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Abstract

We put forward a first definition ofgeneralsecure com-
putation that,without any trusted set-up,
• handles anarbitrarynumber ofconcurrentexecutions;

and

• is implementable based onstandard complexity as-
sumptions.

In contrast to previous definitions of secure computation,
ours isnot simulation-based.

1. Introduction

General secure computation should enable any number
of players, each having his own secret input, to evaluate any
desired functionf on their inputs in a way that is both pri-
vate and correct. This desideratum was originally formal-
ized by [19] in a very stringent way. Intuitively, the players
should beabsolutely indifferentbetween (1) securely com-
puting f and (2) privately handing their secret inputs to a
trusted party, who then computesf and privately returns the
results. This formalization of secure computation is now re-
ferred to as thesimulation-basedapproach [19, 4, 21, 31, 7].

A crucial property of this definition is itsready imple-
mentability,based on standard complexity assumptions. In-
deed, as proven in [19] (based on the prior two-party result
of [42]), the existence of trap-door permutations implies the
existence of general secure computation in thestand-alone
setting. That is, when a single function evaluation is envis-
aged.

1.1. Pure Concurrent Security

Often, however, the players may need to securely evalu-
ate multiple functions (on matching sets of secret inputs), by
running the proper protocols in an asynchronous environ-
ment (like the Internet). We refer to this as theconcurrent
setting. In this more complex environment, privacy and cor-
rectness should be preserved for arbitrarily many protocols,
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and for any possible scheduling of their executions. (Put it
in another way, players executing a secure protocol should
never worry about their executing other secure protocols.)
We refer to this intuitive desideratum asconcurrent secu-
rity. Much effort has been devoted in the last two decades
to develop a suitable notion of concurrent security. Ideally,
such a notion should satisfy two crucial properties. Namely,

1. Pure Complexity. Informally: for any functionf , the
existence of a protocol securely evaluatingf should
be guaranteed by standard complexity-assumptions
alone. That is,

Security shouldnot arise from some form of trusted
infrastructure, but solely from the players’ inability of
performing super-polynomial computation.

2. Independent Design.Informally, it should be possible
to design a protocolP in total isolation, so as to sat-
isfy the chosen notion of security, and rest assured that
privacy and correctness will continue hold whenP is
concurrently executed with other protocolssatisfying
the same security notion.That is,

In order to guarantee concurrent security, protocol de-
signers should not need to coordinate their efforts in
any way beyond adopting the same notion of security.

We consider these two desiderata to be intrinsic to true con-
currency, and callPure Concurrent Securitya notion of con-
current security that satisfies both of them.

1.2. Current State of Concurrent Security

Currently, the main approach to define concurrent gen-
eral secure computation is via simulation.

The strongest such notion is universal composibility
(UC), first achieved in the perfect setting by Dodis and Mi-
cali [12] —under the name “parallel reducibility”— and
then in the computational setting by Canetti [8] and Pfitz-
man and Waidener [37]. The UC approach, however, can
only be exemplified by relying either on the assumption
that the majority of the players are honest [5, 11, 40], or on
some trusted set-up assumption —such as the existence of a



public string trusted to have been sampled from a specified
distribution [10]; or a public-key infrastructure in which ev-
ery player is guaranteed to know the secret key correspond-
ing to his public key [2].) Such restrictions for the imple-
mentability of the UC notion have been proved to be nec-
essary [9, 29]. In particular,all general two-party UC pro-
tocols require some trusted set-up assumptions.In a sense,
therefore, UC does not satisfy Pure Complexity in the two-
party case. However, it does satisfy Independent Design.1

To circumvent impossibility results regarding UC pro-
tocols, two veins of research have been investigated in the
literature: 1) weaker concurrency and 2) weaker security.

Weaker Concurrency: Building on initial results by
[28, 34, 1], [32] constructs general multi-party protocols
that remain secure as long as there exists an a-priori
bound on the number of concurrent executions at any given
point, a.k.abounded-concurrency(the model of bounded-
concurrency was first considered in [1]).2 As such, the
bounded-concurrency model allows us to regain Pure Com-
plexity, while sacrificing Independent Design.

Extending [14], [24] obtain general multi-party protocols
in the timing model (first introduced in [14]). In this model
it is assumed that all honest parties have access to clocks
which proceed at approximately the same rate; this assump-
tion can be used to enforce scheduling constraints on the
execution of concurrent protocols. As such, protocols in the
timing-model sacrifice both Pure Complexity and Indepen-
dent Design (but arguably sacrifice Pure Complexity to a
lesser extent than UC protocols, and Independent Design to
a lesser extent than bounded-concurrent protocols).

Weaker Security: [33] suggests to weaken the standard
simulation-based definition of security by allowing for asu-
per polynomial-time simulation(SPS). [3] and [39], based
on initial results by [33], obtain general multi-party pro-
tocols that are concurrently SPS secure. These protocols,
however, have only been exemplified under non-standard
complexity assumptions: a conspicuously non standard one
in [39]; and the existence of sub-exponentially hard to in-
vert functions in [3]. Thus, the SPS approach does not quite
satisfy Pure Complexity. More problematically, however,
from a conceptual view point, the SPS approach violates
Independent Design. By this we donot mean that running
SPS secure protocols may endanger other protocols which

1In fact, UC protocols satisfy a seemingly stronger property: namely,
they do not affect the security of any other protocols —even not UC ones—
concurrently run with them; this is calledconcurrent general composition.
However, as showed in [30], in the context of standard simulation-based
definitions this property is actually equivalent to only guaranteeing that
secure protocol do not affect the security of other secure protocol; this is
calledconcurrent self-compostion.

2The earlier results of [28, 34, 1] only consider two-party protocols.
More importantly, however, these earlier protocols only remain secure as
long as the same two parties execute a single protocol with so calledfixed
roles, i.e., the same party always plays the same role in the protocol.

are “insecure” —i.e., not satisfying the SPS approach. (This
is a recognized potential problem for SPS protocols. But the
case can be made that every one has an obligation of design-
ing protocols according to the best possible standards, and
SPS designers cannot be responsible for protocols not ad-
hering to their standards.) We instead mean that the SPS ap-
proach requires that all SPS protocols, designedanywhere
by anyone, adopt essentially the same security parameters
in order to be secure when concurrently run.3 Such an adop-
tion would constitute an extraordinary cooperation among
SPS designers: who is to say that —for example— 2,000-
bit keys are sufficient for every one? This results in a dif-
ficult state of affairs: if one financial institution decided to
boost its security by adopting 1M-bit keys for its main pro-
tocol P (a quite legitimate and autonomous decision), then
in the SPS approach, such a decision may actually render in-
secure all 1K-bit-key SPS protocols that may happen to be
run concurrently withP . In a sense, therefore,All known
SPS protocols achieve concurrent security at the expense of
Independent Design.

In sum, therefore, nogeneralnotion of Pure Concurrent
Security exist today.

1.3. Our Contribution

We put forward a new notion of security for the con-
current setting thatrelaxessimulation-based security, but
brings us closer to simultaneously achieving both Pure
Complexity and Independent Design. We call our security
notion Input Indistinguishability.This notion restricts what
a subsetm of then players can learn about the inputs of the
othern−m players in a secure computation of adetermin-
istic function f . Expressing this in full generality quickly
becomes very complex. Below we sketch our notion when
m = 1 andn is arbitrary, but in this extended abstract we
further restrict ourselves to the case whenn = 2 (which, as
we shall see, is complex enough). Then, in the stand-alone
setting, input indistinguishability means that a player cannot
tell which inputs the other parties might have used. To even
be slightly more precise we need a minimum of notation.

3An SPS protocol has several interrelated running times associated with
it. Let us single out two of them: informally,T1, representing the the
amount of “free computational help” that an adversary can obtain by virtue
of participating in the protocol, andT2, the time necessary to violate the
input privacy. Thus,T1 must be very large, but much smaller thanT2.
Now, if the SPS protocol is run concurrently with a second one whose
main running times areT ′

1 andT ′
2, then it better be thatT1 < T ′

2. (Else,
by participating in an execution of the first protocol, an adversary might
be able to utilize “knowledge that is only computable inT1 steps” when
attacking the privacy of the second protocol run concurrently with the first.)
But this condition entails that the security parameters of the two protocols,
which actually control their two fundamental running times, be very close.
Indeed, because the complexity gap in sub-exponential simulation is much
tighter than that between polynomial and exponential, these parameters —
if the underlying complexity assumptions are the same— can be taken to
be roughly the same at a first approximation.



Denote the set of players other thani by−i. If V a vec-
tor indexed by the players, denote byV−i the sub-vector
whose indices belong to−i. Consider a distributed proto-
col P as a vector of individual interactive Turing machines,
P = (P1, . . . , Pn), and an-input n-output functionf as a
vector(f1, . . . , fn), wherefi is the function consisting of
evaluatingf and returning theith component of its output.
Say that inputxi splitsthe input sub-vectorsx−i andx′−i if
f(xi, x−i) 6= f(xi, x

′
−i); else, say that itagreeswith them.

Then, a cryptographic protocolP for computingf is
(one-player)input indistinguishableif, informally speak-
ing, the following is true. For any (bad) playeri, for any
possible input sub-vectorsx−i andx′−i (of the good play-
ers), and for any polynomial-time cheating protocolPi’ that
i may run, at the end of a random execution of(P−i, Pi) in
which the input vector of the good players is with proba-
bility 1/2 x−i and with probability 1/2x′−i, playeri cannot
tell which of the two sub-vectors were actually used with
probability noticeably greater than 1/2, unless he chooses
an inputxi for himself that splitsx−i andx′−i.

A Minimal Definition. In this work, we focus on a mini-
mal version of input indistinguishability, both for clarity and
space constraints. Input indistinguishability can be enriched
– with some advantage – with additional desiderata such as
input-awareness(which will make it closer to simulation-
based notions, while still avoiding its pitfalls). These en-
richments will be the subject of forthcoming work.

1.4. Main Results

We prove the following properties about Input Indistin-
guishability. First, that an input indistinguishable protocol
P = (P1, P2) exists (and can in fact be readily found) for
any 2-input 2-output functionf , based on standard com-
plexity assumptions and without relying on trusted set-up.
Second, for any secret input vectors~x1, ~x2, . . . the players
can concurrently executeP andprovably maintainInput In-
distinguishability. Roughly, this means that if a playeri
knew beforehand that the inputs of the other player were
x1
−i, x

2
−i, . . . with prob. 1/2 andx1

−i
′, x2
−i
′, . . . with prob.

1/2, he could not disambiguate which is the case better than
at random, unless, for some executionj, he deliberately
chooses an inputxj

i for himself that splitsxj
−i andxj

−i
′.

Theorem 1 Let f be a deterministic two-party function.
Suppose there exists a collection of enhanced trapdoor per-
mutations, and a family of claw-free permutations.4 Then,
there exists a protocol(P1, P2) that computesf in a con-
current input-indistinguishable way.

4Both assumptions in the hypothesis of Theorem 1 follow from the as-
sumption that factoring Blum integers is hard. Enhanced trapdoor permu-
tations are required for obtaining (semi-honest) Oblivious Transfer. Claw-
free permutations are required for obtainingperfectlyhiding-commitment,
as well as collision resistant hashing.

Thus, Input Indistinguishability relaxes simulation-
based security, but enables us to obtain a protocol for secure
computation that under standard complexity assumptions
remains secure under an unbounded number of concurrent
executions. This may be considered progress so long as our
relaxation is meaningful. (Which of course crucially de-
pends on the precise details of our definition!)

We point out that in analogy with the notion of Witness
Indistinguishability5 (more on Witness Indistinguishability
below), Input Indistinguishability does not provide any pri-
vacy guarantees when considering functionsf for which the
input of a player isfully determinedby the input and output
of the other player (even if this input is “hard” to compute).
On the other hand, when this is not the case (i.e., when the
input of a player is not fully determined by the input and
output of the other player), input indistinguishability indeed
provides stronger privacy guarantees. As such, our results
further the undertanding of what types of functions can be
securely and concurrently computed under standard com-
plexity assumptions.

Towards Pure Concurrent Security. As our protocol
does not rely on any trusted set-up and only relies on stan-
dard complexity assumption it satisfies our goal of Pure
Complexity. It furthermore acheives independence of de-
sign, though in a very basic way. A minimal level of coordi-
nation for choosing the length of security parameters needs
to be present: in essence, they must be polynomially related.
In practice, this is going to be automatically satisfied, and in
any case, requires significantely less coordination than that
arising when relying on complexity leveraging; such tech-
niques, in fact, require a very precise choice of security pa-
rameters that are unlikely to occur if this choice is made by
independent designers. (Furthermore, to guarantee concur-
rent security, we additionally require all protocol designers
to adhere to our construction paradigm — that is, security of
a protocol is only guaranteed if concurrently executed with
other secure protocols.6)

1.5. Comparison to the Notion of Witness
Indistinguishability

The closest source of inspiration of our definition is the
notion of a Witness-Indistinguishable (WI) protocol. And
in a sense (though comparing apples and oranges), Input
Indistinguishability can be meaningful as a form of secure
computation as Witness Indistinguishability can be mean-
ingful as a form of Zero Knowledge. One should keep in
mind, however, that the two notions are defined in extremely
different settings:

5Recall that Witness Indistinguishability is trivially satisfied by any in-
terative proof for a language with unique witnesses.

6This is sometimes called concurrent self-composition [29].



(1) In general two-party computation both parties obtain
an input, whereas in the case ofWI the verifier has
no input. As a result, the adversary has some “control”
on what information he can obtain just by playing with
his input.

(2) The output of a general protocol is not a single bit.
This is in contrast toWI in which the verifier’s output
is merely anACCEPT/ REJECTbit.

(3) WI is defined with respect to fixed roles (i.e., the ad-
versary can corrupt either provers or verifiers, but not
both), whereas input indistinguishability allows arbi-
trary corruptions.

Being defined in a more challenging setting, input indis-
tinguishable protocols are more difficult to construct (and to
define!). Indeed, unlike witness indistinguishability, input
indistinguishability is not closed under concurrent compo-
sition. At a high level, the difficulty in composition stems
from the potentialmalleabilityof the protocol at hand [13].

Theorem 2 Suppose that there exist one-way functions.
Then, there exists a protocol that is stand-alone input indis-
tinguishable, but is not concurrent input indistinguishable.

Thus, to achieve a meaningful result in the context of com-
position, one must showdirectly that a specific protocol is
concurrently input indistinguishable. This is in analogy to
the situation in zero-knowledge, which is not closed under
concurrent composition [17] (or even sequential if auxiliary
inputs are not taken into consideration); yet there exist pro-
tocols that remain zero-knowledge even under a concurrent
attack [41, 25, 38].

2. Input Indistinguishable Computation

We shall follow the notation of [6] and [23] verbatim.
We assume familiarity with cryptographic protocols, and
the notion of interactive Turing machines.

2.1. Notation

We considerm concurrent executions of a protocol
(P1, P2), assuming that no other types of protocols are ex-
ecuted at the same time (a.k.a. self composition). The exe-
cutions are run concurrently and their messages can be ar-
bitrarily interleaved. Each distinct execution of the protocol
is called asession. We index the various sessions accord-
ing to the order in which they are terminated; i.e., for any
i, i′ ∈ [m], if i < i′ then sessioni has terminated before
sessioni′.

Inputs and random tapes. For every m, we will let
(x,y) ∈ Dm

1 × Dm
2 denote the corresponding vectors of

inputs. That is,x = (x1, . . . , xm) wherexi ∈ D1 is P1’s

input in sessioni, andy = (y1, . . . , ym) whereyi ∈ D2

is P2’s input in sessioni.7 Random tapes are of the form
ρ1 = (ρ1

1, . . . , ρ
m
1 ) andρ2 = (ρ1

2, . . . , ρ
m
2 ), whereρi

1 serves
as random tape forP1 in sessioni, andρi

2 serves as random
tape forP2 in the same session.

Random executions. For an integer n, we let
EXECP1,P2(x,y; 1n) denote the random variable obtained
by (a) randomly and independently selecting random tapes
ρ1 =(ρ1

1, . . . , ρ
m
1 ) for P1 andρ2 =(ρ1

2, . . . , ρ
m
2 ) for P2; (b)

for all i∈ [m] executing theith session of(P1, P2) with 1n

as common input,xi, andρi
1 as private inputs and random

tapes forP1, andyi, ρ
i
2 as private inputs and random tapes

for P2; and (c) returning the execution so generated.

Views. Let e be an execution that consists ofm concur-
rent sessions of(P1, P2). For a positive integeri ∈ [m], let
M i

1 be the sequence of messagesreceivedby the first party
in sessioni. Thefirst-party viewof sessioni in e, denoted
viewi

1(e), is defined to be(xi, ρ
i
1,M

i
1). Symmetrically de-

fined is thesecond-party view of sessioni, viewi
2(e),

Concurrent adversaries. An m-concurrent adversary
runsm = poly(n) many executions of the protocol, and
has full control of the scheduling of messages sent and re-
ceived in the various executions. For simplicity, we assume
that the adversary can only corrupt either a subset (or all) of
the P1’s or a subset (or all) of theP2’s (but not both). At
the cost of more cumbersome notation, our definitions can
be extended to handle arbitrary corruptions, assuming each
possible participant in the protocols is assigned a unique
identity. Our protocols can be shown to be secure even in
the latter (more complex) scenario.

Inputs, executions, views and outputs. An m-
concurrent adversaryP ∗1 may ignore the inputs,x, of
individual sessions, and replace them with inputs chosen
adaptively as a function of the messages it receives. We
assume thatP ∗1 has a single random tape,ρ∗1, which is used
throughout them concurrent executions of(P ∗1 , P2). A
random variableEXECP∗

1 ,P2(x,y; 1n) is defined accord-
ingly. For a positive integeri∈ [m], letM1 be the sequence
of messagesreceivedby P ∗1 in all m sessions ofe. The
full view of P ∗1 in e, denotedview∗1(e), is defined to be
(x, ρ∗1,M1). The output ofP ∗1 , is determined as a function
of its full view, namelyP ∗1 (view∗1(e)). All of the above
applies symmetrically to anm-concurrent adversaryP ∗2 .

Aborts. The adversary may “abort” a specific execution
of the protocol at any point during the interaction. This
could be done by sending an ill-formed message (i.e., not
according to the protocol’s prescribed instructions), or by
simply refusing to continue. In such a case, the adver-
sary is said to have sent anABORTmessage. We assume

7For simplicity, the inputs of the honest parties are assumed to be cho-
sen in advance. In the full version we describe how the definition can be
extended to handle inputs that are chosen adaptively during the interaction.



that once anABORTmessage has been sent in a session,
both parties continue exchangingABORTmessages (within
the corresponding session) until the session terminates. All
other concurrent sessions proceed independently of these
aborts. For(i, j) ∈ [m]× [k], define a Boolean variable
ABORT(i,j)(e) to be true if and only if sessioni in e is
aborted by roundj.

Output delivery message. The protocols that we con-
sider in our definition will be required to have a designated
output deliverymessage (before which no information on
the output of the protocol should be revealed). For simplic-
ity assume that output delivery occurs at thekth message.
Define a Boolean variableOUTPUTi1(e) to be true if and
only if the output delivery message has been sent to party
P1 in sessioni in e. OUTPUTi2(e) is symmetrically defined.

Extended functions. To capture the unavoidable possi-
bility of an adversary aborting the execution in the begin-
ning/middle of an interaction, we extend the domains and
ranges off so that they include a special⊥ symbol. This
enables any one of the parties to choose⊥ as its local input,
thus forcing the output of the protocol to be⊥. More specif-
ically, for any two-party functionf :D1 × D2→R1 × R2

we consider itsextended versionf ′: (D1∪{⊥})×(D2∪{⊥
})→(R1 ∪ {⊥})× (R2 ∪ {⊥}) that is defined by:

f ′(x, y) 7→

{
f(x, y) if both x 6=⊥ andy 6=⊥
⊥ if eitherx =⊥ or y =⊥

2.2. The Definition

The notion ofimplicit input, is central to our definition. It
is introduced as a means to “pin down” the actual inputs on
which the adversary implicitly performs the computation.

Definition 1 (Implicit input) Let (P1, P2) be a k-round
protocol, and letP ∗1 be anm-concurrent adversary. Con-
sider a function function,IN1, that maps the full view,
view∗1(e), in an executione of (P ∗1 , P2), into a sequence
x∗ = (x∗1, . . . , x

∗
m) ∈ (D1 ∪ {⊥})m. The function is said

to be afirst party implicit input function for (P1, P2) if for
any i ∈ [m] for which ABORT(i,k−1)(e) is true, the value
x∗i equals⊥. The notion of asecond-party implicit input,
IN2, is symmetrically defined.

The definition of input-indistinguishable computation is
stated in terms ofm-concurrent adversaries. The value of
m = m(n) can be taken to be any polynomial in the se-
curity parametern, and the protocol’s computational and
communication complexities do not depend of the value of
m. We refer to the special case wherem = 1 asstand alone
input indistinguishability. Protocols that retain their secu-
rity for any m = poly(n) are said to beconcurrentinput
indistinguishable.

Definition 2 (Input-indistinguishable computation) Let
f : D1 × D2 → R1 × R2 be a deterministic function,
and let (P1, P2) be a fixed-round two-party protocol. We
say that(P1, P2) securely computes f with respect to
the first party and implicit input functionIN2, if for every
polynomialm = m(n), the following conditions hold:

1. Completeness: For every(x,y) ∈ (D1)m × (D2)m,
everyn ∈ N , and everyi ∈ [m]:

Pr
[

P1(viewi
1(e)) = f1(xi, yi)

]
= 1

wheree R← EXECP1,P2(x,y; 1n)

2. Implicit Computation: For every efficient m-
concurrent ITMP ∗2 , there exists a negligible function
ν : N → N , so that for every(x,y) ∈ Dm

1 × Dm
2 ,

everyn ∈ N , and everyi ∈ [m]:

Pr

[
P1(viewi

1(e)) =

{
f1(xi, y

∗
i ) OUTPUTi1(e)

⊥ ¬OUTPUTi1(e)

]
>1−ν(n)

wheree R←EXECP1,P∗
2 (x,y; 1n), y∗← IN2(view∗2(e)).

3. Input Indistinguishability and Independence: For
every efficientm-concurrent ITMP ∗2 , everyx1,x2 ∈
Dm

1 , and everyy ∈ Dm
2 , the following ensembles are

computationally indistinguishable:

•
{

EXPTP1,P∗
2 (x1,x2,y; 1n)

}
n∈N

•
{

EXPTP1,P∗
2 (x2,x1,y; 1n)

}
n∈N

where the random variableEXPTP1,P∗
2 (x1,x2,y; 1n)

is defined as follows:

EXPTP1,P∗
2 (x1,x2,y; 1n)

(a)e R← EXECP1,P∗
2 (x1,y; 1n)

(b) y∗ ← IN2(view∗2(e))
(c) If ∃i ∈ [m] for whichOUTPUTi2(e) is true, and

f2(x1
i , y
∗
i ) 6= f2(x2

i , y
∗
i ),

then output⊥.
(d) Otherwise, output(y∗, view∗2(e)).

Secure computation with respect to the second party is sym-
metrically defined. We finally say that(P1, P2) securely
computes f , if there exist implicit input functionsIN1, IN2

such that(P1, P2) securely computesf with respect toboth
the first and the second party, andIN1, IN2.



2.3. Handling arbitrary corruptions

For simplicity the above definition assumes that the ad-
versary only corrupts either a subset (or all) of the players
runningP1 or a subset (or all) of the players runningP2,
but not both. The definition can be extended to handle ar-
bitrary corruptions, assuming each possible participant in
the protocols is assigned a unique identity. Our protocols
can be shown to be secure even in the latter (more complex)
scenario.

2.4. Comments

Non-uniformity. In order to avoid cumbersome notation,
we refrain from explicitly addressing the issue of auxiliary
inputs. We note that our treatment will carry through even
in case that the adversary is given an auxiliary inputz ∈
{0, 1}∗. Our proof does not preserve uniformity, and hence
the hardness assumptions that we rely on are non-uniform.

Implicit inputs. For those familiar with secure computa-
tion, implicit input should be thought of as a statistically
binding commitment that, with overwhelming probability
over the coin tosses of the honest party, implicitly deter-
mines the inputs used by the adversary. We note that a ma-
licious P ∗2 could cause the value ofIN1 not to be well de-
fined (by sending an inappropriate initialization message to
the statistically binding commitment in use). Indeed, Def. 2
does not require anything from the value ofIN1 when deal-
ing with a corruptedP ∗2 .

Input awareness. Note that Definition 2 does not require
the implicit input functions to be efficiently computatable.
As such, our definition of input indistinguishable computa-
tion does not implyinput awareness, i.e., that all parties
“know” the implicit inputs upon which the protocol per-
forms the computation. In a forthcoming paper we augment
the above definition to also incorporate input awareness and
discuss implications such an augmentation.

Implicit computation. WhenP1 does not have an output
(i.e. whenf1(x, y) = λ for all x, y), implicit computation
doesn’t impose anything on implicit input (since it holds
vacuously). However, whenP1 does have an output, im-
plicit computation is an important feature. In particular, it
guarantees that the implicit input ofP ∗2 is “consistent” with
the output ofP1.

Aborts. Definition 2 does not impose restrictions on the
value of the implicit inputy∗i in case that sessioni is aborted
beforeP ∗2 receives its output. Note that in such a case,
none of the parties receives any outputs. Since whenever
one of the inputs tof equals⊥ then so does its output, we
could thus think of an adversary that aborts sessioni before
it receives its output, as if it has a-priori “chosen” to have
y∗i = ⊥ (thus forcing the output of both parties to be⊥).

Fairness. We do not guarantee fairness. However, by con-
ditioning on the value ofOUTPUTi(e) in the implicit com-
putation condition, we can guarantee that the party who
gets the output first in the protocol always gets the value
of f(xi, y

∗
i ) (resp.f(x∗i , yi)).

Gradual output release. Stand alone input indistin-
guishability rules out gradual release of the output. That is,
it only allows protocols for which the output is revealed “all
at once” in a single message. Loosely speaking, this is be-
cause ifOUTPUTi2(e) is false, indistinguishability of the
view is always guaranteed. This holds regardless of the
value off andeven if the execution is truncated from the
output delivery message and on. Thus, if the implicit input
of sessioni′ is defined prior to the output delivery round of
sessioni, then the actual input of sessioni′ is independent
of sessioni’s output. Note that the latter is indeed a strong
property, and is not guaranteed by many of the previously
known definitions.

“Splitting” inputs. If the sequencey∗ distinguishes be-
tweenx1 andx2 “through” the functionf (i.e.,f(x1

i , y
∗
i ) 6=

f(x2
i , y
∗
i ) for somei ∈ [m]) then input indistinguishability

will give no guarantee. However, if it doesn’t then the cor-
responding views (i.e., the one usingx1 and the one using
x2) will be computationally indistinguishable.

Witness indistinguishability. Note thatWI is a special
case of Input Indistinguishability: for anyNP-relationR,
consider the functionfR((x,w), x) = 1 iff (x, w) ∈ R).

3. Input Indistinguishability does not Compose

In this section we show that,unlike witness indistin-
guishability, our notion of input indistinguishability is not
closed under concurrent composition. We demonstrate this
by presenting a protocol that is stand-alone input indistin-
guishable (i.e., form = 1), but fails to be input independent
when as little as two executions take place concurrently.
Moreover, the protocol fails to be concurrent input indis-
tinguishable even withfixedroles, namely the adversary is
either allowed to corrupt parties that play the role ofP1 or
parties that play the role ofP2 (but not both).

Let Com be a statistically-binding commitment, and let
ZK be any zero-knowledge proof of knowledge of a com-
mitted value. We consider the following two-party protocol
(P1, P2) for computing the functionf(x, y)=(x⊕y, x⊕y)
(see Fig 1 below). The parties(P1, P2) are assumed not to
proceed in case aZK protocol verified by them is rejected.

Claim 1 (P1, P2) is stand-alone input indistinguishable.

Claim 1 follows directly from the definition of input in-
distinguishable computation (proof omitted).

Claim 2 (P1, P2) is notconcurrent input independent.



Local inputs: x ∈ D1 for P1, andy ∈ D2 for P2.

Common Input: Security parameter1n.

P1 → P2: Pickρ
R← {0, 1}n. Sendc = Com(x; ρ).

P1 ⇔ P2: UsingZK, prove∃x, ρ s.t. c = Com(x; ρ).

P2 → P1: Pickσ
R← {0, 1}n. Sendd = Com(y; σ).

P2 ⇔ P1: UsingZK, prove∃y, σ s.t.d = Com(y; σ).

P1⇔P2: Sendx, and usingZK, prove∃ρ s.t.c=Com(x; ρ).

P2⇔P1: Sendy, and usingZK, prove∃σ s.t.d=Com(y; σ).

P1, P2: Outputx⊕ y.

Figure 1. Protocol (P1, P2)

The claim is proved by considering a 2-concurrent ad-
versaryP ∗2 that plays the role ofP2 in both executions, and
acts as depicted in Figure 2 (the value ofy is arbitrary).
Note that the protocol(P1, P2) is symmetric, so it is indeed
possible forP ∗2 to mount the above attack. For lack of space
we omit the full details.8

P ∗2
P1(x1) P2 P2 P1(x2)

Com(x2)+ZK←−−−−−−−
Com(x1)+ZK−−−−−−−−→ Com(x1)+ZK−−−−−−−−→

x2+ZK←−−−−−−−
Com(y)+ZK←−−−−−−−−

x1+ZK−−−−−−−−→ x1+ZK−−−−−−−−→ x1 ⊕ x2

x1 ⊕ y
y+ZK←−−−−−−−−

Figure 2. The 2-concurrent adversary P ∗2 .

The above attack exemplifies the difficulties encountered
with respect to independence of inputs when multiple exe-
cutions of a protocol for secure computation take place con-
currently. On a high level, the source of the problem is the
potentialmalleabilityof the protocols at hand. More specif-
ically, dependencies will be caused by either one of the fol-
lowing two reasons:

Man-in-the middle dependencies: The adversary might
be able to create dependencies between its own input in
one execution with the other party’s inputs in other ex-
ecutions. As in the above example, this could happen if
the protocol is symmetric and the adversary copies mes-
sages he received in one session and forwards them back
in another session as if they were its own messages. No-
tice that the stand alone setting does not rule out the pos-
sibility that a symmetric protocol is input independent.

8The actual proof is quite subtle and involves going over all require-
ments of 2-concurrent input-indistinguishable computation.

In fact the “typical” protocols (e.g. [19]) are symmetric
and indeed do not rule out the copying attack.

Input/Output dependencies: In the concurrent setting the
input of the adversary (or even the honest party) in one
instance of the protocol may depend on the output in a
previous instance. Since we do not require the honest
party’s inputs to be independent of each other, depen-
dencies through the input/output relation of the func-
tionality that is being computed might occur (and are in
fact unavoidable). Indeed, Definition 2 does not rule out
the possibility of having such dependencies.

Thus, if we wish to construct protocols that preserve input
indistinguishability under concurrent executions, we will
have to make sure that they satisfy some form ofnon-
malleability (notice that this is not necessary in the case of
witness indistinguishability). This is indeed the approach
we take. In particular, the zero-knowledge proofs that we
use in the “compilation” of our protocols satisfy a strong
form of non-malleability.

4. Highlights of our Construction

Our protocol needs to be secure also when the adversary
corrupts different parties in different executions. Hence the
protocol instructions not only depend on the “role” of the
party in the protocol (i.e., if it is a first, or a second party)
but also on an identityid ∈ [2n] assigned to it.

4.1. Non-malleability

One of the central tools used in our construction arenon-
malleableprotocols [13]. Roughly speaking, non-malleable
protocols are designed to withstand a “man-in-the-middle”
adversary, who fully controls the communication channels
between interacting parties. The adversary has the power to
omit, insert or modify messages at its choice. It has also full
control over the scheduling of the messages, and the honest
parties are not necessarily aware to its existence.

Constructions of non-malleable protocols go back to the
paper by Dolev, Dwork and Naor [13]. However, the se-
curity guarantee provided by these protocols are not strong
enough for our purposes (i,e., when many protocols take
place concurrently at both sides of the man-in-the-middle
attacker). Moreover, these protocols (as well as later ones)
were designed only having the fairly basic of case of com-
mitment and zero-knowledge in mind, and do not take into
consideration more involved scenarios where the presence
of messages from other types of protocols is conceivable.

Until recently it was not clear how to extend the basic
results on non-malleability for the case of general secure
computation (even for the seemingly trivial case of two ex-
ecutions). This problem has been recently addressed, as-



suming an a-priori known bound on the number of concur-
rent executions (a.k.a. bounded concurrency) [32]9. Our
construction and analysis rely on these techniques and their
augmentations [35], which eventually found an application
also in the context of unbounded concurrency for the spe-
cific case of non-malleable commitment [36]. Using and
extending ideas from all of these works will enable us to
carry out the proof even in our (highly demanding) setting
of general concurrent secure computation.

4.2. The protocol

Our starting point is Yao’s honest-but-curious proto-
col for computing a functionf , which we denote by
(Y1, Y2) [42]. Using techniques analogous to the ones
of [19], we compile(Y1, Y2) into a protocol that is secure
against malicious adversaries:

1. We add a set-up phase where both parties commit
to their input, and to a truly random tape, using a
statistically-binding commitment, denoted Com. The
commitment to the random tape is obtained using a
“coin-tossing” protocol.

2. Then, both parties execute(Y1, Y2) using the pre-
committed input and random tape, and additionally
prove, after each message of(Y1, Y2), using a zero-
knowledge proof that they computed this message cor-
rectly (w.r.t. pre-committed input and random tape).

Our compilation differs from the one in [19] in three ways.

1. Our compilation uses a specific “coin-tossing.” This
coin-tossing will ensure that once the first messages,
m1,m2, in the protocol have been sent, all subsequent
(Y1, Y2) messages are predetermined. Furthermore,
except with negligible probability, an honest party will
detect if an adversary does not send these predeter-
mined messages. This property has been calledprov-
able determinismin [27] and will be important in the
analysis of the protocol.

2. Instead of using an arbitrary zero-knowledge proof
of knowledge, we will rely on a particularnon-
malleablezero-knowledge protocol; namely, a perfect
zero-knowledge variant of the protocol of [32], due to
[35]. This protocol takes as additional input an identity
id ∈ [2n], and is denotedZKid. We let id1, id2 denote
the identities used by the first and second parties re-
spectively.

9We mention that in contrast to [32], earlier work on bounded-
concurrent two-party computation by [28, 34] do not provide security
against man-in-the middle attacks (although non-malleability of protocols
is an issue in those solutions as well).

3. To enable the analysis, we will additionally have both
parties commit to their inputs and randomness (as well
as tom1,m2) using aperfectly hidingcommitment
scheme, denotedCom. At a high level, the role of
this commitment is to “soften” the inherent asymmetry
between the two parties, given that one of the parties
commits to its input and randomness before the other.

The resulting protocol is denoted(P1, P2).

4.3. Analysis

The proof of Theorem 1 starts by showing that the pro-
tocol (P1, P2) described above isstand-aloneinput indis-
tinguishable. It then proceeds by showing how to transform
any m-concurrent adversaryP ∗2 for (P1, P2) into a stand-
alone adversary for that protocol.

Proposition 1 Suppose thatCom is a statistically-binding
commitment, thatCom is a perfectly hiding commitment,
and that ZK id1 , ZK id2 are ZK interactive arguments.
Then,(P1, P2) securely computes any deterministic func-
tion f in a stand-aloneinput-indistinguishable way.

Proof Sketch: We define the implicit input function,IN1,
for partyP1 in the following way: If the statistically bind-
ing commitment to the input, sent by partyP1 is uniquely
defined, and if theZK id1 proof following the commitment
is accepting, the implicit input is defined as the value com-
mitted to. Otherwise, it is defined as⊥. The implicit input
IN2 is symmetrically defined.

The proof that(P1, P2) is stand-alone input indistin-
guishable is based on a fairly standard simulation argument
(comparing a real execution with an ideal execution). The
actual proof, however, requires some augmentations to the
standard simulation-based proofs. Most notably, it crucially
relies on the fact that the outputs of the parties are delivered
in “one shot” at a given message of the protocol(P1, P2)
(a property inherited from(Y1, Y2)). It also requires to aug-
ment the outcome of the ideal and real executions with the
implicit input INi of the corrupted partyP ∗i .

Proposition 2 Suppose thatCom is a statistically-binding
commitment, thatCom is a perfectly hiding commitment,
and that ZK id1 , ZK id2 are ZK interactive arguments.
Then,(P1, P2) securely computes any deterministic func-
tion f in a concurrent input-indistinguishable way.

Proof Sketch: Concurrent implicit computation and com-
pleteness are established using the same implicit input func-
tions IN1, IN2 as defined in the proof sketch above. Here
we rely on the fact thatIN1, IN2 are fully determined by
the transcript of the concurrent interaction (i.e., the random-
coins of the adversary are not needed). Using this fact we



can then reduce concurrent implicit computation to stand-
alone implicit computation.

To establish concurrent input indistinguishability and in-
dependence, we assume for contradiction that there exist
input sequencesx1,x2,y and anm-concurrent adversary
P ∗2 that violate the concurrent input-indistinguishability of
(P1, P2). We then show how to transformP ∗2 into a stand-
alone adversaryP STA∗

2 that violates the stand-alone input-
indistinguishability of(P1, P2), in contradiction to Prop. 1.

The stand-alone adversaryP STA∗
2 generates the entire

concurrent view ofP ∗2 , except for one (theith) execu-
tion, the messages of which are forwarded externally to
P1. The “internal” generation ofP ∗2 ’s concurrent view
is facilitated by the fact that all the inputs of the par-
ticipating honest parties are known to us, and consist of
x1

1, . . . , x
1
i−1, x

2
i+1, . . . , x

2
m (this can be guaranteed using

a somewhat non-standard hybrid argument).

P1 P STA∗
2

x1
i or x2

i

(VIEWi,yi)⇐

P1 P ∗2 P1

x1
1 ←−− ←−−−−→ −−→←−− ←−−−−→ −−→

...
...

←−−−−−−−−−−−−−−−−−− ←−−−−−−−−−−−−−−−−−−−−→ −−→←−−−−−−−−−−−−−−−−−− ←−−−−−−−−−−−−−−−−−−−−→ −−→
...

...
x2

m ←−− ←−−−−→ −−→←−− ←−−−−→ −−→

}
⇒ y∗1

}
⇒ y∗i

}
⇒ y∗m

Figure 3. The stand alone adversary P STA∗
2 .

The task of constructingP STA∗
2 then reduces to simu-

lating the ith left interaction, that corresponds to the ex-
ternal execution and for which we do not know the in-
put (it is eitherx1

i or x2
i ). On top of simulating one ses-

sion, it will be required to extractmultiple implicit inputs
y∗1 , . . . , y∗m concurrently fromP ∗2 . These inputs will be
then fed into a machine that presumably distinguishes be-
tweenEXPT(x1,x2,y, 1n) andEXPT(x2,x1,y, 1n) (which
should exist by our contradiction assumption).

The extraction ofy∗1 , . . . , y∗m is done by means of
“rewinding” individual sessions one by one (cf. [28]). The
property that enables the successful executions of all of
these tasks is calledone-many simulation extractability. As
shown in [36], this property is satisfied by theZK protocols
from [32, 35] (and these are indeed used in the compilation).

In [36] it was shown how to use simulation extractability
to obtain concurrent non-malleable commitments. Due to
the more demanding setting of the current paper, the analy-
sis does not go through in a modular way, and several new
ideas are required. The main source of complication stems
from the fact that the external protocol isinteractive (its

messages consist of the commitments to the inputs and ran-
domness, as well as corresponding messages of(Y1, Y2)).
This means that, unlike the case of commitments, we need
to deal with multiple external messages. This causes trouble
when rewinding the interaction in order to extractP ∗2 ’s in-
puts. Specifically, the rewinding might require us to rewind
the external interaction as well (which is of course impos-
sible). This is where the provable determinism property
comes into play. We can assume that the messages for-
warded to the external party remain unchanged, while the
messages forwarded back toP ∗2 internally are ”faked” by
the simulator of our zero-knowledge protocol.

One thing that provable determinism cannot solve, how-
ever, is a case in whichP ∗2 rewinds its interaction beyond
the start of the external protocol. In such a case, the external
interaction has to start from scratch with a possibly differ-
ent input. To get around this difficulty we simultaneously
run two extraction procedures in parallel (with different in-
puts). We then argue that at least one of these extractions
will succeed.
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