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Abstract. We consider the problem of amplifying the “lossiness” of
functions. We say that an oracle circuit C∗ : {0, 1}m → {0, 1}∗ amplifies
relative lossiness from `/n to L/m if for every function f : {0, 1}n →
{0, 1}n it holds that

1. If f is injective then so is Cf .
2. If f has image size of at most 2n−`, then Cf has image size at most

2m−L.

The question is whether such C∗ exists for L/m � `/n. This problem
arises naturally in the context of cryptographic “lossy functions,” where
the relative lossiness is the key parameter.
We show that for every circuit C∗ that makes at most t queries to f , the
relative lossiness of Cf is at most L/m ≤ `/n+O(log t)/n. In particular,
no black-box method making a polynomial t = poly(n) number of queries
can amplify relative lossiness by more than an O(logn)/n additive term.
We show that this is tight by giving a simple construction (cascading
with some randomization) that achieves such amplification.

1 Introduction

Lossy trapdoor functions, introduced by Peikert and Waters [14], are a powerful
cryptographic primitive. Soon after their introduction, they were found to be
useful for realizing new constructions of traditional cryptographic concepts, as
well as for demonstrating the feasibility of new ones. Their wide applicability,
simple definition, and realizability under a variety of cryptographic assumptions
make them a clear candidate for induction into the “pantheon” of cryptographic
primitives.

1.1 Lossy Trapdoor Functions

A collection of lossy trapdoor functions consists of two families of functions.
Functions in the first family are injective (and can be inverted using a trapdoor),
whereas functions in the second are “lossy,” meaning that the size of their image
is significantly smaller than the size of their domain. The security requirement
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is that the description of a function sampled from the injective family is compu-
tationally indistinguishable from the description of a function sampled from the
lossy family.

As demonstrated by Peikert and Waters, lossy trapdoor functions imply
primitives such as trapdoor functions, collision-resistant hash functions, and
oblivious transfer [14]. Amongst “higher level” applications, we can find chosen-
ciphertext secure public-key encryption [14], deterministic public-key encryp-
tion [4], OAEP-based public-key encryption [10], “hedged” public-key encryption
for protecting against bad randomness [2], security against selective opening at-
tacks [3], and non-interactive universally-composable string commitments [13].4

1.2 Relative Lossiness

A key parameter in all the applications of lossy trapdoor functions is the amount
of lossiness guaranteed in case that a lossy function was sampled. We say that
a function f : {0, 1}n → {0, 1}n is (n, `)-lossy if its image size is at most 2n−`.
Intuitively, this means that an application of f on an input x ∈ {0, 1}n loses at
least ` bits of information, on average, about x. We refer to ` as the absolute
lossiness of the function and to `/n as the relative lossiness of the function.

Peikert and Waters [14] showed how to obtain chosen ciphertext secure en-
cryption assuming relative lossiness `/n = Ω(1). This was subsequently im-
proved by Mol and Yilek [12] who, building on work by Rosen and Segev [16],
demonstrated how to obtain the same result assuming relative lossiness of only
1/poly(n). One-way functions and similarly trapdoor functions and oblivious
transfer, can be constructed assuming relative lossiness of 1/poly(n). Collision
resistant hashing requires relative lossiness of at least 1/2 + 1/poly(n). All other
known applications of lossy trapdoor functions currently assume relative lossi-
ness that is at least as large as 1− o(1).

Currently, relative lossiness of 1− o(1) seems to be necessary for most “non-
traditional” applications of lossy trapdoor functions. While some of the known
instantiations are able to guarantee such a high rate of lossiness, some other
constructions fall short. Most notably, the lattice-based construction of Peikert
and Waters [14], which is the only one based on a worst-case assumption and the
only one for which no sub-exponential attack is known, only guarantees relative
lossiness of Ω(1).

High relative lossiness is also relevant for applications that do not necessitate
it. This is because the lossiness rate typically has a pronounced effect on the
efficiency of the resulting construction. Specifically, higher lossiness rate enables
the use of a smaller security parameter, and in many applications also enables
the extraction of a larger number of “information theoretic” hard-core bits from
the underlying function. This is useful, for example, for efficiently handling long
messages.

4 We note that for some of these constructions (e.g., collision-resistant hashing) the
existence of a trapdoor is not required.
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1.3 Lossiness Amplification

All of the above leads to the question of whether, given a specific construction of
lossy trapdoor functions, it is possible to apply an efficient transformation that
would result in a construction with significantly higher lossiness. It can be easily
seen that parallel evaluation of t independent copies of an (n, `)-lossy function
amplifies the absolute lossiness from ` to t`. Specifically, given an (n, `)-lossy
function f : {0, 1}n → {0, 1}n the function g : {0, 1}tn → {0, 1}tn, defined as

g(x1, . . . , xt) = (f(x1), . . . , f(xt))

is (tn, t`)-lossy. However, this comes at the cost of blowing up the input size by
a factor of t and hence leaves the relative lossiness `/n unchanged. What we
are really looking for is a construction of a (m,L)-lossy function h : {0, 1}m →
{0, 1}m where L/m � `/n. A natural candidate is sequential evaluation (also
known as “cascading”), defined as

h(x) = f(f(. . . , f(f(x)) . . .)︸ ︷︷ ︸
t times

Unfortunately, in general h might not be more lossy than f . In particular, this
is the case when f is injective on its own range. One can do a bit better though.
By shuffling the outputs in-between every invocation, using randomly chosen
r1, . . . , rt, one obtains the function

hr1,...,rt(x) = f(f(. . . , f(f(x)⊕ r1)⊕ r2) . . .⊕ rt),

for which it is possible to show that, if f is say (n, 1)-lossy, then with overwhelm-
ing probability over the choice of r1, . . . , rt, the function hr1,...,rt has relative
lossiness of Ω(log t)/n.

While already not entirely trivial, relative lossiness of Ω(log t)/n is a fairly
modest improvement over Ω(1)/n, and would certainly not be considered suffi-
cient for most applications. Still, it is not a-priori inconceivable that there exists
more sophisticated ways to manipulate f so that the relative lossiness is am-
plified in a more significant manner. In this paper, we show that an additive
gain of O(log n)/n is actually the best one can hope for, at least with respect to
black-box constructions.

1.4 Our Results

We show that no efficient black-box amplification method can additively improve
the relative lossiness of a given function f by more than O(log n)/n. To this end,
we consider a circuit C∗ : {0, 1}m → {0, 1}∗ with oracle access to a function
f : {0, 1}n → {0, 1}n such that the following hold:

1. If f is injective then so is Cf .
2. If f has image size of at most 2n−`, then Cf has image size at most 2m−L.
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Our main result is that, if ` < n − ω(log n), then for every C∗ that makes at
most t queries to f , the relative lossiness, L/m, of Cf is at most (`+O(log t))/n.
The impossibility result holds regardless of whether the injective mode of f has
a trapdoor, and rules out even probabilistic constructions C∗ (i.e., ones which
amplify lossiness only with high probability over the choice of some randomness).
In Section 2 we provide a high-level overview of our approach, and in Section
3 we formally present our proof. We then show (in Section 4) how to extend
the above result to a “full fledged” cryptographic setting, in which one does
not simply get black-box access to a single lossy or injective function f . In this
setting, lossy functions are defined by a triple of algorithms {g0, g1, f}, where
one requires that a function fk is injective if the key is sampled by k ← g1, and
lossy if the key is sampled by k ← g0. Moreover, the distributions generated by
the injective and lossy key generation algorithms g0, g1 must be computationally
indistinguishable.

1.5 Relation to the Collision Problem

Closely related to our setting is the collision problem, in which one is given
black-box access to a function f : {0, 1}n → {0, 1}n and is required to distin-
guish between the case that f is injective and the case that it is 2`-to-1. A simple
argument shows that any (randomized) classical algorithm that tries to distin-
guish between the cases must make Ω(2(n−`)/2) calls to f . Kutin [11], extending
work of Aaronson and Shi [1], proves an analogous bound of Ω(2(n−`)/3) in the
quantum setting.

Lower bounds on the collision problem can be seen to directly imply a weak
version of our results. Specifically, if non-trivial lossiness amplification were pos-
sible then one could have applied it, and then invoked known upper bounds
for the collision problem (either O(2(n−`)/2) randomized classical or O(2(n−`)/3)
quantum), resulting in a violation of the corresponding lower bounds. However,
this approach will only work if the amplification circuit does not blow up f ’s
input size (specifically, only if m < n+(L−`)). In contrast, our results also hold
with respect to arbitrary input blow-up.

1.6 Related Work

Several instantiations of lossy trapdoor functions guarantee relative lossiness of
1−o(1). Peikert and Waters present constructions based on the Decisional Diffie-
Hellman assumption [14]. These are further simplified by Freeman et al, who also
present a generalization based on the d-linear assumption [6]. Boldyreva et al.
[4], and independently Freeman et al. [6], present a direct construction based on
Paillier’s Composite Residuosity assumption.

Hemenway and Ostrovsky [7] generalize the approach of Peikert and Waters,
and obtain relative lossiness of 1−o(1) from any homomorphic hash proof system
(a natural variant of hash proof systems [5]). In turn, this implies a unified
construction based on either Decisional Diffie Hellman, Quadratic Residuosity,
or Paillier’s Composite Residuosity assumptions.
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Constructions with relative lossiness Ω(1) are known based on the hardness of
the “learning with errors” problem, which is implied by the worst case hardness
of various lattice problems [14]. Kiltz et al. argue that RSA with exponent e
satisfies relative lossiness (log e)/n under the phi-hiding assumption, and that
use of multi-prime RSA increases relative lossiness up to (m log e)/n where m
is the number of prime factors of the modulus [10]. Finally, Freeman et al. [6]
propose an instantiation based on the Quadratic Residuosity assumption with
relative lossiness of Ω(1/n).

1.7 On Black-box Separations

The use of black-box separations between cryptographic primitives was pioneered
by Impagliazzo and Rudich [9], who proved that there is no black-box con-
struction of a key-exchange protocol from a one-way permutation. Since then,
black-box separations have become the standard tool for demonstrating such
assertions. We note that our main result is “unconditional”, in the sense that it
holds regardless of any cryptographic assumption. Our “cryptographic” result,
in contrast, is more standard in that it relies on the indistinguishability property
of lossy functions (see the work of Reingold et al. [15] for an extensive discussion
on black-box separations).

Strictly speaking, it is not clear whether black-box separations should be
interpreted as strong impossibility results. Certainly not as long as non-black-
box techniques are still conceivable. Nevertheless, since as far as we know any of
the primitives could exist unconditionally (cf. [8]), it is currently not clear how
else one could have gone about proving cryptographic lower bounds . In addition,
most of the known construction and reductions in cryptography are black-box.
Knowing that no such technique can be used to establish an implication serves
as a good guideline when searching for a solution. Indeed, it would be extremely
interesting to see if non-black box techniques are applicable in the context of
lossy function amplification.

2 Overview of Our Approach

We say that a function f : {0, 1}n → {0, 1}n′ is (n, `)-lossy if its image {f(x) :
x ∈ {0, 1}n} has size at most 2n−`. We refer to ` as the absolute lossiness, and
`/n as the relative lossiness of f . An (n, `)-lossy function f is balanced if f(x)
has exactly 2` preimages for every x ∈ {0, 1}n, i.e. |{z : f(z) = f(x)}| = 2`. We
denote with Fn,` the set of all balanced (n, `)-lossy functions.

Definition 2.1 (Lossiness amplification). We say that an oracle circuit C∗ :
{0, 1}m → {0, 1}m′ amplifies the relative lossiness from `/n to L/m if

1. for every injective function f0 over {0, 1}n, Cf0 is injective.
2. for every f1 : {0, 1}n → {0, 1}n with image size 2n−`, the image of Cf1 has

size at most 2m−L.
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We say C∗ weakly amplifies if C∗ is probabilistic and the second item above only
holds with probability ≥ 0.9 over the choice of C∗’s randomness.

Remark 2.2 (Permutations vs. injective functions). In order to make our
negative result as strong and general as possible, we require the oracle to be length
preserving (and thus the injective f0 is a permutation), whereas the input and
output domain of C∗ can be arbitrary.

For concreteness, in this proof sketch we only consider the case ` = 1. We
will also assume that m = nk is an integer multiple of n. The basic idea of our
proof is to show that for any C∗, property 1. of Definition 2.1 implies that Cf1

has very low collision probability if f1 ∈ Fn,1 is a randomly chosen 2-1 function.
More concretely, let t denote the number of oracle gates in C∗ and assume we
could prove that

Pr
X,Y ∈{0,1}m

[Cf1(X) = Cf1(Y )] ≤ 2−k·n+O(k log t) (1)

Such a low collision probability implies that Cf1 must have a large range and thus
cannot be too lossy. In particular, Eq. (1) implies that the absolute lossiness of
Cf1 is at most O(k log t), or equivalently, the relative lossiness is O(k log t)/kn =
O(log t)/n, which matches (ignoring the constant hidden in the big-oh) the lossi-
ness of the construction hr1,...,rt from Section 1.3. Unfortunately Eq. (1) is not

quite true. For example consider a circuit C̃∗ : {0, 1}kn → {0, 1}kn which makes
only t = 2 queries to its oracle and is defined as

C̃f (x1, x2, . . . , xk)
def
=

{
0kn if f(x1) = f(x2) and x1 6= x2

(x1, x2, . . . , xk) otherwise

If f0 : {0, 1}n → {0, 1}n is a permutation, so is C̃f0 (in fact, it’s the identity
function), thus property 1. holds. On the other hand, for any (n, 1)-lossy f1
we have f1(x1) = f1(x2) and x1 6= x2 with probability 2−n for uniform x1, x2.
Thus the probability that C̃f1 outputs 0kn on a random input is also 2−n, which
implies

Pr
X,Y ∈{0,1}m

[C̃f1(X) = C̃f1(Y )] ≥ Pr
X,Y ∈{0,1}m

[C̃f1(X) = C̃f1(Y ) = 02k]

≥ 2−2n

contradicting Eq. (1) for k > 2.
The idea behind the counterexample C̃f is to query f on two random inputs

and check if f collides on these inputs. If this is the case, Cf “knows” that f
is not a permutation and so it must not be a permutation itself as required by
property 1, in this case mapping to some fixed output. Although Eq. (1) is wrong,
we can prove a slightly weaker statement, where we exclude inputs X where the
evaluation of Cf on X involves two invocations of f on inputs x 6= x′ where
f(x) = f(x′) (we will call such bad inputs “burned”). As with high probability,
for a random (n, 1)-lossy f , most inputs are not burned, already this weaker
statement implies that Cf has large range.
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The cryptographic setting. In a cryptographic setting, one usually does not
simply get black-box access to a single lossy or injective function f , but lossy
functions are defined by a collection (indexed by a security parameter λ) of
triples of algorithms {g0, g1, f}{λ∈N}, where one requires that f(k, ·) is injective
if the key is sampled by k ← g1, and lossy if the key is sampled by k ← g0.
Moreover the distributions generated by the injective and lossy key generation
algorithms g0, g1 must be computationally indistinguishable.

In this setting one can potentially do more sophisticated amplification than
what is captured by Definition 2.1, e.g. by somehow using the key-generation
algorithms g0, g1. In Section 4 we prove that black-box lossiness amplification is
not possible in this setting either.

In a nutshell, we show that constructions which amplify collections of lossy
functions can be classified in two classes depending on whether the lossiness of
the construction depends only on the lossiness of the oracle (we call such ampli-
fiers “non-communicating”) or if the property of being lossy is somehow encoded
into the key. In the first case, the proof goes along the lines of the proof of The-
orem 3.1 (in particular, amplifiers as in Definition 2.1 are “non-communicating”
as there’s not even a key). In the second case, where the construction is “com-
municating”, we show that the output of the key-generation algorithms (of the
amplified construction) will not always be indistinguishable. This proof borrows
ideas from the work of Impagliazzo and Rudich [9] who show that one cannot
construct a key-agreement from one-way permutations. Their proof shows that
for any two parties Alice and Bob who can communicate over a public channel
and who have access to random oracle R, there exists an adversary Eve who can
with high probability make all queries to R that both, Alice and Bob, made.
As a consequence, Alice and Bob cannot use R to “secretly” communicate. In
a similar vein we show that the lossy key-generation algorithm cannot “commu-
nicate” the fact that the key it outputs is lossy to the evaluation function or we
can catch it, and thus distinguish lossy from injective keys.

3 An Upper Bound on Black-Box Lossiness Amplification

We now state our main theorem, asserting that simple sequential composition is
basically the best black-box amplification that can be achieved.

Theorem 3.1 (Impossibility of Black-Box Amplification). Consider any
n, `, t ∈ N where

n ≥ `+ 2 log t+ 2 (2)

and any oracle aided circuit C∗ : {0, 1}m → {0, 1}m′ which makes t oracle queries
per invocation, then the following holds: If C∗ weakly amplifies relative lossiness
from `/n to L/n,5 then L ≤ `+3 log t+4. More concretely, for a random f ∈ Fn,`,
the construction Cf will have relative lossiness less than (`+ 3 log t+ 4)/n with
probability at least 1/2.

5 Note that we denote the relative lossiness of C∗ by L/n, not L/m like in the previous
sections. In particular, the absolute lossiness of C∗ is Lm/n (not L).
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Remark 3.2. The bound n ≥ ` + 2 log t + 2 is basically tight, as for n = ` +
2 log t − O(1) one can with constant advantage p distinguish any (n, `)-lossy
function from an injective one by simply making t random queries and looking
for a collision. The exact value of p depends on the O(1) term, in particular,
replacing the O(1) with a sufficiently large constant we get a p ≥ .9 as required
by Definition 2.1. Then Cf (x) which outputs x if no such collision is found, and
some fixed value (say 0m

′
) otherwise is a weak amplifier as in Definition 2.1.

Remark 3.3 (Probabilistic C∗ vs. random f). Instead of considering a
probabilistic C∗ and constructing a particular lossy f such that Cf is not too
lossy with high probability over C∗’s randomness (as required by Definition 2.1),
we consider a deterministic C∗ and show that Cf fails to be lossy with high proba-
bility for a randomly chosen f . As f is sampled independently of (the description
of) C∗, the latter implies the former.

Below we formally define what we mean by an input being burned as already
outlined.

Definition 3.4 (Burned input). For X ∈ {0, 1}m, we denote with in(X) and
out(X) the inputs and outputs of the t invocations of f in an evaluation of
Cf (X). Consider an input X ∈ {0, 1}m and let {x1, . . . , xt} ← in(X), we say
that X is burned if for some 1 ≤ i < j ≤ t, xi 6= xj and f(xi) = f(xj). φ(X)
denotes the event that X is burned.

Below is the main technical Lemma which we will use to prove Theorem 3.1
(recall that m = nk).

Lemma 3.5. For a random balanced (n, `)-lossy function f , and two random
inputs X,Y , the probability that X,Y are colliding inputs for Cf and at the
same time both are not burned can be upper bounded as

Pr
f∈Fn,`

X,Y∈{0,1}m

[(
Cf (X) = Cf (Y )

)
∧ ¬φ(X) ∧ ¬φ(Y )

]
≤ 2−kn+k(3 log t+`) (3)

We postpone the proof of this Lemma to Section 3.1. The following simple
claim upper bounds the probability (over the choice of f ∈ Fn,`) that an input
x to Cf is burned

Claim 3.6. For any x ∈ {0, 1}m

Pr
f∈Fn,`

[φ(x)] ≤ 2`t2

2n
(4)

Proof. For i ∈ {1, . . . , t}, the probability that the ith query to f made during
the evaluation of Cf (x) provides a collision for f (assuming there’s been no

collision so far) is at most (i−1)(2`−1)
2n−i−1 . To see this, note that as f is balanced,

there are exactly (i − 1)(2` − 1) possible inputs which will lead to a collision
as each of the (i − 1) queries we did so far has 2` − 1 other preimages. As f is
random, the probability the ith query (for which there are 2n − i − 1 choices)
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will hit one of these values is (i−1)(2`−1)
2n−i−1 . The claim follows by taking the union

bound over all i

Pr
f∈Fn,`

[φ(x)] ≤
t∑
i=1

(i− 1)(2` − 1)

2n − i− 1
≤ 2`t2

2n

The second step above used t ≤ 2n/2 which is implied by Eq. (2).

Proof of Theorem 3.1. Consider a C∗ as in the statement of the theorem and
a random f ∈ Fn,`. Let Φ

def
= {x ∈ {0, 1}m : φ(x)} denote the set of inputs

which are burned (cf. Definition 3.4) and Φ = {0, 1}m \ Φ. Using the chain rule,
we can state eq.(3) as

Pr
f∈Fn,`
X,Y∈Φ

[Cf (X) = Cf (Y )] ≤ 2−kn+k(3 log t+`)

Pr f∈Fn,`
X,Y∈{0,1}m

[X,Y ∈ Φ]
(5)

Using eq.(4) we can bound the expected size (over the choice of f ∈ Fn,`) of Φ
as

E[|Φ|] = |{0, 1}n| · Pr
f∈Fn,`

X∈{0,1}m

[φ(X)] ≤ 2n · 2`t2

2n
= 2`t2

Using the Markov inequality and eq.(2), this implies that Φ is not too big, say
at most half of the domain {0, 1}m, with probability 1/2

Pr
f∈Fn,`

[|Φ| ≥ 2n−1] = Pr
f∈Fn,`

[|Φ| ≥ 2n−1−`−2 log tE[|Φ|]

≤ 1/2n−1−`−2 log t

(2)

≤ 1/2

By the above equation, |Φ| > 2n−1 with probability ≥ 1/2 over the choice of
f , and for such a “good” f , two random X,Y are in Φ with probability at least
(1/2)2 = 1/4. Thus the denominator on the right side of eq.(5) is at least 1/8,
replacing the denominator in eq.(5) with 2−3 = 1/8 we get

Pr
f∈Fn,`

X,Y∈{0,1}m

[Cf (X) = Cf (Y )] ≤ 2−kn+k(3 log t+`)+3 (6)

Again using Markov, this means that for a randomly chosen f ∈ Fn,`, with
probability at least 1/2

Pr
X,Y ∈{0,1}m

[Cf (X) = Cf (Y )] ≤ 2−kn+k(3 log t+`)+4 (7)

As two values sampled independently from a distribution with support of size u
collide with probability at least 1/u (this is tight if the distribution is flat), eq.(7)
implies that the range of Cf must be at least of size 2kn−k(3 log t+`)−4, thus the
relative lossiness (recall that m = nk) is (k`+k3 log t+4)/kn ≤ (`+3 log t+4)/n.
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3.1 Proof of Lemma 3.5

We consider a random experiment denoted Γ where X0, Y0 ∈ {0, 1}m and
f ∈ Fn,` are chosen at random, and then Cf (X0) and Cf (Y0) are evaluated.
This evaluations result in 2t invocations of f . Let {x1, . . . , xt} ← in(X0) and
{X1, . . . , Xt} ← out(X0) denote the inputs and outputs of f in the evaluation
of Cf (X0). Analogously we define values yi, Yi occurring in the evaluation of
Cf (Y0). For I ⊆ {1, . . . t}, we define an event EI which holds if for every i ∈ I
(and only for such i), there exits a j such that yi 6= xj and f(yi) = f(xj) and
yi 6= yk for all k < i (i.e. we have a fresh, non-trivial collision). Γ defines a
“transcript”

vf,X0,Y0

def
= {X0, Y0, x1, . . . , xt, f(x1), . . . , f(xt), y1, . . . , yt, f(y1), . . . , f(yt)}

The values xi and yi in the transcript are redundant, i.e., they can be computed
from values X0, Y0,f(xi) and f(yi), and only are added for convenience. For
I ⊆ {1, . . . , t} we define VI as all transcripts where (1) both inputs are not
burned (2) we have a collision and (3) EI holds, i.e.

VI
def
=
{
vf,X0,Y0

: ¬φ(X0) ∧ ¬φ(Y0) ∧
(
Cf (X0) = Cf (Y0)

)
∧ EI

}
Vcol is the union of all VI , i.e.

Vcol = ∪IVI =
{
vf,X0,Y0

: ¬φ(X0) ∧ ¬φ(Y0) ∧ Cf (X0) = Cf (Y0)
}

(8)

For a set of transcripts V , we denote with PrΓ [V ] the probability that the tran-
script generated by Γ is in V . It is not hard to see6 that PrΓ [V∅] ≤ 2−nk, we
prove that this bound (up to a factor 2) holds for any VI .

Lemma 3.7. For any I ⊆ {1, . . . , t} we have (recall that m = nk)

Pr
Γ

[VI ] ≤ 2−nk+1

We postpone the proof of this main technical lemma and first prove how it implies
Theorem 3.1. But let us here give some intuition as to why Lemma 3.7 holds.
The experiment Γ generates a transcript in VI if (besides Cf (X0) = Cf (Y0)
colliding and X0, Y0 not being burnt) for every i ∈ I, the ith invocation of f
during the evaluation of Cf (Y0) produces a fresh collision. Now, conditioned
on such a collision happening, the probability of actually getting a collision
Cf (X0) = Cf (Y0) can potentially raise significantly (by something like 2n−`) as
this is a rare event, but then, the probability of having such a collision is also
around 2n−`, and if this collision does not occur, we definitely will not end up

6 We have PrΓ [V∅] ≤ PrΓ [X0 = Y0] = 2−nk. The second step follows as X0, Y0 ∈
{0, 1}nk are uniformly random. The first step follows as ¬φ(X0),¬φ(Y0) and E∅
together imply that there are no collisions in the 2t invocations of f , and thus f is
“consistent” with being a permutation. But in this case, Cf (X0) = Cf (Y0) implies
X0 = Y0.
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with a transcript in VI . These two probabilities even out, and we end up with
roughly the same probability for a transcript VI as we had for V∅.

Before we can prove the theorem we need one more lemma, which bounds
the probability of Γ generating a transcript with lots (k or more) collisions.

Lemma 3.8. ∑
I:|I|≥k

Pr
Γ

[VI ] ≤
∑

I:|I|≥k

Pr
Γ

[EI ] ≤ 2k(`+2 log t−(n−1)) (9)

Proof. The first step of Eq. (9) follows as VI implies EI . Let E+
I denote the

event which holds if EI′ holds for any I ′ ⊇ I. We have

Pr
Γ

[E+
I ] ≤

(
(2` − 1)t

2n − 2t

)|I|
≤
(

2`t

2n−1

)|I|
(10)

To see this, note that to get E+
I , in every step i ∈ I, xi must be fresh, and

then f(yi) must “hit” one of the at most t distinct f(xi). As f is a random 2`-1
function evaluated on at most 2t inputs, this probability can be upper bounded
by (2`− 1)t/(2n− 2t) as at most (2`− 1)t of the at least 2n− 2t fresh inputs can
“hit” as described above. The probability that we have such a “hit” for all i ∈ I
is the |I|’th power of this probability. The number of different I where |I| = k
can be upper bounded by 2k log t, using this and Eq. (10) we get∑

I:|I|≥k

Pr
Γ

[EI ] ≤
∑

I:|I|=k

Pr
Γ

[E+
I ]

≤ 2k log t

(
2`ktk

2(n−1)k

)
= 2k(`+2 log t−(n−1))

Proof of Lemma 3.5. Lemma 3.5 states that PrΓ [Vcol] ≤ 2−kn+O(k log(t)), which
we can write as

Pr
Γ

[Vcol]
Eq.(8)

=
∑

I:|I|<k

Pr
Γ

[VI ] +
∑

I:|I|≥k

Pr
Γ

[VI ]

Using Lemma 3.7 and 3.8 and the fact that there are
(
t

k−1
)
< tk different I’s

with |I| < k, we get∑
I:|I|<k

Pr
Γ

[VI ] +
∑

I:|I|≥k

Pr
Γ

[VI ] ≤ tk · 2−nk+1 + 2k(`+2 log t−(n−1))

≤ 21+k(`+2 log t−(n−1))

< 2−nk+k(3 log t+`)
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Proof of Lemma 3.7. For any I, we consider a new random experiment ΓI .
This experiment will define a distribution X ′t ∈ {0, 1}m, Y ′t ∈ {0, 1}m ∪⊥. We’ll
show that

Pr
ΓI

[X ′t = Y ′t ] ≤ 2−m (11)

and
Pr
Γ

[VI ] ≤ 2 · Pr
ΓI

[X ′t = Y ′t ] (12)

Note that the two equations above imply Lemma 3.7. The experiment ΓI is
defined as follows

1. We sample random X ′0, Y
′
0 ∈ {0, 1}m and a random permutation g over

{0, 1}n.

2. Let x′1, . . . , x
′
t be the inputs to g in the evaluation of Cg(X ′0). Let X ′t

def
=

Cg(X ′0).
3. Now evaluate Cg(Y ′0) in steps (one invocation of g per step), where for any
i ∈ I do the following:
– if y′i is “fresh” (that is y′i 6= x′j for any 1 ≤ j ≤ t and y′i 6= y′j for any

1 ≤ j < i). we change the value of g(y′i) and set it to some uniformly
random value zi ∈U {0, 1}n (note that g is no longer a permutation).

– If yi is no fresh set Y ′t = ⊥ and stop.

We will first prove Eq. (11). Let’s consider a new random experiment Γ ∗I
which will define outputs X ′′t , Y

′′
t ∈ {0, 1}m. This experiment is defined exactly

as the experiment ΓI defining X ′t, Y
′
t , but when y′i is not fresh we nonetheless

redefine g(y′i) to a random zi (instead of setting Y ′t = ⊥ and aborting). As the
two experiments only differ when Y ′t = ⊥, but X ′t cannot be ⊥, we have.

Pr
ΓI

[X ′t = Y ′t ] ≤ Pr
Γ∗I

[X ′′t = Y ′′t ]

Moreover X ′′t = Cg(X ′′0 ) is uniformly random (as X ′′0 is uniform and Cg is a per-
mutation) and Y ′′t is independent of X ′′t (the reason we consider the experiment
Γ ∗I is because in ΓI we don’t have this independence), thus

Pr
Γ∗I

[Y ′′t = X ′′t ] = 2−m

The two equations above imply Eq. (11). Now we show Eq. (12), i.e.

Pr
Γ

[VI ] ≤ 2 · Pr
Γ ′

[X ′t = Y ′t ] (13)

We will show a stronger statement, namely that for every transcript v̂ ∈ VI we
have

Pr
Γ

[v̂] ≤ 2 · Pr
ΓI

[v̂] (14)

This implies (13) as

Pr
Γ

[VI ] =
∑
v̂∈VI

Pr
Γ

[v̂] ≤ 2 ·
∑
v̂∈VI

Pr
ΓI

[v̂] = 2 · Pr
ΓI

[VI ] ≤ 2 · Pr
ΓI

[X ′t = Y ′t ]
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We’ll use the following notation for the transcript v̂ and the transcripts generated
by Γ and ΓI , respectively.

v̂
def
= {X̂0, Ŷ0, x̂1, . . . , x̂t, a1, . . . , at, ŷ1, . . . , ŷt, b1, . . . , bt}

v
def
= {X0, Y0, x1, . . . , xt, f(x1), . . . , f(xt), y1, . . . , yt, f(y1), . . . , f(yt)}

v′
def
= {X ′0, Y ′0 , x′1, . . . , x′t, g(x′1), . . . , g(x′t), y

′
1, . . . , y

′
t, g(y′1), . . . , g(y′t)}

As X̂0, Ŷ0, X0, Y0, X
′
0, Y

′
0 are uniformly random, we have

Pr[(X̂0, Ŷ0) = (X0, Y0)] = Pr[(X̂0, Ŷ0) = (X ′0, Y
′
0)] = 2−2m

Further

Pr
Γ

[(x̂1, . . . , x̂t, a1, . . . , at) = (x1, . . . , xt, f(x1), . . . , f(xt)) | (X̂0, Ŷ0) = (X0, Y0)] ≤

Pr
ΓI

[(x̂1, . . . , x̂t, a1, . . . , at) = (x′1, . . . , x
′
t, g(x′1), . . . , g(x′t)) | (X̂0, Ŷ0) = (X ′0, Y

′
0)]

Using the chain rule, the above is implied by

t∏
i=1

Pr
Γ

[ai = f(xi)| . . .] ≤
t∏
i=1

Pr
ΓI

[ai = g(x′i)| . . .] (15)

where here and below we use the convention that “. . .” always means that the
transcript defined up to this point is consistent with the transcript v̂. E.g. on
the left side of eq.(15) the “. . .” stands for

(X̂0, Ŷ0) = (X0, Y0) , ∀j = 1 . . . i− 1 : f(xj) = aj (16)

Note that we don’t have to explicitly require ∀j = 1 . . . i− 1 : xj = x̂j as this is
already implied by (16).7

For i = 1, . . . , 2t we will denote with qi ≤ i the number of distinct elements
that appeared as inputs to f in the first i queries. I.e., for i ≤ t qi = |{x̂1, . . . , x̂i}|
and for t < i ≤ 2t, qi = |{x̂1, . . . , x̂t, ŷ1, . . . , ŷi−t}|.

To see that Eq. (15) holds, note that for any i where x̂i is not fresh (i.e.
xi = xj for some j < i) we have

Pr[ai = f(xi)| . . .] = Pr[ai = g(x′i)| . . .] = 1

For i’s where xi is fresh, let qi denote the number of distinct elements in
x̂1, . . . , x̂i−1. A g is a random permutation and ai 6= g(x′j) for j < i because
¬φ(X0), we have

Pr
ΓI

[g(x′i) = ai| . . .] =
1

2n − qi
7 If the inputs (X̂0, Ŷ0) = (X0, Y0) are identical, and all the oracle queries so far gave

the same outputs, also all intermediate values (including the next oracle query) will
be the same.
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On the other hand

Pr
Γ

[f(xi) = ai| . . .] ≤
1

2n − qi
To see this note that PrΓ [f(xi) = ai| . . .] is exactly 1

2n−qi if one additionally

conditions on the fact that f(xi) 6= aj for all j < i. Not conditioning on this
event can only decrease the probability as ai 6= aj for j < i as ¬φ(X0).

Now we come to the second part of the transcript. Here we will show that

Pr
Γ

[(ŷ1, . . . , ŷt, a1, . . . , at) = (y1, . . . , yt, f(y1), . . . , f(yt)) | . . .] ≤

2 · Pr
ΓI

[(ŷ1, . . . , ŷt, a1, . . . , at) = (y′1, . . . , y
′
t, g(y′1), . . . , g(y′t)) | . . .]

The proof is almost identical as for the first part, except that now for fresh y′i
we have a slightly smaller probability

Pr
ΓI

[g(y′i) = bi| . . .] = 2−n

that g maps to the right value bi in the experiment ΓI , as by definition of ΓI
the output of g is assigned a uniformly random value in this case. Using the fact
that t ≤ 2−n/4 this difference is covered by the extra factor 2.

4 Extension to Collections of Lossy Functions

By Theorem 3.1 no circuit C∗ (of size polynomial in n) can amplify relative
lossiness better than sequential composition. That is, if Cf is injective for any
permutation f : {0, 1}n → {0, 1}n, then there exists an (n, `)-lossy f (i.e. it has
relative lossiness `/n) such that Cf has relative lossiness only (`+O(log n))/n. In
fact, a random (n, `)-lossy f will have this property with very high probability.
In a cryptographic setting, lossy functions are not given as a single function, but
by a collection of triple of algorithms as defined below.

Definition 4.1 (Collection of Lossy Functions). Let λ ∈ N denote a se-
curity parameter and n = n(λ), n′ = n′(λ), ` = `(λ) be functions of λ. A
collection of (n, n′, `)-lossy function is a sequence (indexed by λ) of functions
π = {g0, g1, f}λ∈N where g0, g1 are probabilistic key-generation functions, such
that

1. Evaluation of lossy functions: For every function index σ ← g0(1λ),
f(σ, ·) is a function fσ : {0, 1}n → {0, 1}n′ whose image is of size at most
2n−`.

2. Evaluation of injective functions: For every function index σ ← g1(1λ),
the function f(σ, ·) computes an injective function fσ : {0, 1}n → {0, 1}n′ .

3. Security: The ensembles
{
σ : σ ← g0(1λ)

}
λ∈N and

{
σ : σ ← g1(1λ)

}
λ∈N are

computationally indistinguishable.

We refer to ` as the absolute lossiness of π, and to `/n as the relative lossiness
of π.
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Definition 4.2 (Black-Box Amplification of Lossy Collection). A triple
of probabilistic polynomial-time oracle algorithms Π∗ = {G∗0,G∗1,F∗} is a black-
box amplification for relative lossiness from α = α(λ) to β = β(λ) (β > α) if
for every oracle π = {g0, g1, f}λ∈N that implements a (n, n, αn)-lossy collection,
Ππ is a (m,m′, βm)-lossy collection (where m = m(λ),m′ = m′(λ)).

Note that if π is efficient (i.e. can be implemented by polynomial time algo-
rithms), so is Ππ. We will prove the following theorem.

Theorem 4.3 (Impossibility of Black-Box Amplification). Let t, `, n be
functions of λ such that n(λ) ≤ `(λ)+2 log(t(λ))+ω(λ). If each of the algorithms
in Π∗ = {G∗0,G∗1,F∗} makes at most t = t(λ) oracle queries per invocation
and Π∗ amplifies relative lossiness from α(λ) = `/n to β(λ) = L/n then L =
`+O(log t).

To save on notation, we will identify the security parameter λ with the domain
size n of the lossy-function we try to amplify (which will be given as an oracle).

To prove Theorem 4.3, we will show that for any construction Π∗, if we
choose a random (n, `)-lossy πn = {g0, g1, f} (“random” to be defined in Section
4.1), then with overwhelming probability either the outputs of Gπn0 and Gπn1 can
be distinguished relative to πn, or for a random lossy key k ← Gπn0 , the function
Fπn(k, ·) has very small collision probability and thus cannot be too lossy.

4.1 The random π = {g0, g1, f}

For n, ` ∈ N let Ln,` denote the set of triples of functions g0, g1 : {0, 1}n−1 →
{0, 1}n, f : {0, 1}n → {0, 1}n where the range of g0, g1 covers all of {0, 1}n (note
this means that the range of g0 and g1 are disjoint) and (with Fn,` as defined in
the first paragraph of Section 2)

∀x ∈ {0, 1}n−1 : f(g0(x), ·) ∈ Fn,` and f(g1(x), ·) ∈ Fn,0

Claim 4.4. For `(n) ≤ n − ω(n), let π = {πn}n∈N where πn = {g0, g1, f} is
chosen uniformly in Ln,` (for every n ∈ N.) Then with overwhelming probability
π is (n, `)-lossy even relative to an EXPTIME-complete oracle.

4.2 (Non-)Communicating Π∗

Consider a Π∗ = {G∗0,G∗1,F∗} as in Definition 4.2. We will classify such Π∗ in
two classes, depending on whether Π∗ is close to being “non-communicating” or
not. Intuitively, we say Π∗ is non-communicating if the lossiness of Ππ comes
entirely from the lossiness of π, that is, if π is not lossy, then also Ππ will not
be lossy.

Definition 4.5 ((close to) non-communicating). Π∗ is non-communicating
if for every n ∈ N and πn ∈ Ln,0 the function computed by Fπ(k, ·) is injective
for every k ← Gπ0 (1n). In addition, Π∗ is close to being non-communicating if
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for all but finitely many n ∈ N, with probability 1/2 over the choice of a random
πn ∈ Ln,0, for at least 1/2 of the keys k ← Gπn0 , there’s a subset Mk ⊆ {0, 1}m
of size at least 2m/2 such Fπn(k, x) is injective on Mk (i.e. for x, x′ ∈ Mk,
Fπn(k, x) = Fπ(k, x′) implies x = x′).

In order to prove that Theorem 4.3 holds for some particular construction
Π∗, we will use a different argument depending on whether Π∗ is close to being
non-communicating or not. The proof for the first case is almost identical to that
of Theorem 3.1, where we rely on the fact that C∗ is injective for any injective
key k. The proof for the second case relies on the indistinguishability of injective
and lossy functions, and requires new ideas. More specifically, in this case we
prove the following lemma:

Lemma 4.6. If Π∗ (as in the statement of Theorem 4.3) is far (i.e. not close)
from being non-communicating, then for infinitely many n ∈ N the following
holds. For a random πn ∈ Ln,` the outputs of Gπn0 and Gπn1 can be distinguished
with constant advantage making poly(t, n) oracle queries to πn (and one query
to an EXPTIME oracle).

Due to space limitations in the remainder of this section we describe a high-
level outline for the proof of Lemma 4.6, and refer the reader to the full version
for the formal proof.

Proof outline. For b ∈ {0, 1} consider a key k ← Gπnb (R) and let Qk denote
all the queries that Gπnb (R) made to its oracle πn during sampling this key
using randomness R. Now consider a (n, 0)-lossy π̂n ∈ Fn,0 which is sampled at
random except that we require it to be consistent with the queries in Qk. As π̂n
is consistent with πn on Qk, we have Gπnb (R) = Gπ̂nb (R) = k. Thus if

– b = 1, then k is a valid injective key relative to π̂n and thus Fπ̂n(k, ·) has
image size 2m.

– b = 0, then k is a valid lossy key relative to π̂n. As Π∗ is far from being
non-communicating, with constant probability Fπ̂n(k, ·) will have an image
size of ≤ 2m−1 despite the fact that π̂n is not lossy at all.

Using the above two observations, here’s a way to distinguish the case b = 0
from b = 1 (i.e. lossy from injective keys) with constant advantage given Qk
and access to an EXPTIME oracle: query the oracle on input k,Qk and ask for
the image size of Fπ̂n(k, ·) for a π̂n randomly sampled as described above. If the
image size is ≤ 2m−1, guess b = 0, guess b = 1 otherwise.

Unfortunately we are only given the key k, but not Qk. What we’ll do is con-
sider a random πn which is consistent with πn on a set of inputs/outputs Qsamk,q

to πn which is sampled by invoking Fπn(k, ·) on q = poly(n, t) random inputs
(i.e. Qsamk,q contains all inputs/outputs to πn made during these q invocations).

We will prove that for such a πn the image size of F(k, ·)πn is still close to
2m if b = 1, but with constant probability � 2m if b = 0, so we can use our
EXPTIME oracle to distinguish these cases by sending k,Qsamk,q (which, unlike
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Qk, we do have) to the EXPTIME oracle asking for the image size of F(k, ·)πn
when πn ∈ Fn,0 is chosen at random but consistent with Qsamk,q .

The reason it is good enough to consider a πn that is consistent with Qsamk,q

and not Qk, is that for sufficiently many samples q = poly(n, t), Qsamk,q will with
high probability contain all “heavy” queries in Qk, where we say a query is heavy
if there’s a good probability that Fπn(k, ·) will make that query if invoked on a
random input.

So for most inputs x, Fπn(k, x) will not query πn on a query which is in
Qk (i.e. which was made during key-generation), but is not in Qsamk,q . As a con-

sequence, Fπn(k, ·) “behaves” differently from what we would get by using π̂n
(which is consistent with all of Qk) instead of πn only for a small fraction of the
inputs. In particular, the image size is close to what we would have gotten by
using π̂n.
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