake” witness
in the proof. In the case of the honest verifier V (which merely sends over random bits), the code
consists of the verifier’s random tape. In the case of a malicious verifier V ∗, the code may also
consist of a program that generates the verifier’s messages (based on previously received messages).

Since the actual prover does not have a-priori access to V ’s code in real interactions, this will
not harm the soundness of the protocol. The simulator, on the other hand, will be always able to
generate transcripts in which the verifier accepts since, by definition, it obtains V ∗’s code as input.

Let n ∈ N , and let T : N → N be a “nice” function that satisfies T (n) = nω(1). To make the
above ideas work, Barak’s protocol relies on a “special” NTIME(T (n)) relation. It also makes
use of a witness-indistinguishable universal argument (WIUARG) [15, 14, 26, 29, 3]. We start
by describing a variant of Barak’s relation, which we denote by Rsim. Usage of this variant will
facilitate the presentation of our ideas in later stages. Let {Hn}n be a family of hash functions
where a function h ∈ Hn maps {0, 1}∗ to {0, 1}n, and let Com be a statistically binding commitment
scheme for strings of length n, where for any α ∈ {0, 1}n, the length of Com(α) is upper bounded
by 2n. The relation Rsim is described in Figure 3.

Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}n × {0, 1}poly(n).

Witness: A program Π ∈ {0, 1}∗, a string y∈{0, 1}∗ and a string s ∈ {0, 1}poly(n).

Relation: Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1 if and only if:

1. |y| ≤ |r| − n.

2. c = Com(h(Π); s).

3. Π(y) = r within T (n) steps.

Figure 3: Rsim - A variant of Barak’s relation.

18



Remark 4.1 (Simplifying assumptions) The relation presented in Figure 3 is slightly oversim-
plified and will make Barak’s protocol work only when {Hn}n is collision resistant against “slightly”
super-polynomial sized circuits [1]. To make it work assuming collision resistance against polyno-
mial sized circuits, one should use a “good” error-correcting code ECC (i.e., with constant distance
and with polynomial-time encoding and decoding), and replace the condition c = Com(h(Π); s) with
c = Com(h(ECC(Π)); s) [3]. We also assume that Com is a one-message commitment scheme. Such
schemes can be constructed based on any 1-1 one-way function. At the cost of a small compli-
cation, the one-message scheme could have been replaced by the 2-message commitment scheme
of [30], which can be based on “ordinary” one-way functions [25].

Let L be any language in NP, let n ∈ N , and let x ∈ {0, 1}n be the common input for the
protocol. The idea is to have the prover claim (in a witness indistinguishable fashion) that either
x ∈ L, or that 〈h, c, r〉 belongs to the language Lsim that corresponds to Rsim, where 〈h, c, r〉 is a
triplet that is jointly generated by the prover and the verifier. As will turn out from the analysis,
no polynomial-time prover will be able to make 〈h, c, r〉 belong to Lsim. The simulator, on the other
hand, will use the verifier’s program in order to make sure that 〈h, c, r〉 is indeed in Lsim (while also
possessing a witness for this fact).

A subtle point to be taken into consideration is that the verifier’s running-time (program size)
is not a-priori bounded by any specific polynomial (this is because the adversary verifier might run
in arbitrary polynomial time). This imposes a choice of T (n) = nω(1) in Rsim, and implies that
the corresponding language does not lie in NP (but rather in NTIME(nω(1))). Such languages
are beyond the scope of the “traditional” witness indistinguishable proof systems (which were
originally designed to handle “only” NP-languages), and will thus require the usage of a Witness
Indistinguishable Universal Argument. Barak’s protocol is described in Figure 4.

Common Input: An instance x ∈ {0, 1}n

Security parameter: 1n.

Stage 1:

V → P : Send h
r← Hn.

P → V : Send c = Com(0n).

V → P : Send r
r← {0, 1}3n.

Stage 2 (Body of the proof):

P ⇔ V : A WI UARG 〈PUA, VUA〉 proving the OR of the following statements:

1. ∃ w ∈ {0, 1}poly(|x|) s.t. RL(x, w) = 1.
2. ∃ 〈Π, y, s〉 s.t. Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1.

Figure 4: Barak’s ZK argument for NP - 〈PB, VB〉.

Soundness. The idea behind the soundness of 〈PB, VB〉 is that any program Π (be it efficient or
not) has only one output for any given input. This means that Π, when fed with an input y, has
probability 2−2k to “hit” a string r

r← {0, 1}2k. Since the prover sends c before actually receiving r,
and since Rsim imposes |y| ≤ |r| − k = k, then it is not able to “arrange” that both c = Com(h(Π))
and Π(y) = r with probability significantly greater than 2k · 2−2k = 2−k. The only way for a
prover to make the honest verifier accept in the WIUARG is thus to use a witness w for RL. This
guarantees that whenever the verifier is convinced, it is indeed the case that x ∈ L.

19



Zero-knowledge. Let V ∗ be the program of a potentially malicious verifier. The ZK property of
〈PB, VB〉 follows by letting the simulator set Π = V ∗ and y = c. Since |c| = 2n ≤ |r| − n and since,
by definition V ∗(c) always equals r, the simulator can set c = Com(h(V ∗); s) in Stage 1, and use
the triplet 〈V ∗, c, s〉 as a witness for Rsim in the WIUARG.This enables the simulator to produce
convincing interactions, even without knowing a valid witness for x ∈ L. The ZK property then
follows (with some work) from the hiding property of Com and the WI property of 〈PUA, VUA〉.

4.2 A “Special-Purpose” Universal Argument

Before we proceed with the construction of our new protocol, we will need to present a universal
argument that is specially tailored for our purposes. The main distinguishing features of this
universal argument, which we call the special purpose argument, are: (1) it is statistically witness
indistinguishable; and (2) it will enable us to prove that our protocols satisfy the proof of knowledge
property of Definition 2.8.6

Let Com be a statistically-hiding commitment scheme for strings of length n. Let Rsim be a
variant of the relation Rsim (from Figure 3) in which the statistically-binding commitment Com
is replaced with the commitment Com, let 〈PsWI, VsWI〉 be a statistical witness indistinguishable
argument of knowledge, and let 〈PUA, VUA〉 be a 4-message, public-coin universal argument where
the length of the messages is upper bounded by n.7 The special purpose UARG, which we denote
by 〈PsUA, VsUA〉, handles statements of the form (x, 〈h, c1, c2, r1, r2〉), where the triplets 〈h, c1, r1〉
and 〈h, c2, r2〉 correspond to instances for Rsim. The protocol 〈PsUA, VsUA〉 is described in Figure 5.

Parameters: Security parameter 1n.

Common Input: x∈{0, 1}n, 〈h, c1, c2, r1, r2〉 where for i∈{1, 2}, 〈h, ci, ri〉 is an instance for Rsim.

Stage 1 (Encrypted UARG):

V → P : Send α
r← {0, 1}n.

P → V : Send β̂ = Com(0k).

V → P : Send γ
r← {0, 1}n.

P → V : Send δ̂ = Com(0k).

Stage 2 (Body of the proof):

P ↔ V : A WIPOK 〈PWI, VWI〉 proving the OR of the following statements:

1. ∃ w ∈ {0, 1}poly(|x|) so that RL(x,w) = 1.
2. ∃ 〈β, δ, s1, s2〉 so that:

• β̂ = Com(β; s1).

• δ̂ = Com(δ; s2).
• (α, β, γ, δ) is an accepting transcript for 〈PUA, VUA〉 proving the statement:

– ∃ 〈i, Π, y, s〉 so that Rsim(〈h, ci, ri〉, 〈Π, y, s〉)=1

Figure 5: A special-purpose universal argument 〈PsUA, VsUA〉.
6The “weak” proof of knowledge property of a universal argument (as defined in [3]) is not sufficient for our

purposes. Specifically, while in a weak proof of knowledge it is required that the extractor succeeds with probability
that is polynomially related to the success probability of the prover, in our proof of security we will make use of an
extractor that succeeds with probability negligibly close to the success probability of the prover.

7Both statistical witness indistinguishable arguments of knowledge, and 4-message, public-coin, universal argu-
ments can be constructed assuming a family Hn of standard collision resistant hash functions (cf. [17] and [26, 29, 3]).

20



4.3 A family of 2n protocols

We next present a family of protocols {〈Ptag, Vtag〉}tag∈[2n] (with tags of length m(n) = log n+ 1).8

The protocols are based on 〈PB, VB〉, and are a variant of the ZK protocols introduced by Pass [34].
The main differences between the atomic protocols and 〈PB, VB〉 are: (1) in the atomic protocol
the prover (simulator) is given two opportunities to guess the verifier’s “next message”, and (2) the
length of the verifier’s “next messages” depend on the tag of the protocol.

We mention that the idea of using a multiple slot version of 〈PB, VB〉 already appeared in [35, 34],
and the message-lenght technique appeared in [34]. However, the atomic protocols differ from
the protocol of [34] in two aspects: the atomic protocols will also be required to satisfy (1) a
statistical secrecy property, and (2) a proof of knowledge property. Towards this end, we replace the
statistically-binding commitments, Com, used in the presentation of 〈PB, VB〉 with statistically-
hiding commitments, and replace the use of a WIUARG with the use of a “special-purpose”
UARG. Let Com be a statistically-hiding commitment scheme for strings of length n, where for
any α ∈ {0, 1}n, the length of Com(α) is upper bounded by 2n. Let Rsim be the statistical variant
of the relation Rsim, and let 〈PsUA, VsUA〉 be the special purpose universal argument (both Rsim and
〈PsUA, VsUA〉 are described in Section 4.2). Protocol 〈Ptag, Vtag〉 is described in Figure 6.

Common Input: An instance x ∈ {0, 1}n

Parameters: Security parameter 1n, length parameter `(n).

Tag String: tag ∈ [2n].

Stage 0 (Set-up):

V → P : Send h
r← Hn.

Stage 1 (Slot 1):

P → V : Send c1 = Com(0n).

V → P : Send r1
r← {0, 1}tag·`(n).

Stage 1 (Slot 2):

P → V : Send c2 = Com(0n).

V → P : Send r2
r← {0, 1}(2n+1−tag)·`(n).

Stage 2 (Body of the proof):

P ⇔ V : A special-purpose UARG 〈PsUA, VsUA〉 proving the OR of the following statements:

1. ∃ w ∈ {0, 1}poly(|x|) s.t. RL(x, w) = 1.
2. ∃ 〈Π, y, s〉 s.t. RSim(〈h, c1, r1〉, 〈Π, y, s〉)=1.
3. ∃ 〈Π, y, s〉 s.t. RSim(〈h, c2, r2〉, 〈Π, y, s〉)=1.

Figure 6: Protocol 〈Ptag, Vtag〉.

Note that the only difference between two protocols 〈Ptag, Vtag〉 and 〈P ˜tag, V ˜tag〉 is the length of
the verifier’s “next messages”: in fact, the lenght of those messages in 〈Ptag, Vtag〉 is a parameter
that depends on tag (as well as on the length parameter `(n)). This property will be crucial for
the analysis of these protocols in the man in the middle setting.

8A closer look at the construction will reveal that it will in fact work for any m(n) = O(log n). The choice of
m(n) = log n + 1 is simply made for the sake of concreteness (as in our constructions it is the case that tag ∈ [2n]).

21



Using similar arguments to the ones used for 〈PB, VB〉, it can be shown that 〈Ptag, Vtag〉 is
computationally sound. The main difference to be taken into consideration is the existence of
multiple slots in Stage 1 (see Lemma A.1 for a proof of an even stronger statement).

The ZK property of 〈Ptag, Vtag〉 is proved exactly as in the case of 〈PB, VB〉, by letting the
simulator pick either i = 1 or i = 2, and use 〈V ∗, ci, si〉 as the witness for 〈h, ci, ri〉 ∈ Lsim (where
Lsim is the language that corresponds to Rsim). Since for every tag ∈ [m], |ri| − |ci| ≥ `(n) − 2n,
we have that as long as `(n) ≥ 3n, the protocol 〈Ptag, Vtag〉 is indeed ZK.

We wish to highlight some useful properties of 〈Ptag, Vtag〉. These properties will turn out to be
relevant when dealing with a man in the middle.

Freedom in the choice of the slot: The simulator described above has the freedom to choose
which i ∈ {1, 2} it will use in order to satisfy the relation Rsim. In particular, for the simulation
to succeed, it is sufficient that 〈h, ci, ri〉 ∈ Lsim for some i ∈ {1, 2}.

Using a longer y in the simulation: The stand-alone analysis of 〈Ptag, Vtag〉 only requires
`(n) ≥ 3n. Allowing larger values of `(n) opens the possibility of using a longer y in the
simulation. This will turn out to be useful if the verifier is allowed to receive “outside”
messages that do not belong to the protocol (as occurs in the man-in-the-middle setting).

Statistical secrecy: The output of the simulator described above is statistically close to real
interactions (whereas the security guaranteed in 〈PB, PB〉 is only computational). A related
property will turn out to be crucial for the use of 〈Ptag, Vtag〉 as a subroutine in higher level
applications (such as non-malleable commitments).

Proof of knowledge: 〈Ptag, Vtag〉 is a proof of knowledge. That is, for any prover P ∗ and for any
x ∈ {0, 1}n, if P ∗ convinces the honest verifier V that x ∈ L with non-negligible probability
then one can extract a witness w that satisfies RL(x,w) = 1 in (expected) polynomial time.

4.4 A family of 2n protocols

Relying on the protocol family {〈Ptag, Vtag〉}tag∈[2n], we now show how to construct a family
{〈Ptag, Vtag〉}tag∈{0,1}n with tags of length m(n) = n. The protocols are constant-round and
involve n parallel executions of 〈Ptag, Vtag〉, with appropriately chosen tags. This new family of
protocols is denoted {〈Ptag, Vtag〉}tag∈{0,1}n and is described in Figure 7.

Common Input: An instance x ∈ {0, 1}n

Parameters: Security parameter 1n, length parameter `(n)

Tag String: tag ∈ {0, 1}n. Let tag = tag1, . . . ,tagn.

The protocol:

P ↔ V : For all i ∈ {1, . . . , n} (in parallel):

1. Set tagi = (i,tagi).
2. Run 〈Ptagi

, Vtagi
〉 with common input x and length parameter `(n).

V : Accept if and only if all runs are accepting.

Figure 7: Protocol 〈Ptag, Vtag〉.

22



Notice that 〈Ptag, Vtag〉 has a constant number of rounds (since each 〈Ptagi
, Vtagi

〉 is constant-
round). Also notice that for i ∈ [n], the length of tagi = (i,tagi) is

|i|+ |tagi| = log n + 1 = log 2n.

Viewing (i,tagi) as elements in [2n] we infer that the length of verifier messages in 〈Ptagi
, Vtagi

〉
is upper bounded by 2n`(n). Hence, as long as `(n) = poly(n) the length of verifier messages in
〈Ptag, Vtag〉 is 2n2`(n) = poly(n).

We now turn to show that for any tag ∈ 2n, the protocol 〈Ptag, Vtag〉 is an interactive argument.
In fact, what we show is a stronger statement. Namely, that the protocols 〈Ptag, Vtag〉 are proofs
(actually arguments) of knowledge (as in Definition 2.8). For simplicity of exposition, we will
show how to prove the above assuming a family of hash functions that is collision resistant against
T (n) = nω(1)-sized circuits. As mentioned in Remark 4.1, by slightly modifying Rsim, one can prove
the same statement under the more standard assumption of collision resistance against polynomial-
sized circuits.

Proposition 4.2 (Argument of knowledge) Let 〈PsWI, VsWI〉 and 〈PUA, VUA〉 be the protocols
used in the construction of 〈PsUA, VsUA〉. Suppose that {Hn}n is collision resistant for T (n)-sized
circuits, that Com is statistically hiding, that 〈PsWI, VsWI〉 is a statistical witness indistinguishable
argument of knowledge, and that 〈PUA, VUA〉 is a universal argument. Then, for any tag ∈ {0, 1}n,
〈Ptag, Vtag〉 is an interactive argument of knowledge.

Similar arguments to the ones used to prove Proposition 4.2 have already appeared in the
works of Barak [1], and Barak and Goldreich [3]. While our proof builds on these arguments, it is
somewhat more involved. For the sake of completeness, the full proof appears in Appendix A.

5 Proving Simulation-Extractability

Our central technical Lemma states that the family of protocols {〈Ptag, Vtag〉}tag∈{0,1}n is sim-
ulation extractable. As shown in Proposition 3.6 this implies that these protocols are also non-
malleable zero-knowledge.

Lemma 5.1 (Simulation extractability) Suppose that Com are statistically hiding, that {Hn}n
is a family of collision-resistant hash functions, that 〈PUA, VUA〉 is a special-purpose WIUARG,
and that `(n) ≥ 2n2 + 2n. Then, {〈Ptag, Vtag〉}tag∈{0,1}n is simulation extractable.

The proof of Lemma 5.1 is fairly complex. To keep things manageable, we first give an overview
of the proof, describing the key ideas used for establishing the simulation extractability of the
family {〈Ptag, Vtag〉}tag∈[2n]. This is followed by a full proof for the case of {〈Ptag, Vtag〉}tag∈{0,1}n .

5.1 Proof Overview

Consider a man-in-the-middle adversary A that is playing the role of the verifier of 〈Ptag, Vtag〉 in
the left interaction while simultaneously playing the role of the prover of 〈P ˜tag, V ˜tag〉 in the right
interaction. Recall that in order to prove simulation-extractability we have to show that for any
such A, there exists a combined simulator-extractor (SIM,EXT) that is able to simulate both the
left and the right interactions for A, while simultaneously extracting a witness to the statement x̃
proved in the right interaction.

23



Towards this goal, we will construct a simulator S that is able to “internally” generate Ptag

messages for the left interaction of A, even if the messages in the right interaction are forwarded to
A from an “external” verifier V ˜tag. The simulator S is almost identical to the simulator of [34] and
exploits the difference in message lenghts between the protocols 〈Ptag, Vtag〉 and 〈P ˜tag, V ˜tag〉. As the
analysis will demonstrate, the left view produced by the simulator S is statistically indistinguishable
from A’s actual interactions with an honest left prover Ptag. Furthermore, we show that:

1. It will be possible to construct a procedure SIM that faithfully simulates A’s view in a man-in-
the-middle execution. To do so, we will honestly play the role of V ˜tag in the right interaction
and use S to simulate A’s left interaction with Ptag (pretending that the messages from the
right interaction came from an external V ˜tag).

2. It will be possible to construct a procedure EXT that extracts witnesses for the statements x̃
proved in the right interactions of the views generated by the above SIM. To do so, we will
use S to transform A into a stand alone prover P ∗˜tag for the statement x̃. This will be done by
having P ∗˜tag internally emulate A’s execution, while forwarding A’s messages to an external
honest verifier V ˜tag, and using S to simulate A’s left interaction with Ptag. We can then invoke
the knowledge extractor that is guaranteed by the (stand-alone) proof of knowledge property
of 〈P ˜tag, V ˜tag〉 and obtain a witness for x̃ ∈ L.

It is important to have both SIM and EXT use the same simulator program S (with same
random coins) in their respective executions. Otherwise, we are not guaranteed that the statement
x̃ appearing in the output of SIM is the same one EXT extracts a witness from.9

The execution of S (with one specific scheduling of messages) is depicted in Figure 8 below. In
order to differentiate between the left and right interactions, messages m in the right interaction are
labeled as m̃. Stage 2 messages in the left and right interactions are denoted u and ũ respectively.

S V ˜tag

Ptag A V ˜tag
h̃←−−−−−−−−−−−−−h←−−−−

c1−−−−→ c̃1−−−−−−−−−−−−−→
r̃1←−−−−−−−−−−−−−r1←−−−−

c2−−−−→ c̃2−−−−−−−−−−−−−→
r̃2←−−−−−−−−−−−−−r2←−−−−

u⇐==⇒ ũ⇐===========⇒

Figure 8: The simulator S.

The main hurdle in implementing S is in making the simulation of the left interaction work.
The problem is that the actual code of the verifier whose view we are simulating is only partially

9The statement x̃ will remain unchanged because x̃ occurs prior to any message in the right interaction (and hence
does not depend on the external messages received by P ∗

˜tag).

24



available to S. This is because the messages sent by A in the left interaction also depend on the
messages A receives in the right interaction. These messages are sent by an “external” V ˜tag, and
V ˜tag’s code (randomness) is not available to S.

Technically speaking, the problem is implied by the fact that the values of the ri’s do not
necessarily depend only on the corresponding ci, but rather may also depend on the “external”
right messages r̃i. Thus, setting Π = A and y = ci in the simulation (as done in Section 4.3) will
not be sufficient, since in some cases it is simply not true that ri = A(ci).

Intuitively, the most difficult case to handle is the one in which r̃1 is contained in Slot 1
of 〈Ptag, Vtag〉 and r̃2 is contained in Slot 2 of 〈Ptag, Vtag〉 (as in Figure 8 above). In this case
ri = A(ci, r̃i) and so ri = A(ci) does not hold for either i ∈ {1, 2}. As a consequence, the simulator
will not be able to produce views of convincing Stage 2 interactions with A. In order to overcome
the difficulty, we will use the fact that for a given instance 〈h, ci, ri〉, the string ci is short enough
to be “augmented” by r̃i while still satisfying the relation Rsim.

Specifically, as long as |ci|+ |r̃i|≤ |ri|−n the relation Rsim can be satisfied by setting y=(ci, r̃i).
This guarantees that indeed Π(y) = ri. The crux of the argument lies in the following fact.

Fact 5.2 If tag 6= ˜tag then there exists i ∈ {1, 2} so that |r̃i| ≤ |ri| − `(n).

By setting y = (ci, r̃i) for the appropriate i, the simulator is thus always able to satisfy Rsim for
some i ∈ {1, 2}. This is because the “auxiliary” string y used in order to enable the prediction of
ri is short enough to pass the inspection at Condition 1 of Rsim (i.e., |y| = |ci|+ |r̃i| ≤ |ri| − n).10

Once Rsim can be satisfied, the simulator is able to produce views of convincing interactions that
are computationally indistinguishable from real left interactions.11

The extension of the above analysis to the case of 〈Ptag, Vtag〉 has to take several new factors into
consideration. First, each execution of 〈Ptag, Vtag〉 consists of n parallel executions of 〈Ptag, Vtag〉
(and not only one). This imposes the constraint `(n) ≥ 2n2+2n, and requires a careful specification
of the way in which the left simulation procedure handles the verifier challenges in 〈Ptag, Vtag〉.
Secondly, and more importantly, the simulation procedure will not be able to handle a case in
which 〈P ˜tag, Vtag〉 messages of the right interaction are forwarded from an external verifier V ˜tag

(because these messages are too long for the simulation to work).
While this does not seem to pose a problem for the SIM procedure, it suddenly becomes unclear

how to construct a stand alone prover P ∗˜tag for the EXT procedure (since this involves forwarding
messages from V ˜tag). The way around this difficulty will be to construct a stand-alone prover P ∗˜tag
for a single sub-protocol 〈P ˜tag, V ˜tag〉 instead. This will guarantee that the only messages that end
up being forwarded are sent by an external verifier V ˜tag, whose messages are short enough to make
the simulation work. Once such a P ∗˜tag is constructed it is possible to use the knowledge extractor
for 〈P ˜tag, V ˜tag〉 in order to obtain a witness for x̃.

5.2 Many-to-One Simulation-Extractabiity

We now proceed with the proof of Lemma 5.1. To establish simulation-extractability of 〈Ptag, Vtag〉,
we first consider what happens when a man-in-the-middle adversary is simultaneously involved in

10This follows from the fact that `(n) ≥ 3n and |ci| = 2n.
11In the above discussion we have been implicitly assuming that h̃, ũ are not contained in the two slots of 〈Ptag, Vtag〉

(where h̃ denotes the hash function in the right interaction and ũ denotes the sequence of messages sent in the right
WIUARG). The case in which h̃, ũ are contained in the slots can be handled by setting `(n) ≥ 4n, and by assuming
that both |h̃| and the total length of the messages sent by the verifier in the WIUARG is at most n. We mention
that the latter assumption is reasonable, and is indeed satisfied by known protocols (e.g. the WIUARG of [3]).

25



the verification of many different (parallel) executions of 〈Ptag, Vtag〉 on the left while proving a
single interaction 〈P ˜tag, V ˜tag〉 on the right. As it turns out, as long as the number of left executions
is bounded in advance, we can actually guarantee simulation-extractability even in this scenario.

For any tag = (tag1, . . . , tagn) ∈ [2n]n we consider a left interaction in which the protocols
〈Ptag1

, Vtag1
〉, . . . , 〈Ptagn

, Vtagn
〉 are executed in parallel with common input x ∈ {0, 1}n, and a right

interaction in which 〈P ˜tag, V ˜tag〉 is executed with common input x̃ ∈ {0, 1}n. The strings ˜tag and
x̃ are chosen adaptively by the man-in-the-middle A. The witness used by the prover in the left
interaction is denoted by w, and the auxiliary input used by A is denoted by z.

Proposition 5.3 Let A be a MIM adversary as above, and suppose that `(n)≥ 2n2+2n. Then, there
exists a probabilistic expected polynomial time, (SIM,EXT) such that the following conditions hold:

1. The ensembles {SIM(x, z,tag)}z,x,tag and {viewA(x, z,tag)}z,x,tag are statistically close.

2. Let x̃ be the right hand side statement appearing in SIM(x, z,tag). If the right hand side
interaction is accepting AND tagj 6= ˜tag for all j ∈ [n], the output of EXT(x, z,tag) consists
of a witness w so that RL(x̃, w) = 1.

Proof: As discussed in Section 5.1, we construct a “many-to-one” simulator S that internally gen-
erates a left view of 〈Ptag, Vtag〉=(〈Ptag1

, Vtag1
〉, . . . , 〈Ptagn

, Vtagn
〉) for A while forwarding messages

from the right interaction to an external honest verifier V ˜tag. This simulator is essentially identical
to the simulator of [34].12 We then show how to use S to construct the procedures (SIM,EXT).

5.2.1 The Many-to-One Simulator

The many-to-one simulator S invokes A as a subroutine. It attempts to generate views of the
left and right interactions that are indistinguishable from A’s view in real interactions. Messages
in the right interaction are forwarded by S to an “external” honest verifier V ˜tag for 〈P ˜tag, V ˜tag〉,
whose replies are then fed back to A. Messages in the left interaction are handled by n “sub-
simulators” S1, . . . , Sn, where each Sj is responsible for generating the messages of the sub-protocol
〈Ptagj

, Vtagj
〉. The execution of the simulator is depicted in Figure 9 (for simplicity, we ignore the

messages h1, . . . , hn, u1, . . . , un and h̃, ũ).

S V ˜tag

Ptag A V ˜tag
S1 Sj Sn

c11→ · · ·
cj
1→ · · ·

cn
1→ c̃1−−−−−−−−−−−−−−−→

r̃1←−−−−−−−−−−−−−−−
r1
1← · · ·

rj
1← · · ·

rn
1←

c12→ · · ·
cj
2→ · · ·

cn
2→ c̃2−−−−−−−−−−−−−−−→

r̃2←−−−−−−−−−−−−−−−
r1
2← · · ·

rj
2← · · ·

rn
2←

Figure 9: The “many-to-one” simulator S.
12In fact, the simulator presented here is somewhat simplified in that we only consider n parallel executions of

〈Ptag, Vtag〉, whereas [34] shows a simulator also for n concurrent executions of the protocols.

26



The specific actions of a sub-simulator Sj depend on the scheduling of Stage 1 messages as
decided by A. The scheduling of left and right messages are divided into three separate cases which
are depicted in Figure 10 below (for simplicity, we ignore the messages h1, . . . , hn, u1, . . . , un and
h̃, ũ). In all three cases we make the simplifying assumption that h̃ is scheduled in the right inter-
action before h1 . . . , hn are scheduled in the left interaction. We also assume that the 〈PsUA, VsUA〉
messages ũ in the right interaction are scheduled after the 〈PsUA, VsUA〉 messages u1, . . . , un in the
left interaction. We later argue how these assumptions can be removed.

(a) (b) (c)

P A V
c11→· · ·

cn
1→

r1
1←· · ·

rn
1←

c12→· · ·
cn
2→ c̃1−−−−→

r̃1←−−−−
c̃2−−−−→
r̃2←−−−−r1

2←· · ·
rn
2←

P A V
c11→· · ·

cn
1→ c̃1−−−−→

r̃1←−−−−
c̃2−−−−→
r̃2←−−−−r1

1←· · ·
rn
1←

c12→· · ·
cn
2→

r1
2←· · ·

rn
2←

P A V
c11→· · ·

cn
1→ c̃1−−−−→

r̃1←−−−−
r1
1←· · ·

rn
1←

c12→· · ·
cn
2→ c̃2−−−−→

r̃2←−−−−r1
2←· · ·

rn
2←

Figure 10: Three “representative” schedulings.

Let Aj be a program that acts exactly like A, but for any i ∈ {1, 2} instead of outputting
r1
i , . . . , r

n
i it outputs only rj

i . Given a string α ∈ {0, 1}∗, let A(α, ·) denote the program obtained by
“hardwiring” α into it (i.e., A(α, ·) evaluated on β equals A(α, β)). We now describe Sj ’s actions
in each of the three cases:

None of r̃1, r̃2 are contained in Slot 1 of 〈Ptag, Vtag〉: Assume for simplicity that c̃1, r̃1, c̃2, r̃2

are all contained in Slot 2 of 〈Ptag, Vtag〉 (Fig. 10a). The simulator Sj sets c1 = Com(h(Π1); s1)
and c2 = Com(0n; s2) where Π1 = Aj(x, ·). It then sets the triplet 〈Π1, (c1

1, . . . , c
n
1 ), s1〉 as

witness for 〈hj , cj
1, r

j
1〉 ∈ Lsim.

None of r̃1, r̃2 are contained in Slot 2 of 〈Ptag, Vtag〉: Assume for simplicity that c̃1, r̃1, c̃2, r̃2

are all contained in Slot 1 of 〈Ptag, Vtag〉 (Fig. 10b). The simulator Sj sets c1 = Com(0n; s1)
and c2 = Com(h(Π2); s2) where Π2 = Aj(x, c1

1, . . . , c
n
1 , r̃1, r̃2, ·). It then sets the triplet

〈Π2, (c1
2, . . . , c

n
2 ), s2〉 as witness for 〈hj , cj

2, r
j
2〉 ∈ Lsim.

r̃1 is contained in Slot 1 and r̃2 is contained in Slot 2 of 〈Ptag, Vtag〉: In this case c̃1, r̃1 are
both contained in Slot 1 of 〈Ptag, Vtag〉, and c̃2, r̃2 are both contained in Slot 2 of 〈Ptag, Vtag〉
(Fig. 10c). The simulator Sj sets c1 = Com(h(Π1); s1) and c2 = Com(h(Π2); s2) where
Π1 = Aj(x, ·) and Π2 = Aj(x, c1

1, . . . , c
n
1 , r̃1, ·). Then:

• If tagj > ˜tag, the simulator sets 〈Π1, (c1
1, . . . , c

n
1 , r̃1), s1〉 as witness for 〈hj , cj

1, r
j
1〉 ∈ Lsim.

• If tagj < ˜tag, the simulator sets 〈Π2, (c1
2, . . . , c

n
2 , r̃2), s2〉 as witness for 〈hj , cj

2, r
j
2〉 ∈ Lsim.

In all cases, combining the messages together results in a Stage 1 transcript τ j
1 = 〈hj , cj

1, r
j
1, c

j
2, r

j
2〉.

By definition of 〈Ptagj
, Vtagj

〉, the transcript τ j
1 induces a Stage 2 special-purpose WIUARG with

common input (x, 〈hj , cj
1, r

j
1〉, 〈hj , cj

2, r
j
2〉). The sub-simulator Sj now follows the prescribed prover

strategy PsUA and produces a Stage 2 transcript τ j
2 for 〈Ptagj

, Vtagj
〉.

27



Remark 5.4 (Handling h̃ and ũ) To handle the case in which either h̃ or ũ are contained in
one of the slots, we set `(n) ≥ 2n2 + 2n and let the simulator append either h̃ or ũ to the auxiliary
string y (whenever necessary). This will guarantee that the program committed to by the simulator
indeed outputs the corresponding “challenge” rj

i , when fed with y as input. The crucial point is
that even after appending h̃ or ũ to y, it will still be the case that |y| ≤ |rj

i | − n. This just follows
from the fact that the total length of h̃ and the messages ũ sent in 〈PsUA, VsUA〉 is upper bounded
by, say n, and that the gap between |rj

i | and the “original” |y| (i.e. before appending h̃ or ũ to it)
is guaranteed to be at least n (this follows from the requirement `(n) ≥ 2n2 + 2n.

Output of S. To generate its output, which consists of a verifier view of a 〈Ptag, Vtag〉 in-
teraction, S combines all the views generated by the Sj ’s. Specifically, letting σj

1 = (cj
1, c

j
2)

be the verifier’s view of τ j
1 , and σj

2 be the verifier’s view of τ j
2 , the output of S consists of

(σ1, σ2) = ((σ1
1, . . . , σ

n
1 ), (σ1

2, . . . , σ
n
2 )).

5.2.2 The Simulator-Extractor

Using S, we construct the simulator-extractor (SIM,EXT). We start with the machine SIM, In the
right interaction SIM’s goal is to generate messages by a verifier V ˜tag. This part of the simulation
is quite straightforward, and is performed by simply playing the role of an honest verifier in the
execution of the protocol (with the exception of cases in which tagj = ˜tag for some j ∈ [n] – see
below for details). In the left interaction, on the other hand, SIM is supposed to act as a prover
Ptag, and this is where S is invoked.

The machine SIM. On input (x, z,tag), and given a man-in-the-middle adversary A, SIM starts
by constructing a man-in-the-middle adversary A′ that acts as follows:

Internal messages: Pick random M ′ = (h̃, r̃1, r̃2, ũ) verifier messages for the right interaction.

Right interaction: The statement x̃ proved is the same as the one chosen by A. If there
exists j ∈ [n] so that tagj = ˜tag, use the messages in M ′ in order to internally emulate a
right interaction for A (while ignoring external V ˜tag messages M). Otherwise, forward A’s
messages in the right interaction to an external V ˜tag and send back his answers M to A.

Left interaction: As induced by the scheduling of messages by A, forward the messages sent by
A in the left interaction to an external prover Ptag, and send back his answers to A.

Fig. 11.a describes the behavior of A′ in case tagj 6= ˜tag for all j ∈ [n], whereas Fig. 11.b describes
its behavior otherwise. The purpose of constructing such an A′ is to enable us to argue that for all
”practical purposes” the man-in-the-middle adversary never uses a ˜tag that satisfies tagj = ˜tag for
some j ∈ [n] (as in such cases A′ ignores all messages M in the right interaction anyway).

Ptag A′ V ˜tag Ptag A′ V ˜tag

P A V
←−−−−−−−−−−−− ←−−−−−−−−−−−−−−−−−−−−−−−−→ −−−−−−−−−−−−→←−−−−−−−−−−−− ←−−−−−−−−−−−−−−−−−−−−−−−−→ −−−−−−−−−−−−→

M

P A V
←−−−−−−−−−−−− ←−−−−−−−−−−−−−−→ −−→←−−−−−−−−−−−− ←−−−−−−−−−−−−−−→ −−→

←−−
←−−M ′ M

(a) (b)

Figure 11: The adversary A′.

28



Given the new adversary A′, the machine SIM picks random V ˜tag messages M , and invokes the
simulator S with random coins s̄. The simulator’s goal is to generate a view of a left interaction
for an A′ that receives messages M in the right interaction.

Let (σ1, σ2) be the view generated by S for the left 〈Ptag, Vtag〉 interaction, and let ˜tag be the
tag sent by A in the right interaction when (σ1σ2) is its view of the left interaction. If there exists
j ∈ [n] so that tagj = ˜tag then SIM outputs M ′ as the right view of A. Otherwise, it outputs M .
SIM always outputs (σ1, σ2) as a left view for A.

The machine EXT. The machine EXT starts by sampling a random execution of SIM, using
random coins s̄,M ′,M . Let x̃ be the right hand side common input that results from feeding the
output of SIM to A. Our goal is to extract a witness to the statement x̃. At a high level, EXT acts
the following way:

1. If the right session was not accepting or tagj = ˜tag for some j ∈ [n], EXT will assume that
no witness exists for the statement x̃, and will refrain from extraction.

2. Otherwise, EXT constructs a stand-alone prover P ∗˜tag for the right interaction 〈P ˜tagi
, V ˜tagi

〉,
and from which it will later attempt to extract the witness (see Figure 12).

In principle, the prover P ∗˜tag will follow SIM’s actions using the same random coins s̄ used
for initially sampling the execution of SIM. However, P ∗˜tag’s execution will differ from SIM’s
execution in that it will not use the messages M in the right interaction of A, but will rather
forward messages receives from an external verifier V ˜tag

P ∗˜tag V ˜tag

P A V
tag,x
−−→

˜tag,x̃
−−−−−−−−−−−−→

←−− ←−−−−−−−−−−−−−−→ −−−−−−−−−−−−→←−− ←−−−−−−−−−−−−−−→ −−−−−−−−−−−−→

Figure 12: The prover P ∗˜tag.

3. Once P ∗˜tag is constructed, EXT can apply the knowledge extractor, guaranteed by the proof
of knowledge property of 〈P ˜tag, V ˜tag〉, and extract a witness w to the statement x̃. In the
unlikely event that the extraction failed, EXT outputs fail. Otherwise, it outputs w.

Remark 5.5 It is important to have a P ∗˜tag for the entire protocol 〈P ˜tagi
, V ˜tagi

〉 (and not just for
〈PsUA, VsUA〉). This is required in order to argue that the witness extracted is a witness for x̃ and
not a witness to 〈h̃, c̃1, r̃1〉 ∈ Lsim or to 〈h̃, c̃2, r̃2〉 ∈ Lsim (which could indeed be the case if we fixed
the messages 〈h̃, c̃1, r̃1, c̃2, r̃2〉 in advance).

Output of simulator-extractor. The output of the combined simulator-extractor (SIM,EXT)
simply consists of the corresponding outputs of SIM and EXT, with the restriction that if EXT
outputs fail then so does the simulator SIM. Otherwise, SIM outputs the left view (σ1, σ2) and
right view M (or M ′) as generated by SIM, whereas EXT outputs the witness w it has extracted.

29



5.2.3 Correctness of Simulation-Extraction

We start by showing that the view of A in the simulation by SIM is statistically close to its view in
an actual interaction with Ptag and V ˜tag.

Lemma 5.6 {SIM(x, z,tag)}z,x,tag and {viewA(x, z,tag)}z,x,tag are statistically close.

Proof: Recall SIM proceeds by first computing a joint view 〈(σ1, σ2),M〉, and then outputs this
view only if EXT does not output fail. Let the random variable {SIM′(x, z,tag)}z,x,tag denote
the view 〈(σ1, σ2),M〉 computed by {SIM(x, z,tag)}z,x,tag. Below we show that the output of SIM′

is statistically close to the view of A in real interactions. This conclude that, since EXT outputs
fail only in the event that the extraction fails, and since by the proof of knowledge property of
〈P ˜tag, V ˜tag〉 the extraction fails only with negligible probability, the output of SIM is also statistically
close to the view of A.

Claim 5.7 {SIM′(x, z,tag)}z,x,tag and {viewA(x, z,tag)}z,x,tag are statistically close.

Proof: Recall that the output of SIM′ consists of the tuple 〈(σ1, σ2),M〉, where (σ1, σ2) is the left
view generated by the simulator S and M = (h̃, r̃1, r̃2, ũ) are uniformly chosen messages that are
fed to A during the simulation. In other words:

{SIM′(x, z,tag)}z,x,tag = {(S(x, z,tag), U|M |)}z,x,tag.

Let x ∈ L,tag ∈ [2n]n and z ∈ {0, 1}∗. To prove the claim, we will thus compare the distribution
(S(x, z,tag), U|M |) with real executions of the man-in-the-middle A(x, z,tag).

We start by observing that, whenever M is chosen randomly, a distinguisher between real
and simulated views of the left interaction of A yields a distinguisher between S(x, z,tag) and
viewA(x, z,tag). This follows from the following two facts (both facts are true regardless of whether
tagj = ˜tag for some j ∈ [n]):

1. The messages M (resp, M ′) appearing in its output are identically distributed to messages
in a real right interaction of A with V ˜tag (by construction of SIM).

2. The simulation of the left interaction in SIM is done with respect to an A whose right hand
side view consists of the messages M (resp. M ′).

In particular, to distinguish whether a tuple (σ1, σ2),M was drawn according to S(x, z,tag)
or according to viewA(x, z,tag) one could simply take M , hardwire it into A and invoke the
distinguisher for the resulting stand alone verifier for 〈Ptag, Vtag〉 (which we denote by V ∗tag). Thus,
all we need to prove is the indistinguishability of real and simulated views of an arbitrary stand
alone verifier V ∗tag (while ignoring the messages M). We now proceed with the proof of the claim.

Consider a random variable (σ1, σ2) that is distributed according to the output of S(x, z,tag),
and a random variable (π1, π2) that is distributed according to the verifier view of 〈Ptag, Vtag〉
in {viewA(x, z,tag)}z,x,tag (where π1, π2 are A’s respective views of Stages 1 and 2). We will
show that both (σ1, σ2) and (π1, π2) are statistically close to the hybrid distribution (σ1, π2). This
distribution is obtained by considering a hybrid simulator that generates σ1 exactly as S does, but
uses the witness w for x ∈ L in order to produce π2.

Sub Claim 5.8 The distribution (π1, π2) is statisitcally close to (σ1, π2).

30



Proof: The claim follows from the (parallel) statistical hiding property of Com. Specifically,
suppose that there exists a (possibly unbounded) D that distinguishes between the two distri-
butions with probability ε. Consider a distinguisher D′ that has the witness w for x ∈ L and
h = V ∗tag(x) hardwired, and acts as follows. Whenever D′ gets an input (c̄1, c̄2), it starts by gen-
erating r̄1 = V ∗tag(x, c̄1) and r̄2 = V ∗tag(x, c̄1, c̄2). It then emulates a Stage 2 interaction between
V ∗tag(x, c̄1, c̄2) and the honest provers PsUA, where (x, 〈h, cj

1, r
j
1〉, 〈h, cj

2, r
j
2〉) is the common input for

the jth interaction, and PsUA is using w as a witness for x ∈ L. Let π2 denote the resulting verifier
view. D′ outputs whatever D outputs on input (c̄1, c̄2, π2).

Notice that if (cj
1, c

j
2) = (Com(0n),Com(0n)) for all j ∈ [n], then the input fed to D is

distributed according to (π1, π2), whereas if (cj
1, c

j
2) = Com(h(Πj

1)),Com(h(Πj
2))〉, then the input

fed to D is distributed according to (σ1, π2). Thus, D′ has advantage ε in distinguishing between two
tuples of n committed values. Hence, if ε is non-negligible we reach contradiction to the statistical
hiding property of Com.

Sub Claim 5.9 The distribution (σ1, σ2) is statistically close to (σ1, π2).

Proof: The claim follows from the (parallel) statistical witness indistinguishability property of
〈PsWI, VsWI〉 and the (parallel) statistical hiding property of Com (both used in 〈PsUA, VsUA〉). Let
σ2 = (σ2,1, σ2,2), where σ2,1 corresponds to a simulated view of Stage 1 of 〈PsUA, VsUA〉 and σ2,2

corresponds to a Stage 2 of 〈PsUA, VsUA〉. Similarly, let π2 = (π2,1, π2,2) correspond to the real views
of Stages 1 and 2 of 〈PsUA, VsUA〉. We will show that both (σ1, σ2) and (σ1, π2) are statistically
close to the hybrid distribution (σ1, (σ2,1, π2,2)).

Suppose that there exists a (possibly unbounded) algorithm D that distinguishes between
(σ1, σ2) and (σ1, (σ2,1, π2,2)) with probability ε. Then there must exist a Stage 1 view (c̄1, c̄2) =
(c1

1, . . . , c
n
1 , c1

2, . . . , c
n
2 ) for 〈Ptag, Vtag〉, and a Stage 1 view (β̄, δ̄) = (β̂1, . . . , βn, δ̂1, . . . , δ̂n) for

the sub-protocol 〈PsUA, VsUA〉 so that D has advantage ε in distinguishing between 〈(σ1, σ2)〉 and
〈(σ1, π2)〉 conditioned on (σ1, σ2,1) = ((c̄1, c̄2), (β̄, δ̄)).

Consider a Stage 2 execution of 〈PsUA, VsUA〉 with V ∗sWI = V ∗tag(x, c̄1, c̄2, β̄, δ̄, ·) as verifier. Then, a
distinguisher D(c̄1, c̄2, β̄, δ̄, ·) (i.e., D with (c̄1, c̄2, β̄, δ̄) hardwired as part of its input) has advantage
ε in distinguishing between an interaction of V ∗sWI with n honest PsWI provers that use accepting
〈PUA, VUA〉 transcripts (α, β, γ, δ), and an interaction of V ∗sUA with honest PsUA provers that uses w
as witness.13 Thus, if ε is non-negligible we reach contradiction to the (parallel) statistical witness
indistinguishability of 〈PsWI, VsWI〉.

Suppose now that there exists a (possibly unbounded) algorithm D that distinguishes between
(σ1, π2) and (σ1, (σ2,1, π2,2)) with probability ε. Consider a distinguisher D′ that has the wit-
ness w for x ∈ L and (h, c̄1, c̄2) hardwired, and acts as follows. Whenever D′ gets an input
(β̄, δ̄), it starts by generating ᾱ = V ∗tag(x, c̄1, c̄2) and γ̄ = V ∗tag(x, c̄1, c̄2, β̄). It then emulates
a Stage 2 interaction between the VsWI verifiers V ∗tag(x, c̄1, c̄2, β̄, δ̄) and the honest provers PsWI,
where (x, 〈h, cj

1, r
j
1〉, 〈h, cj

2, r
j
2〉, 〈α, β̄, γ, δ̄〉) is the common input for the jth interaction, and PsWI is

using w as a witness for x ∈ L. Let π2,2 denote the resulting verifier view. D′ outputs whatever D
outputs on input (c̄1, c̄2, β̄, δ̄, π2,2).

Notice that if (β̂j , δ̂j) = (Com(0n),Com(0n)) for all j ∈ [n], then the input fed to D is
distributed according to (σ1, (π2,1, π2,2)) = (σ1, π2), whereas if (β̂j , δ̂j) = Com(βj),Com(δj)〉, for
some βj , δj for which (αj , βj , γj , δj) is an accepting 〈PUA, VUA〉 then the input fed to D is distributed
according to (σ1, (σ2,1, π2,2)). Thus, D′ has advantage ε in distinguishing between two tuples of

13In accordance with the specification of 〈PsUA, VsUA〉, the transcripts (α, β, γ, δ) are generated using programs Πj
i

as witnesses, where Πj
i is the program chosen by the simulator Sj .

31



n committed values. Hence, if ε is non-negligible we reach contradiction to the statistical hiding
property of Com.

Combining Sub-claims 5.9 and 5.8 we conclude that {SIM(x, z,tag) | EXT 6= fail}z,x,tag and
{viewA(x, z,tag)}z,x,tag are statistically close.

This completes the proof of Lemma 5.6

Lemma 5.10 Suppose that the right interaction in the output of SIM is accepting, and that tagj 6=
˜tag for all j ∈ [n]. Then, EXT outputs a witness to the statement x̃ proved in the right interaction.

Proof: We start by noting that since SIM outputs fail whenever the extraction by EXT fails, the
claim trivially holds in the event that the extraction by EXT fails.

Observe that the right hand side input-tag pair (x̃, ˜tag) used in EXT is exactly the same as the
one generated by SIM. This follows from the following two reasons: (1) Both EXT and SIM use
the same random coins s̄ in the simulation. (2) The input-tag pair x̃, ˜tag is determined before any
external message is received in the right interaction. In particular, the pair (x̃, ˜tag) is independent of
the messages M (which are the only potential difference between the executions of SIM and EXT).

Since whenever the properties described in the hypothesis hold EXT performs extraction, and
since the extraction by EXT proceeds until a witness is extracted (or until the extraction fails in
which case, we are already done), we infer that EXT always outputs a witness to the statement x̃
proved in the right-interaction of SIM.

We conclude the proof by bounding the running time of the combined simulator-extractor S.

Lemma 5.11 (SIM,EXT) runs in expected polynomial time.

Proof: We start by proving that the running time of SIM is polynomial. Recall that that the
SIM procedure invokes the simulator S with the adversary A′. Thus, we need to show that S runs
in polynomial time. To this end, it will be sufficient to show that every individual sub-simulator
Sj runs in polynomial time. We first do so assuming that tagj 6= ˜tag. We then argue that, by
construction of the adversary A′ this will be sufficient to guarantee polynomial running time even
in cases where tagj = ˜tag.

Claim 5.12 Suppose that tagj 6= ˜tag. Then, Sj completes the simulation in polynomial time.

Proof: We start by arguing that, in each of the three cases specified in the simulation, the witness
used by the simulator indeed satisfies the relation Rsim. A close inspection of the simulator’s
actions in the first two cases reveals that the simulator indeed commits to a program Πi that on
input y = (c1

i , . . . , c
n
i ) outputs the corresponding ri. Namely,

• Π1(y) = Aj(x, c1
1, . . . , c

n
1 ) = rj

1.

• Π2(y) = Aj(x, c1
1, . . . , c

n
1 , r̃1, r̃2, c

1
2, . . . , c

n
2 ) = rj

2.

Since in both cases |y| = n|ci
j | = 2n2 ≤ `(n)− n ≤ |rj

i | − n it follows that Rsim is satisfied. As for
the third case, observe that for both i ∈ {1, 2}, if Sj sets y = (c1

i , . . . , c
n
i , r̃i) then

• Πi(y) = Aj(c1
i , . . . , c

n
i , r̃i) = rj

i .

32



Since tagj 6= ˜tag we can use Fact 5.2 and infer that there exists i ∈ {1, 2} so that |r̃i| ≤ |rj
i |−`(n).

This means that for every j ∈ [n] the simulator Sj will choose the i ∈ {1, 2} for which:

|y| = |c1
i |+ . . . + |cn

i |+ |r̃i
i|

= 2n2 + |r̃i
i|

≤ 2n2 + |rj
i | − `(n) (2)

≤ |rj
i | − n (3)

where Eq. (2) follows from |r̃i| ≤ |rj
i | − `(n) and Eq. (3) follows from the fact that `(n) ≥ 2n2 + n.

Thus, Rsim can always be satisfied by Sj .
Since the programs Πi are of size poly(n) and satisfy Πi(y) = rj

i in poly(n) time (because
Aj does), then the verification time of Rsim on the instance 〈h, cj

i , r
j
i 〉 is polynomial in n. By the

perfect completeness and relative prover efficiency of 〈PsUA, VsUA〉, it then follows that the simulator
is always able to make a verifier accept in polynomial time.

Remark 5.13 (Handling the case tagj = ˜tag) When invoked by SIM, the simulator S will output
an accepting left view even if A chooses ˜tag so that tagj = ˜tag for some j ∈ [n].14 This is because in
such a case the A′ whose view S needs to simulate ignores all right hand side messages, and feeds the
messages M ′ to A internally. In particular, no external messages will be contained in neither Slot 1
or Slot 2 of 〈Ptag, Vtag〉. A look at the proof of Claim 5.12, reveals that in such cases the simulator
can indeed always produce an accepting conversation (regardless of whether tagj= ˜tag or not).

It now remains to bound the expected running time of EXT. Recall that EXT uses the view
sampled by SIM and proceeds to extract a witness only if the right interaction is accepting and
tagj 6= ˜tag for all j ∈ [n]. Using Claim 5.12, we know that the simulation internally invoked by the
stand alone prover P ∗˜tag will always terminate in polynomial time (since tagj 6= ˜tag for all j ∈ [n] and
A is a poly-time machine). We now argue that the extraction of the witness from P ∗˜tag conducted
by EXT will terminate in polynomial time.

Let p denote the probability that A produces an accepting proof in the right execution in
the simulation by SIM. Let p′ denote the probability that A produces an accepting proof in the
right execution in the internal execution of P ∗˜tag (constructed in EXT). By the POK property of
〈Ptag, Vtag〉 it holds that the expected running-time of the knowledge extractor is bounded by

poly(n)
p′

.

Since the probability of invoking the extraction procedure is p, the expected number of steps used
to extract a witness is

p
poly(n)

p′
.

Now, in both SIM and EXT the left view is generated by S), and the right view is uniformly chosen.
This in particular means that p = p′. It follows that he expected number of steps used to extract
a witness is

p
poly(n)

p
= poly(n)

14Note that this is not necessarily true in general. For example, when tagj = ˜tag for some j ∈ [n], and the
messages that A sees are forwarded from an external source (e.g., when S is used by EXT in order to construct
the stand alone prover P ∗

˜tag), we cannot guarantee anything about the running time of S. Indeed, the definition of

simulation-extractability does not require EXT to output a witness when tagj = ˜tag for some j ∈ [n].

33



This completes the proof of Lemma 5.11 .

This completes the proof of “many-to-one” simulation extractability (Proposition 5.3).

5.3 “Full-Fledged” Simulation-Extractability

Let tag ∈ {0, 1}m, let x ∈ {0, 1}n, and let A be the corresponding MIM adversary. We consider
a left interaction in which 〈Ptag, Vtag〉 is executed with common input x ∈ {0, 1}n, and a right
interaction in which 〈P ˜tag, V ˜tag〉 is executed with common input x̃ ∈ {0, 1}n The strings ˜tag and
x̃ are chosen adaptively by the man-in-the-middle A. The witness used by the prover in the left
interaction is denoted by w, and the auxiliary input used by the adversary is denoted by z.

Proposition 5.14 Let A be a MIM adversary as above, and suppose that `(n)≥ 2n2+2n. Then, there
exists a probabilistic expected polynomial time, (SIM,EXT) such that the following conditions hold:

1. The ensembles {SIM(x, z,tag)}z,x,tag and {viewA(x, z,tag)}z,x,tag are statistically close.

2. Let x̃ be the right hand side statement appearing in SIM(x, z,tag). If the right hand side
interaction is accepting AND tag 6= ˜tag, the output of EXT(x, z,tag) consists of a witness
w so that RL(x̃, w) = 1.

Proof: The construction of the simulator-extractor (SIM,EXT) proceeds in two phases and makes
use of the many-to-one simulator extractor guaranteed by Lemma 5.3. In the first phase, the
adversary A is used in order to construct a many-to-one adversary A′ with the protocol 〈Ptag, Vtag〉
on its left and with one of the sub-protocols 〈P ˜tagi

, V ˜tag〉 on its right. In the second phase, the many-
to-one simulation-extractability property of 〈Ptag, Vtag〉 is used in order to generate a view for A
along with a witness for the statement x̃ appearing in the simulation.

The many-to-one adversary. On input (x, z,tag), and given a man-in-the-middle adversary
A, the many-to-one adversary A′ acts as follows:

Internal messages: For all j ∈ [n], pick random messages (h̃j , r̃j
1, r̃

j
2, ũ

j) for the right interaction.

Right interaction The statement x̃ proved is the same as the one chosen by A. If there exists
i ∈ [n] so that tagj 6= ˜tagi for all j ∈ [n], forward A’s messages in the ith right interaction
to an external V ˜tagi

and send back his answers to A. Use the messages {(h̃j , r̃j
1, r̃

j
2, ũ

j)}j 6=i to
internally emulate all other right interactions {〈P ˜tagj

, V ˜tagj
〉}j 6=i.

Otherwise, (i.e. if for all i ∈ [n] there exists j ∈ [n] such that tagj = ˜tagi), pick an arbitrary
i ∈ [n], forward A’s messages in the ith right interaction to an external V ˜tagi

and send back
his answers to A. Use the messages {(h̃j , r̃j

1, r̃
j
2, ũ

j)}j 6=i to internally emulate all other right
interactions {〈P ˜tagj

, V ˜tagj
〉}j 6=i.

Left interaction: As induced by the scheduling of messages by A, forward the messages sent by
A in the left interaction to an external prover Ptag, and send back his answers to A.

The many-to-one adversary A′ is depicted in Fig. 13. Messages from circled sub-protocols are the
ones who get forwarded externally.

The simulator-extractor. By Lemma 5.3 there exists a simulator S′ = (SIM′,EXT′) that
produces a view that is statistically close to the real view of A′, and outputs a witness provided
that the right interaction is accepting and ˜tag is different from all the left side tags tag1, . . . , tagn.

34



P A′ V
P A V

c11→ · · ·
cj
1→ · · ·c

m
1−−−−−−−−−−−−−−−−→ c̃11→ · · · c̃

i
1−−−−−−−−−−−−−→· · ·

c̃m
1→

r̃1
1← · · · r̃i

1←−−−−−−−−−−−−−· · ·
r̃m
1←

r1
1←−−−−−−−−−−−−−−−· · ·

rj
1←· · ·

rm
1←

c21→ · · ·
cj
2→ · · ·c

m
2−−−−−−−−−−−−−−−−→ c̃12→ · · · c̃i

2−−−−−−−−−−−−−→· · ·
c̃m
2→

c̃12← · · · r̃i
2←−−−−−−−−−−−−−· · ·

r̃m
2←

r1
2←−−−−−−−−−−−−−−−· · ·

rj
2←· · ·

rm
2←

�




�

	

'

&

$

%
Figure 13: The “many-to-one” MIM adversary A′.

The simulator-extractor (SIM,EXT) for A invokes S′ = (SIM′,EXT′). For i ∈ [n], let ( ˜tagi, x̃)
be the tag-statement pair used by A′ in the right interaction simulated by SIM′. The output of SIM
consists of the 〈P ˜tagi

, V ˜tagi
〉 view generated by SIM, augmented with the right hand side messages

{(h̃j , r̃j
1, r̃

j
2, ũ

j)}j 6=i that were used in the internal emulation of A′. The output of EXT is defined to
be equal to the witness for x̃ as generated by EXT′.

Claim 5.15 (SIM,EXT) runs in expected polynomial time.

Proof: Notice that whenever A is polynomial time then so is A′. By Lemma 5.11, this implies
that (SIM′,EXT′) runs in expected polynomial time, and hence so does (SIM,EXT).

Claim 5.16 {SIM(x, z,tag)}z,x,tag and {viewA(x, z,tag)}z,x,tag are statistically close.

Proof: Given a distinguisher D between {SIM(x, z,tag)}z,x,tag and {viewA(x, z,tag)}z,x,tag, we
construct a distinguisher D′ between {SIM′(x, z,tag)}z,x,tag and {viewA′(x, z,tag)}z,x,tag. This
will be in contradiction to Lemma 5.6. The distinguisher D′ has the messages {(h̃j , r̃j

1, r̃
j
2, ũ

j)}j 6=i

hardwired.15 Given a joint view 〈(σ′1, σ′2),M ′〉 of a left 〈P ˜tag, V ˜tag〉 interaction and a 〈P ˜tagi
, V ˜tagi

〉
right interaction, D′ augments the view with the right interaction messages {(h̃j , r̃j

1, r̃
j
2, ũ

j)}j 6=i.
The distinguisher D′ feeds the augmented view to D and outputs whatever D outputs.

Notice that if 〈(σ′1, σ′2),M ′〉 is drawn according to {SIM′(x, z,tag)}z,x,tag then the augmented
view is distributed according to {SIM(x, z,tag)}z,x,tag. On the other hand, if 〈(σ′1, σ′2),M ′〉 is
drawn according to {viewA′(x, z,tag)}z,x,tag then the augmented view is distributed according to
{viewA(x, z,tag)}z,x,tag. Thus D′ has exactly the same advantage as D.

Claim 5.17 Suppose that the right interaction in the output of SIM is accepting, and that tag 6=
˜tag. Then, EXT outputs a witness to the statement x̃ proved in the right interaction.

Proof: The right interaction in the output of SIM is accepting if and only if the right interaction
in the output of SIM′ is accepting. In addition, the statement proved in the right interaction output
by SIM is identical to the one proved in the right interaction of SIM′.

15One could think of D as a family of distinguishers that is indexed by {(h̃j , r̃j
1, r̃

j
2, ũ

j)}j 6=i, and from which a
member is drawn at random.

35



Observe that if tag 6= ˜tag, there must exist i ∈ [n] for which (i, ˜tagi) 6= (j,tagj) for all j ∈ [n]
(just take the i for which ˜tagi 6= tagi). Recall that by construction of the protocol 〈P ˜tag, V ˜tag〉,
for every i ∈ [n], the value tagi is defined as (i,tagi) Thus, whenever tag 6= ˜tag there exists a
˜tagi = (i, ˜tagi) that is different than tagj = (j,tagj) for all j ∈ [n]. In particular, the tag used

by A′ in the right interaction will satisfy tagj 6= ˜tagi for all j ∈ [n]. By Lemma 5.10, we then have
that if the right interaction in SIM is accepting (and hence also in SIM′) the procedure EXT′ will
output a witness for x̃. The proof is complete, since EXT outputs whatever EXT′ outputs.

This completes the proof of Proposition 5.14.

6 Non-malleable Commitments

In this section we present two simple constructions of non-malleable commitments. The approach
we follow is different than the approach used in [13]. Instead of viewing non-malleable commitments
as a tool for constructing non-malleable zero-knowledge protocols, we reverse the roles and use a
non-malleable zero-knowledge protocol (in particular any simulation-extractable protocol will do)
in order to construct a non-malleable commitment scheme. Our approach is also different from the
approach taken by [2].

6.1 A statistically-binding scheme (NM with respect to commitment)

We start by presenting a construction of a statistically binding scheme which is non-malleable with
respect to commitment. Our construction relies on the following two building blocks:

• a familiy of (possibly malleable) non-interactive statistically binding commitment schemes,

• a simulation-extractable zero-knowledge argument

The construction is conceptually very simple: The committer comits to a string using the statis-
tically binding commitment scheme, and then proves knowledge of the string committed to using
a simulation-extractable argument. We remark that the general idea behind this protocol is not
new. The idea of adding a proof of knowledge to a commitment in order to make it non-malleable
originates in [13]. However, as pointed out there this approach on its own does not quite seem to
work since the proof of knowledge protocol might be malleable, resulting in a construction that
potentialy is malleable. (As mentioned above [13] therefore rely on a different approach to construct
non-malleable commitments). We here show that if the proof of knowledge protocol indeed satisfies
(a somewhat stronger form of) non-malleability, then this original suggestion indeed works!

Let {Comr}r∈{0,1}∗ be a family of non-interactive statistically binding commitment schemes
(e.g., Naor’s commitment [30]) and let 〈Ptag, Vtag〉 be a simulation extractable protocol. Consider
the protocol in Figure 14.16

We start by sketching why the scheme is non-malleable. Note that the commit phase of
the scheme only consists of a message specifying an NP -statement (i.e., the “statement” c =
Comr(v; s)), and an accompaning proof of this statement. Thus, essentially the non-malleability
property of the commitment scheme reduces down to the non-malleablity property of its proof
component 〈Ptag, Vtag〉. Nevertheless, there is an important difference between the notions of
non-malleability for commitments and for interactive arguments:

16It is interesting to note that the protocol 〈C, R〉 is statistically-binding even though the protocol 〈Ptag, Vtag〉 is
“only” computationally sound. At first sight, this is somewhat counter intuitive since the statistical binding property
is typically associated with all-powerful committers.

36



Protocol 〈C,R〉

Security Parameter: 1k.

String to be committed to: v ∈ {0, 1}k.

Commit Phase:

R→ C: Pick uniformly r ∈ {0, 1}k.

C → R: Pick s ∈ {0, 1}k and send c = Comr(v; s).

C ↔ R: Let tag = (r, c). Prove using 〈Ptag, Vtag〉 that there exist v, s ∈ {0, 1}k so
that c = Comr(v; s). Formally, prove the statement (r, c) with respect to the witness
relation

RL = {(r, c), (v, s)|c = Comr(v; s)}

R: Verify that 〈Ptag, Vtag〉 is accepting.

Reveal Phase:

C → R: Send v, s.

R: Verify that c = Comr(v; s).

Figure 14: A statistically binding non-malleable string commitment protocol - 〈C,R〉

• in the setting of non-malleable commitments, the man-in-the-middle adversary is allowed to
choose the value ṽ that it wishes to commit to adaptively, based on the interaction it receives
on the left.

• in the case of non-malleable arguments the statements x, x̃ to be proved on the left and on
the right, are chosen ahead of the interaction.

By relying on a simulation-extractable argument (instead of any non-malleable zero-knowledge
argument) we circumvent the above difficulty – in particular this notion guarantees that the state-
ments proven by the man-in-the-middle adversary will be indistinguishable from statements proven
a stand-alone simulator. Unfortunately, in the our construction, such a guarantee is seemingly
not sufficient: indeed, in our construction the statements are commitments to values that we
wish to guarantee are indistinguishably committed to by the man-in-the middle adversary and the
stand-alone simulator. However, by relying on the statistical indistinguishability guarantee of the
simulation-extractable argument, we can guarantee that also these values are statistically close (and
thus also computationally indistinguishable).17

Theorem 6.1 (nmC with respect to commitment) Suppose that {Comr}r∈{0,1}∗ is a family
of non-interactive statistically binding commitment schemes, and that 〈Ptag, Vtag〉 is simulation
extractable. Then, 〈C,R〉 is a statistically binding non-malleable commitment scheme with respect
to commitment.

Proof: We need to prove that the scheme satisfies the following three properties: statistical
binding, computational hiding and non-malleability with respect to commitment.

17Note that in the case of non-malleability with respect to opening, the second complication does not arise.

37



Statistical Binding: The binding property of the scheme follows directly from the binding
property of the underlying commitment scheme Com: given a commitment using nmCtag that can
be opened in two ways, implies the existence of a commitment using Com that can be opened in
two ways, which contradicts the statistical binding property of Com.

Computational Hiding: The hiding property follows from the hiding property of Com combined
with the ZK property of 〈Ptag, Vtag〉. Slightly more formally, recall that the notion of simulation-
extractability implies ZK and that ZK implies strong-witness indistinguishability18 [17]. Since
the scheme Com produces indistinguishable commitments, it thus directly follows from the defi-
nition of strong witness indistinguishability that the protocol 〈C,R〉 also gives indistinguishable
commitments.

Non-malleability: Consider a man-in-the middle adversary A. We assume without loss of
generality that A is deterministic (this is w.l.o.g since A can obtain its “best” random tape as
auxiliary input). We show the existence of a probabilistic polynomial-time stand-alone adversary
S and a negligible function ν : N → N , such that for every polynomial-time computable relation
R⊆{0, 1}k×{0, 1}k, every v∈{0, 1}k, and every z∈{0, 1}∗, it holds that:

Pr
[
mimA

com(R, v, z) = 1
]

< Pr
[
staS

com(R, v, z) = 1
]

+ ν(k) (4)

Description of the stand-alone adversary. The stand-alone adversary S uses A as a black-
box and emulates the left interaction for A. More precisely, S proceeds as follows on input z. S
incorporates A(z) and internally emulates the left interactions for A by simply honestly committing
to the string 0k (i.e., S executes the algorithm C on input 0k). Messages from the right interactions
are instead forwarded externally.

Analysis of the stand-alone adversary. We proceed to show that equation 4 holds. Suppose,
for contradiction, that this is not the case. That is, there exists a polynomial-time relation R and
a polynomial p(n) such that for infinitely many k, there exists strings v ∈ {0, 1}k, z ∈ {0, 1}∗ such
that

Pr
[
mimA

com(R, v, z) = 1
]
− Pr

[
staS

com(R, v, z) = 1
]
≥ 1

p(n)

Fix a generic k for which this happens and let vk, zk denote the particular v, z for this k.
We show how this contradicts the simulation-extractability property of 〈Ptag, Vtag〉. We start by
providing an (oversimplified) sketch. On a high-level the proof consists of the following steps:

1. We first note that since the commit phase of 〈C,R〉 “essentially” only consists of a statement
(r, c) (i.e., the commitment) and a proof of the “validity” of (r, c), A can be interpreted as a
simulation-extractability adversary A′ for 〈Ptag, Vtag〉.

2. It follows from the simulation-extractability property of 〈Ptag, Vtag〉 that there exist a com-
bined simulator-extractor (SIM,EXT) for A′ that outputs a view that is statistically close to
that of A′, while at the same time outputting a witness to all accepting right proofs (which
use a different tag than the left interaction).

3. Since the view output by the simulator-extractor (SIM,EXT) is statistically close to the view
of A′ in the real interaction, it follows that also the value committed to in that view is

18The notion of strong-witness indistinguishability implies that proofs of indistinguishable statements are indis-
tinguishable. This is, in fact, exactly the property we need in order to prove that the commitment scheme is
computationally hiding.

38



statistically close to value committed to by A′. (Note that computational indistinguishability
would not have been enough to argue the indistinguishability of these values, since they are
not efficiently computable from the view.)

4. It also follows that the simulator-extractor (SIM,EXT) will output also the witness to ac-
cepting right executions which use a different tag than the left interaction. We conclude
that (SIM,EXT) additionally outputs the value committed to in the right execution (except
possibly when the value committed to in the right interaction is the same as that committed
to in the left).

5. We finally note that ifR (which is non-reflexive) “distinguishes” between the value committed
to by A and by S, thenR also “distinguishes” the second output of (SIM,EXT) (which consists
of the committed values) when run on input a commitment (using Com) to v, and the second
output of (SIM,EXT) when run on input a commitment to 0. But, this contradicts the hiding
property of Com.

We proceed to a formal proof. One slight complication that arises with the above proof sketch
is that in the construction of 〈C,R〉 we are relying on the use a family of commitment schemes
{Comr}r∈{0,1}∗ and not a single non-interactive commitment scheme. However, this can be dealt
with easily by relying on the non-uniform security of the components of 〈C,R〉.

In fact, we start by noting that since in both experiments mim and sta the right execution is
identically generated, there must exists some fixed r̃k such that conditioned on the event the first
message sent in the right execution is r̃k, it holds that the success probability in mimA

com(R, vk, zk)
is 1

p(n) higher than in staS
com(R, vk, zk). We first show that A must use a particular scheduling.

Claim 6.2 There exist a fixed message rk such that A sends rk as its first messages in its left
interaction directly after receiving the message r̃k (as part of its right executions).

Proof: Assume for contradiction that this was not the case, i.e., A sent its first message c̃ in the
right interaction, before receiving any messages as part of its left interaction. Let vc̃ denote the
value committed to in c̃ (using Com). It then holds that the value committed to by A in its left
interaction (of 〈C,R〉) will be vc̃ if A succeeds in the proof following the message c̃ and ⊥ otherwise.

By our assumption that the success probability in mimA
com(R, vk, zk) is 1

p(n) higher than in
staS

com(R, vk, zk), conditioned on the event the first message sent in the right execution is r̃k, it thus
holds that A “aborts” the proof in the left interaction with different probability in experiments
mimA

com(R, vk, zk) and staS
com(R, vk, zk), conditionned on the first message in the left interaction

being r̃k. However, since the only difference in those experiments is that A receives a commitment
to v in mim and a commitment to 0k in sta, we conclude that A contradicts the (non-uniform)
computational hiding property of Com.

Formally, we construct a non-uniform distinguisher D for the commitment scheme C,R: D
incorporates A, zk, rk, vk and vc̃ and emulates the right execution for A by honestly running the
verification procedure of 〈Ptag, Vtag〉, and forwards messages in the left execution externally. D
finally outputs R(vk, vc̃) if the proof was accepting and R(vk,⊥) otherwise. The claim follows
from the fact that D perfectly emulates mimA

com(R, vk, zk) when receiving a commitment to vk, and
perfectly emulates staS

com(R, vk, zk) when receiving a commitment to 0k.

We proceed to consider only the case when A sends its first left message rk directly after
receiving the message r̃k.

We next define a simulation-extractability adversary A′ for 〈Ptag, Vtag〉. On input x,tag, z′ =
(z, r̃), A′ proceeds as follows. A′ internally incorporates A(z) and emulates the left and right
interactions for A as follows.

39



C A R

r̃k
←−−−−−−−−−−−−

rk
←−−−−−−−−−−−−

c
−−−−−−−−−−−−→

c̃
−−−−−−−−−−−−→

Figure 15: An interleaved scheduling of commitments.

1. It starts by feeding A the message r̃ as part of its right execution. All remaining messages in
the right execution are forwarded externally.

2. All messages in A’s left interaction are forwarded externally as part of A′’s left interaction,
except for the first message r.

Now, define the hybrid experiment hyb1(v): (relying on the definition of vk, zk, rk, r̃k)

1. Let s be a uniform random string and let c = Comrk
(v; s).

2. Let x = (c, rk),tag = (c, rk), z′ = (zk, r̃k), Emulate an execution for A′(x,tag, z′) by honestly
providing a proof of x (using tag tag and the witness (v, s)) as part of its left interaction,
and honestly verifying the right interaction.

3. Given the view of A′ in the above emulation, reconstruct the view view of A in the emulation
by A′. Let ṽ denote the value committed to in the right-execution of view. (As in definition
3.4, if a commitment is undefined or invalid, its value is set to ⊥). Note that although the
values committed to are not necessarily efficiently computable from the view of A, they are
determined.

4. Finally, output R(vk, ṽ).

Note that hyb1(v) is not efficiently samplable, since the third step is not efficient. However,
except for that step, every other operation in H is indeed efficient. (This will be useful to us at a
later stage).

Claim 6.3
Pr

[
hyb1(vk) = 1

]
− Pr

[
hyb1(0

k) = 1
]
≥ 1

p(n)

Proof: Note that by the construction of A′ and hyb1 it directly follows that:

1. The view of A in hyb1(vk) is identically distributed to the view of A in mimA
com(R, vk, zk),

conditioned on the event that the first message in the right execution is r̃k.

2. The the view of A in hyb1(0k) is identically distributed to the view of A in staA
com(R, vk, zk),

conditioned on the event that the first message in the right execution is r̃k.

Since the output of the experiments hyb,mim, sta is determined by applying the same fixed function
(involving R and vk) to the view of A in those experiments, the claim follows.

We next define an additional hybrid experiment hyb2(v): hyb2(v) proceeds just as hyb1(v) except
that instead of emulating the left and right interactions for A′, hyb2 runs the combined simulator
extractor (SIM,EXT) for A′ to generate the view of A′.

40



Claim 6.4 There exists a negligible function µ(n) such that for any string v ∈ {0, 1}k,

|Pr
[
hyb1(v) = 1

]
− Pr

[
hyb2(v) = 1

]
| ≤ µ(n)

Proof: It follows directly from the statistical indistinguishability property of (SIM,EXT) that the
view of A generated in hyb1 is statistically close to the view of A generated in hyb2. The claim is
concluded by (again) observing that the the success of both hyb1 and hyb2 is defined by applying
the same (deterministic) function to the view of A.

Remark: Note that the proof of Claim 6.4 inherently relies on the statistical indistinguishability
property of (SIM,EXT). Indeed, if the simulation had only been computationally indistinguishable,
we would not have been able to argue indistinguishability of the outputs of hyb1 and hyb2. This
follows from the fact that success in experiments hyb1 and hyb2 (which depends on the actual com-
mitted values in the view of A) is not efficiently computable from the view alone.

We define a final hybrid experiment hyb3(v) that proceeds just as hyb2(v) with the exception
that:

1. Instead of letting ṽ be set to the actual value committed to in the view view of A, ṽ is
computed as follows. Recall that the combined-simulator extractor (SIM,EXT) outputs both
a view and witnesses to every accepting right interaction. If the right execution in view is
accepting and the tag of the left execution in view is different from the tag of the right execu-
tion, simply set ṽ to be consistent with the witness output by (SIM,EXT) (i.e., if (SIM,EXT)
output the witness (v′, s′), let ṽ = v′). Otherwise let ṽ = ⊥.

2. In the final step, if in the view view the tag used in both the left and the right interaction is
(c, r̃k) (i.e., if A copied the initial commitment using Com) then output 0, otherwise output
R(vn, ṽ).

Note that in contrast to hyb2, hyb3 is efficiently computable. Furthermore it holds that:

Claim 6.5 For any string v ∈ {0, 1}k,

Pr
[
hyb2(v) = 1

]
= Pr

[
hyb3(v) = 1

]
Proof: Recall that the view of A in hyb2 and hyb3 is identical. It holds by the definition of
the simulator-extractor (SIM,EXT) that (SIM,EXT) always outputs the witness to the statement
proved by A′ if the right interaction is accepting and if the tag of the left interaction is different
from the tag of the right interaction. Thus, whenever view contains an accepting right-execution
proof using a different tag, then the output of hyb2 and hyb3 is identical. Furthermore, in case, the
right-execution proof is rejecting ṽ = ⊥ in both hyb2 and hyb3, which again means the output in
both experiments is identical. Finally, in case the right-execution is accepting, but the adversary
copies the initial commitment, both experiments output 0. We conclude that the outputs of hyb2

and hyb3 are identically distributed.

By combining the above claims we obtain that there exists some polynomial p′(n) such that

Pr
[
hyb3(vk) = 1

]
− Pr

[
hyb3(0

k) = 1
]
≥ 1

p′(n)

However, since hyb3(v) is efficiently samplable, we conclude that this contradicts the (non-uniform)
hiding property of Comrk

.

41



More formally, define an additional hybrid experiment hyb4(c′) that proceeds as follows on input
a commitment c′ using Comrk

: hyb4 performs the same operations as hyb3, except that instead of
generating the commitment c, it simply sets c = c′. It directly follows from the construction of hyb4

that hyb4(c′) is identically distributed to hyb3(0k) when c′ is a (random) commitment to 0k (using
Comrk

), and is identically distributed to hyb3(vk) when c′ is a commitment to vk. We conclude
that hyb4 distinguishes commitments (using Comrk

) to 0k and vk.

Remark 6.6 (Black-box v.s. Non Black-box Simulation) Note that the stand-alone commit-
ter S constructed in the above proof only uses black-box access to the adversary A, even if the
simulation-extractability property of 〈Ptag, Vtag〉 has been proven using a non black-box simulation.
Thus, in essence, the simulation of our non-malleable commitment is always black-box. However,
the analysis showing the correctness of the simulator relies on non black-box techniques, whenever
the simulator-extractor for 〈Ptag, Vtag〉 is proven using non black-box techniques.

Since families of non-interactive statistically binding commitments schemes can be based on
collision-resistant hashfunctions (in fact one-way functions are enough [30, 25]) we get the following
corollary:

Corollary 6.7 (Statistical binding non-malleable commitment) Suppose that there exists a
family of collision resistant hash functions. Then, there exists a constant-round statistically-binding
commitment scheme that is non malleable with respect to commitment.

6.2 A statistically-hiding scheme (NM with respect to opening)

We proceed to the construction of a statistically-hiding commitment scheme 〈C,R〉 which is non-
malleable with respect to opening. Our construction relies on a straight-forward combination
of a (familiy) of non-interactive statistically-hiding commitments and a simulation-extractable
argument.19 Let {Comr}r∈{0,1}∗ be a family of non-interactive statistically hiding commitment
schemes (e.g., [9]) and let 〈Ptag, Vtag〉 be simulation extractable protocol. The protocol is depicted
in Figure 16.

Theorem 6.8 (nmC with respect to opening) Suppose that {Comr}r∈{0,1}∗ is a family of non-
interactive commitment schemes, and that 〈Ptag, Vtag〉 is simulation extractable. Then, 〈C,R〉 is
a non-malleable commitment scheme with respect to opening. If furthemore {Comr}r∈{0,1}∗ is
statistically hiding, then 〈C,R〉 is so as well.

Proof: We need to prove that the scheme satisfies the following three properties: computational
binding, (statistical) hiding and non-malleability with respect to opening.

Computational Binding: The binding properties of the scheme follows from the binding prop-
erty of the underlying commitment scheme Com and the “proof-of-knowledge” property implicitly
guaranteed by the simulatation-extractability property of 〈Ptag, Vtag〉. More formally, suppose for
contradiction that there exist an non-uniform adversary A (wlog. we can assume that A is deter-
ministic) and polynomials p(k), q(k) such that for infinitely many k, it holds that with probability
at least 1

q(k) , A will complete the commit phase in such a way that there exists two different values

19Note that whereas our construction of statistically binding commitments required that the simulation-extractable
argument provides a simulation that is statistically close, we here are content with a computationally indistinguishable
simulation.

42



Protocol 〈C,R〉

Security Parameter: 1k.

String to be committed to: v ∈ {0, 1}k.

Commit Phase:

R→ C: Pick uniformly r ∈ {0, 1}k.

C → R: Pick s ∈ {0, 1}k and send c = Comr(v; s).

Reveal Phase:

C → R: Send v.

C ↔ R: Let tag = (r, c, v). Prove using 〈Ptag, Vtag〉 that there exist s ∈ {0, 1}k so that
c = Comr(v; s). Formally, prove the statement (r, c, v) with respect to the witness
relation

RL = {(r, c, v), s|c = Comr(v; s)})

R: Verify that 〈Ptag, Vtag〉 is accepting.

Figure 16: A statistically hiding non-malleable string commitment protocol - 〈C,R〉.

that A will decommit to with probability at least 1
p(k) . We show how to transform A into a machine

Â that contradicts the computational binding property of Com. Â proceeds as follows (to simplify
notation we assume that both A and Â have their appropriate non-uniform advice hard-coded.)

1. It proceeds exactely as A during the commit phase.

2. After the commit phase, Â views the residual adversary A resulting from the commit phase
as a man-in-the middle adversary A′ (that doesn’t send any messages as part of its left
interaction).

3. Let (SIM,EXT) denote the simulator-extractor for A′.

4. Ã runs (SIM,EXT) on input x where x = ⊥ and lets view, s denote its output.20

5. Given that the right-execution in the view view contains an accepting proof of the statement
(r, c, v), output v, s.

It follows directly from the simulation-extractability property that there exists a polynomial p′ such
that for infinitely many k, it holds that with probability at least 1

q(k) , Â will complete the commit

phase in such a way that there exists two different values that Â will decommit to with probability
at least 1

p′(k) , contradicting the computational binding property of Com.

(Statistical) Hiding: The hiding property directly follows from the hiding property of Com.
Note that if Com is statistically hiding then 〈C,R〉 is also statistically hiding.

Non-malleability: We show that for every probabilistic polynomial-time man-in-the-middle
adversary A, there exists a probabilistic expected polynomial-time stand-alone adversary S and

20The reason we only provide one input (x) to the simulator-extractor, instead of two inputs (x, z) is that we here
consider the second input (representing the non-uniform advice z) being hard-coded into the decription of (SIM, EXT).

43



a negligible function ν : N → N , such that for every non-polynomial-time computable relation
R⊆{0, 1}k×{0, 1}k, every v∈{0, 1}k, and every z∈{0, 1}∗, it holds that:

Pr
[
mimA

open(R, v, z) = 1
]

< Pr
[
staS

open(R, v, z) = 1
]

+ ν(k)

We note that despite the similarities of the protocols, the stand-alone adversary S constructed
is quite different to the one constructed in the proof of Theorem 6.1 (i.e. the proof of that our
non-malleable commitments with respect to commitment is non-malleable).

Description of the stand-alone adversary. We proceed to describe the stand-alone adversary.
On a high-level, S internally incorporates A and emulates the commit phase of the left execution
for adversary A by honestly committing to 0k, while externally forwarding messages in the right
execution. Once A has completed the commit phase, S interprets the residual adversary (after the
completed commit phase) as a man-in-the middle adversary A′ for 〈Ptag, Vtag〉. It then executes
the simulator-extractor (SIM,EXT) for A′ to obtain a witness to the statement proved in the right
execution by A′ (and thus A). Using this witness S can then complete the decommit phase of the
external execution.

More formally, the stand-alone adversary S proceeds as follows on input z.

1. S internally incorporates A(z).

2. During the commit phase S proceeds as follows:

(a) S internally emulates the left interaction for A by honestly committing to 0k.

(b) Messages from right execution are forwarded externally.

3. Once the commit phase has finished S receives the value v. Let (r, c), (r̃, c̃) denote the left
and right-execution transcripts of A (recall that the left execution has be internally emulated,
while the right execution has been externally forwarded).

4. Construct a man-in-the-middle adversary A′ for 〈Ptag, Vtag〉. Informally, A′ will simply con-
sist of the residual machine resulting after the above-executed commit phase. More formally,
A′(x,tag, z′) proceeds as follows:

(a) Parse z′ as (r̃, c̃, z).

(b) Parse x as (r, c, v).

(c) Internally emulate the commit phase (r, c), (r̃, c̃) for A(z) (i.e., feed A the message r̃ as
part of its right execution, and c as part of its left execution).

(d) Once the commit phase has finished, feed v to A.

(e) Externally forward all the remaining messages during the reveal phase.

5. Let (SIM,EXT) denote the simulator-extractor for A′.

6. Let x = (r, c, v), tag = (r, c, v) and z′ = (r̃, c̃, z)

7. Run (SIM,EXT) on input (x,tag, z′) to obtain the view view and the witness w̃.

8. Finally, if the statement proved in the right-execution of view is x̃ = (r̃, c̃, ṽ) (where ṽ is an
arbitrary string) and if w̃ contains a valid witness for x̃, run the honest prover strategy Ptag

on input x̃ and the witness w̃.

44



Analysis of the stand-alone adversary. Towards the goal of showing equation 5, we define an
hybrid stand-alone adversary Ŝ that also receives v as auxiliary input. Ŝ proceeds exactely as S,
but instead of feeding A a commitment to 0k in the commit phase, Ŝ instead feeds A a commitment
to v.

Since both experiment sta and S are efficiently computable the following claim directly follows
from the statistical hiding property of Com.

Claim 6.9 There exists some negligible function ν ′ such that∣∣∣ Pr
[
staS

open(R, v, z) = 1
]
− Pr

[
staŜ

open(R, v, z) = 1
]∣∣∣ ≤ ν ′(k)

We proceed to show that following claim, which together with Claim 6.9 concludes Equation 5.

Claim 6.10 There exist some negligible function ν ′′

Pr
[
mimA

open(R, v, z) = 1
]
≤

[
staŜ

open(R, v, z) = 1
]
+ ν ′′(k)

Proof: Towards the goal of showing this claim we introduce an additional hybrid experiment
hyb(R, v, s) which proceeds as follows: Emulate staS̃

open(R, v, z) but instead of defining ṽ as the
value (successfully) decommitted to by S, define ṽ as the value decommitted to in the view view
output by simulator-extractor (SIM,EXT) (in the description of S). We start by noting that it
follows directly from the indistinguishability property of the simulator-extractor (SIM,EXT) that
the following quantity is negligible.∣∣∣ Pr

[
mimA

open(R, v, z) = 1
]
− Pr

[
hyb(R, v, s) = 1

]∣∣∣
To conclude the claim, we show that

Pr
[
hyb(R, v, s) = 1

]
≤

[
staŜ

open(R, v, z) = 1
]

Note that the only difference between experiments sta and hyb is the definition of success. Further-
more, it follows from the simulation-extractability property of 〈Ptag, Vtag〉 that (SIM,EXT) always
output a valid witness if the right-execution in view is accepting, as long as the tag of the right
execution is different from the tag of the left execution.

In the case the tag of the left execution is different from the tag of the right execution, we
conclude by the perfect completeness of 〈Ptag, Vtag〉 that the output of experiments sta and hyb are
defined in exactely the same way. Furthermore, in case the tags are the same, we note that ṽ must
be defined as v in hyb – which means that hyb definitively will output 0 (since R is non-reflexive).
The claim follows.

This completes the proof of Theorem 6.8.

Remark 6.11 (Black-box v.s. Non Black-box Simulation) Note that the stand-alone adver-
sary S construced in the proof of Theorem 6.8 is very different from the stand-alone adversary con-
structed in the proof of Theorem 6.1. In particular S constructed above in fact runs the simulator-
extractor (SIM,EXT) (whereas in the proof of Theorem 6.1 the simulator extractor is simply used
in the analysis. As a consequence, (in contrast to the simulator constructed in 6.1) the stand-alone
adversary S constructed above makes use of the man-in-the middle adversary in a non black-box
way if relying on a simulation-extractable argument with a non-black box simulator.

45



Since families of non-interactive statistically hiding commitments can be based on collision-resistant
hash-functions [32, 9] we obtain the following corollary:

Corollary 6.12 (Statistically hiding non-malleable commitment) Suppose that there exists
a family of collision resistant hash functions. Then there exists a constant-round statistically hiding
commitment scheme which is non-malleable with respect to opening.

7 Acknowledgments

We are grateful to Johan H̊astad and Moni Naor for many helpful conversations and great advice.
Thanks to Boaz Barak for useful clarifications of his works. The second author would also like
to thank Marc Fischlin, Rosario Gennaro, Yehuda Lindell and Tal Rabin for insightful discussions
regarding non-malleable commitments. Finally, thanks to Oded Goldreich for useful comments on
an earlier version of this work.

References

[1] B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages 106–115, 2001.

[2] B. Barak. Constant-Round Coin-Tossing or Realizing the Shared Random String Model. In 43rd FOCS,
p. 345-355, 2002.

[3] B. Barak and O. Goldreich. Universal Arguments and their Applications. 17th CCC, pages 194–203,
2002.

[4] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction. In 34th STOC, p. 484–
493, 2002.

[5] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel Repetition Lower the Error in Computationally
Sound Protocols? In 38th FOCS, pages 374–383, 1997.

[6] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. JCSS, Vol. 37, No. 2,
pages 156–189, 1988. in 27th FOCS, 1986.

[7] R. Canetti and M. Fischlin. Universally Composable Commitments. In Crypto2001, Springer LNCS 2139,
pages 19–40, 2001.

[8] Ivan Damg̊ard and Jens Groth. Non-interactive and Reusable Non-Malleable Commitment Schemes. In
35th STOC, pages 426-437, 2003.

[9] I. Damg̊ard, T. Pedersen and B. Pfitzmann. On the Existence of Statistically Hiding Bit Commitment
Schemes and Fail-Stop Signatures. In Crypto93, pages 250–265, 1993.

[10] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust Non-interactive Zero
Knowledge. In CRYPTO 2001, pages 566-598, 2001.

[11] G. Di Crescenzo, J. Katz, R. Ostrovsky and A. Smith. Efficient and Non-interactive Non-malleable
Commitment. In EUROCRYPT 2001, pages 40-59, 2001.

[12] G. Di Crescenzo, Y. Ishai and R. Ostrovsky. Non-Interactive and Non-Malleable Commitment. In 30th
STOC, pages 141-150, 1998

[13] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Jour. on Computing, Vol. 30(2),
pages 391–437, 2000. Preliminary version in 23rd STOC, pages 542-552, 1991

46



[14] U. Feige, D. Lapidot and A. Shamir. Multiple Noninteractive Zero Knowledge Proofs under General
Assumptions. Siam Jour. on Computing 1999, Vol. 29(1), pages 1-28.

[15] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22nd STOC,
p. 416–426, 1990.

[16] M. Fischlin and R. Fischlin. Efficient Non-malleable Commitment Schemes. In CRYPTO 2000, Springer
LNCS Vol. 1880, pages 413-431, 2000.

[17] O. Goldreich. Foundation of Cryptography – Basic Tools. Cambridge University Press, 2001.

[18] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems for NP.
Jour. of Cryptology, Vol. 9, No. 2, pages 167–189, 1996.

[19] O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords Only. In CRYPTO 2001,
p. 408-432, 2001.

[20] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity or All Lan-
guages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38(1), pages 691–729, 1991.

[21] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness Theorem
for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987.

[22] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems. Jour. of Cryp-
tology, Vol. 7, No. 1, pages 1–32, 1994.

[23] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28(2), pages 270-299, 1984.

[24] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems.
SIAM Jour. on Computing, Vol. 18(1), pages 186–208, 1989.

[25] J. H̊astad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Generator from
any One-Way Function. SIAM Jour. on Computing, Vol. 28 (4), pages 1364–1396, 1999.

[26] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th STOC, pages 723–732,
1992.

[27] Y. Lindell. Bounded-Concurrent Secure Two-Party Computation Without Setup Assumptions. In 34th
STOC, pages 683–692, 2003.

[28] P. D. MacKenzie, M. K. Reiter, K. Yang: Alternatives to Non-malleability: Definitions, Constructions,
and Applications. TCC 2004, pages 171-190, 2004.

[29] S. Micali. CS Proofs. SIAM Jour. on Computing, Vol. 30 (4), pages 1253–1298, 2000.

[30] M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology, Vol. 4, pages 151–158, 1991.

[31] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Perfect Zero-Knowledge Arguments for NP Using
any One-Way Permutation. Jour. of Cryptology, Vol. 11, pages 87–108, 1998.

[32] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Applications. In
21st STOC, pages 33–43, 1989.

[33] M. Nguyen and S. Vadhan. Simpler Session-Key Generation from Short Random Passwords. In 1st
TCC, p. 428-445, 2004.

[34] R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest Majority. In 36th
STOC, 2004, pages 232-241, 2004.

47



[35] R. Pass and A. Rosen. Bounded-Concurrent Secure Two-Party Computation in a Constant Number of
Rounds. In 34th FOCS, pages 404-413, 2003.

[36] R. Pass and A. Rosen. Concurrent Non-Malleable Commitments. In 36th FOCS, pages 563–572, 2005.

[37] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext Security. In
40th FOCS, pages 543-553, 1999.

48



Appendix

A Missing Proofs

Proposition 4.2 (Argument of knowledge) Let 〈PsWI, VsWI〉 and 〈PUA, VUA〉 be the protocols
used in the construction of 〈PsUA, VsUA〉. Suppose that {Hn}n is collision resistant for T (n)-sized
circuits, that Com is statistically hiding, that 〈PsWI, VsWI〉 is a statistical witness indistinguishable
argument of knowledge, and that 〈PUA, VUA〉 is a universal argument. Then, for any tag ∈ {0, 1}n,
〈Ptag, Vtag〉 is an interactive argument of knowledge.

Completeness of 〈Ptag, Vtag〉 follows from the completeness property of 〈PsUA, VsUA〉. Specifi-
cally, an honest prover P , who possesses a witness w for x ∈ L can always make the verifier accept
by using w as the witness in the n parallel executions of 〈PsUA, VsUA〉. To demonstrate the argument
of knowledge property of 〈Ptag, Vtag〉, it will be sufficient to prove that 〈Ptag, Vtag〉 is an argument
of knowledge. This is because the prescribed verifier in 〈Ptag, Vtag〉 will accept the proof only if all
runs of 〈Ptagi

, Vtagi
〉 are accepting.21

Lemma A.1 Suppose that {Hn}n is collision resistant for T (n)-sized circuits, that Com is sta-
tistically hiding, that 〈PsWI, VsWI〉 is a statistical witness indistinguishable argument of knowledge,
and that 〈PUA, VUA〉 is a universal argument. Then, for any tag ∈ [2n], 〈Ptag, Vtag〉 is an argument
of knowledge.

Proof: We show the existence of an extractor machine E for protocol 〈Ptag, Vtag〉.

Description of the Extractor Machine. E proceeds as follows given oracle access to a malicious
prover P ∗. E starts by constructing a machine P ∗WI (using only black-access to P ∗): P ∗WI is obtained
by internally “emulating” the role of the honest verifier Vtag for P ∗ until the protocol 〈PWI, VWI〉 is
reached. Let (α, β̂, γ, δ̂) denote the transcript of the “Encrypted UARG” in the emulation by P ∗WI.

The extractor E then applies the witness extractor EWI for 〈PWI, VWI〉 on P ∗WI. If EWI(P ∗WI)
outputs a witness w, such that RL(x,w) = 1, E outputs the same witness w, otherwise it outputs
fail.

Analysis of the Extractor. Let P ∗ be a non-uniform PPT that convinces the honest verifier
V = Vtag of the validity of a statement x ∈ {0, 1}n with probability ε(n). We assume without loss
of generality that P ∗ is deterministic. We need to show the following two properties:

1. Except with negligible probabilility, E outputs a valid witness to x.

2. The expected number of steps taken by E is bounded by poly( 1
ε(n)).

We start by noting that since P ∗WI perfectly emulates the role of the honest verifier Vtag, it
follows that P ∗WI convinces VWI with probability ε(n). Thus, the second property directly follows
from the proof-of-knowledge property of 〈PWI, VWI〉. It additionally follows from the proof-of-
knowledge property of 〈PWI, VWI〉 that execept with negligible probability one of the following two
events occur in the execution of EP ∗

:

1. EWI outputs w s.t. (x,w) ∈ RL

21One could turn any cheating prover for 〈Ptag, Vtag〉 into a cheating prover for 〈Ptagi
, Vtagi

〉 by internally emulating
the role of the verifier Vtagj

for j 6= i and forwarding the messages from Ptagi
to an external Vtagi

.

49



2. EWI outputs 〈β, δ, s1, s2〉 so that:

• β̂ = Com(β; s1).

• δ̂ = Com(δ; s2).

• (α, β, γ, δ) is an accepting transcript for 〈PUA, VUA〉

If the second event occurs we say that EWI outputs a false witness. We next show that EWI outputs
false witnesses only with negligible probability. From this we conclude that the first event happens
with probability negligibly close to 1 which concludes that property 1 above also holds, and the
theorem follows.

Proposition A.2 EPWI
WI outputs a false witness with negligible probability.

Proof: Towards proving the proposition we start by showing the following lemma.

Lemma A.3 Let P ∗sUA be a non-uniform polynomial-time machine such that for uniformly chosen

verifier messages α, γ, E
P ∗

UA(α,γ)

WI outputs a false witness to the statement x̄ = (x, 〈h, c1, c2, r1, r2〉)
with probability ε(k) = 1

poly(k) (where P ∗sUA(α, γ) denotes the residual prover obtained after feeding
P ∗UA the messages α, γ). Then, there exists a polynomial-time machine extract such that with
probability poly(ε(k)), extract(P ∗UA, x̄) outputs

• an index i ∈ {1, 2}

• strings y, s, z such that z = h(Π), ri = Π(y, s), and ci = Com(z; s)

• a polynomial-time machine M such that M(i) outputs the i’th bit of Π. (M is called the
“implicit” representation of Π.)

Proof: The proof of the lemma proceeds in the following two steps.

1. Using an argument by Barak and Goldreich [3], we use P ∗sUA and EWI to construct a prover
P ∗UA for the UARG 〈PUA, VUA〉 that succeeds with probability poly(ε(k)).

2. Due to the weak proof of knowledge property of UARG we then obtain an index i ∈ {1, 2},
strings y, s, a hash z = h(Π) s.t. ri = Π(y, s) and ci = C(z; s). We furthermore obtain an
“implicit” representation of the program Π.

Step 1. Constructing P ∗UA . P ∗UA proceeds as follows.

• P ∗UA starts by receiving a message α from the honest verifier VUA.

• P ∗UA incorporates P ∗sUA and internally forwards the message α, to P ∗sUA resulting in a residual
prover P ∗sUA(α).

• P ∗UA then internally emulates the role of the honest verifer for P ∗sUA until protocol 〈PWI, VWI〉
is reached (i.e., P ∗UA uniformly choses a random message γ̄ that it forwards to P ∗sUA, resulting
in a residual prover P ∗WIUA(α, γ̄)). Thereafter, P ∗UA honestly emulates the verifier VWI for
P ∗WIUA(α, γ̄)). If P ∗WIUA(α, γ̄) succeeds in providing an accepting proof, P ∗UA invokes the
knowledge extractor EWI on prover P ∗sUA(α, γ̄).

• In the event that P ∗WIUA(α, γ̄) does not produce an accepting proof, or if EWI does not output
an accepting tuple 〈β, δ, s1, s2〉, P ∗UA halts. Otherwise it externally forwards the message β to
VUA and receives as response γ.

50



• P ∗UA now rewinds P ∗sUA until the point where it awaits the message γ and internally forwards
γ to P ∗UA, resulting in a residual prover P ∗UA(α, γ). As before P ∗AU first honestly verifies the
WI proof that P ∗UA(α, γ) gives and in the case this proof is accepting applies the extractor
EWI to P ∗UA(α, γ).

• If E′ outputs an accepting tuple 〈β′, δ′, s′1, s′2〉, such that β′ = β, P ∗UA forwards δ to VUA, and
otherwise it halts.

Since α, β′, γ, δ′ is an accepting transcript of 〈PUA, VUA〉, it follows that unless P ∗UA halts the exe-
cution, it succeeds in convincing the verifier VUA.

We show that P ∗AU finishes the execution with probability poly(ε(k)). Using the same argument
as Barak and Goldreich [3] (of counting “good” verifier messages, i.e., messages that will let the
prover succeed with “high” probability, see Claim 4.2.1 in [3]), it is easily seen that with probability
poly(ε(k)), P ∗UA reaches the case where the extractor outputs 〈β′, δ′, s′1, s′2〉. Thus it only remains
to show that conditioned on this event, β′ 6= β occurs with polynomial probability. In fact, the
event that can β′ = β only occur with negligible probability or else we would contradict the binding
property of Com (since β̂ = Com(β, s1) = Com(β′, s′1)). We thus conclude that P ∗UA succeeds in
convincing VAU with probability poly(ε(k)).

Furthermore, since the extractor EWI is only applied when P ∗UA provides an accepting proof,
it follows from the defition of a proof-of-knowledge that the expected running-time of P ∗AU is a
polynomial, say g(n). Finally, if we truncate the execution of P ∗AU after 2g(n) steps we get by
the Markov inequality that (the truncated) P ∗AU still convinces produces concvincing proofs with
probability poly(ε).

Step 2: Extracting the “false” witness. By the weak proof of knowledge property of
〈PUA, VUA〉 there exists a PPT machine EUA such that E

P ∗
UA

UA outputs an “implicit” representa-
tion of a “witness” to the statement x̄ = (x, 〈h, c1, c2, r1, r2〉) proved by P ∗UA. Since the values
i, y, s, z have fixed polynomial length, they can all be extracted in polynomial time. Note, however,
that since there is not a (polynomial) bound on the length of the program Π, we can only extract
an implicit representation of Π. The concludes the proof of the lemma.

Armed with Lemma A.3, we now turn to show that EPWI
WI outputs a false witness with negligible

probability. Suppose for contradiction that there exist a polynomial p(k) such that for infinitely
many k’s, EPWI

WI outputs a false witness, with probability at least ε(k) = 1
p(k) . We construct a

T (k)O(1)-sized circuit family, {Ck}k, that finds collisions for {Hk}k with probability poly(ε(k)).
More specifically,

• On input h
r← Hk, the circuit Ck incorporates P ∗ and internally emulates the honest verifier

V for P ∗ until the protocol 〈PsUA, VsUA〉 is reached (i.e., Ck internally sends randomly chosen
messages h, r1, r2 to P ∗, resulting in a residual prover P ∗(h, r1, r2)).

• Ck then invokes the knowledge extractor extract, guaranteed by lemma A.3, on P ∗(h, r1, r2),
extracting values i, y, s, z and an implicit representation of Π, given by a machine M .

• If extract fails, Ck outputs fail, otherwise it rewinds P ∗ until the point where it expects to
receive the message ri, and then continues the emulation of the honest verifier from this point
(using new random coins).

• Once again, when P ∗ reaches 〈PsUA, VsUA〉, Ck invokes extract on the residual prover, extract-
ing values i′, y′, s′, z′ and an implicit representation of Π′, given by a machine M ′.

51



• If the extraction fails or if i′ 6= i, Ck outputs fail.

It remains to analyze the success probability of Ck. We start by noting that y = y′ occurs only
with negligible probability. This follows from the computational binding property of Com. Since
the probability that E

P ∗
WI

WI outputs a false witness is ε(k) it must hold that for a fraction ε(k)/2
of the verifier messages before protocol 〈PsUA, VsUA〉, EWI outputs a false witness with probability
ε(k)/2 when given oracle access to P ∗ having been feed messages in this set of “good” messages.
Due to the correctness of extract it holds that when Ck selects verifier messages from this “good”
set, the probability that extraction succeeds (in outputting a false witness) on P ∗ is

ε′ = poly(ε)

Thus, given that Ck picks random verifier messages, it holds that the probability that extract
succeeds is at least

ε′′ =
ε

2
ε′ = poly(ε)

There, thus, exists an index σ ∈ {1, 2} such that the extraction outputs the index i = σ with
probability ε′′′ = ε′′/2. Again, for a fraction ε′′′/2 of verifier messages before slot σ (when σ = 1,
there is only one message, namely h, while when σ = 2, the messages are h, r1), the residual prover
(P ∗(h) when σ = 1, or P ∗(h, r1) when σ = 2) succeeds in convincing the verifier with probability
ε′′′/2. We conclude that with probability

ε′′′/2 · (ε′′′/2)2 = poly(ε)

Ck obtains an implicit representation of programs Π,Π′ such that ∃y, y′ ∈ {0, 1}(|ri|−n) for which
Π(y) = ri, Π′(y′) = r′i and h(Π) = h(Π′). Using a simple counting argument it follows that with
probability (1− 2−n) (over the choices of ri, r

′
i), Π 6= Π′.22 Thus, by fully extracting the programs

(from the implicit representation) Ck finds a collision with probability

poly(ε) · (1− 2−n) = poly(ε)

Note that the time required for extracting these programs is upper bounded by T (n)O(1). Thus,
any poly-time prover P ∗ that can make V accept x 6∈ L with non-negligible probability can be used
in order to obtain collisions for h

r← Hn in time T (n)O(1), in contradiction to the collision resistance
of {Hn}n against T (n)-sized circuits.23 This concludes the proof of the proposition.

This completes the proof of Lemma A.3.

Basing the construction on “standard” collision resistant hash functions Although
the above analysis (for the proof of knowledge property of 〈Ptag, Vtag〉) relies on the assumption
that {Hk}k is a family of hash functions that is collision resistant against T (k)-sized circuits, we
note that by using the method of Barak and Goldreich [3], this assumption can be weakened to
the (more) standard assumption of collision resistance against polynomial-sized circuits. The main
idea in their approach is to replace the arbitrary hashing in Slot 1 and 2 with the following two
step hashing procedure:

• Apply a “good”24 error-correcting code ECC to the input string.

22Fix Π, Π′, y, ri. Then, with probability 2−n over the choice of r′i, there exist a y′ ∈ {0, 1}(|r′
i|−n) s. t. Π′(y′) = r′i.

23We mention that by slightly modifying the protocol, following the approach by Barak and Goldreich [3], one can
instead obtain a polynomial-sized circuit Ck finding a collisions for Hk. More details follow after the proof.

24By “good” we here mean an error-correcting code correcting a constant fraction of error.

52



• Use tree-hashing to the encoded string.

This method has the advantage that in order to find a collision for the hash function in the “proof
of knowledge” proof, the full description of programs Π,Π′ is not needed. Instead it is sufficient to
look at a randomly chosen position in the description (which can be computed in polynomial time
from the implicit representation of Π,Π′). The analysis, here, relies on the fact that two different
codewords differ in random position i with a (positive) constant probability.

53


